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Abstract

Background: Homeoproteins are a class of transcription factors that are well-known regulators
of organogenesis and cell differentiation in numerous tissues, including the male reproductive
system. Indeed, a handful of homeoproteins have so far been identified in the testis and epididymis
where a few were shown to play important developmental roles. Through a degenerate PCR
approach aimed at identifying novel homeoproteins expressed in the male reproductive system, we
have detected several homeoproteins most of which had never been described before in this tissue.
One of these homeoproteins is Ladybird-like homeobox 2 (Lbx2), a homeobox factor mostly
known to be expressed in the nervous system.

Results: To better define the expression profile of Lbx2 in the male reproductive system, we have
performed in situ hybridization throughout testicular and epididymal development and into
adulthood. Lbx2 expression was also confirmed by real time RT-PCR in those tissues and in several
testicular and epididymal cell lines. In the epididymis, a highly segmented tissue, Lbx2 shows a
regionalized expression profile, being more expressed in proximal segments of the caput
epididymis than any other segment. In the testis, we found that Lbx2 is constitutively expressed at
high levels in Sertoli cells. In interstitial cells, Lbx2 is weakly expressed during fetal and early
postnatal life, highly expressed around P32-P36, and absent in adult animals. Finally, Lbx2 can also
be detected in a population of germ cells in adults.

Conclusion: Altogether, our data suggest that the homeoprotein Lbx2 might be involved in the
regulation of male reproductive system development and cell differentiation as well as in male
epididymal segmentation.

Background involved in critical developmental and physiological
Homeobox genes encode transcription factors known as  processes in all living organisms. These processes include
homeoproteins that share a highly conserved 60 amino  body plan segmentation, organogenesis, molecular gradi-
acid DNA-binding motif called a homeodomain [1-3].  ent specification, and cell lineage specification and differ-
Homeoproteins are known to regulate expression of genes  entiation. Homeoproteins have been identified in several
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tissues and the male reproductive system is no exception
(reviewed in [4,5]).

The male reproductive system is essential for the produc-
tion of fully functional gametes and for the establishment
of the secondary sexual characteristics. It is composed of
the testis and several secondary sex organs: the rete testis,
epididymis, vas deferens, seminal vesicles, prostate and
bulbourethral glands. Proper development of the male
reproductive system is thus indispensable for normal
male sex differentiation and reproductive function. The
process of male sex determination/differentiation is trig-
gered by the Y chromosome-linked SRY (Sex-determining
Region Y) gene (reviewed in [6]). In the mouse, Sry is tran-
siently expressed (between embryonic day 10.5 and
E12.5) specifically in pre-Sertoli cells. Since SRY expres-
sion is limited to a discrete period of testis differentiation
[7,8], it acts as a molecular switch to turn on a network of
molecular and cellular events essentials for testicular
development as well as male sex differentiation. Three
critical hormones produced by the somatic cells of the
newly formed testis are essential for male sex differentia-
tion and reproductive function: Miillerian inhibiting sub-
stance/anti-Miillerian hormone (MIS/AMH), insulin-like
3 (INSL3), and testosterone (reviewed in [6]). MIS, a hor-
mone belonging to the TGFf family, is produced by Ser-
toli cells and regulates male sex differentiation by
triggering regression of the Miillerian ducts, which if left
intact would develop into the internal female reproduc-
tive tract (fallopian tubes, uterus, and upper part of the
vagina) [9]. Testosterone, a steroid hormone, secreted by
Leydig cells and its more potent derivative dihydrotesto-
sterone regulate several key processes that include testicu-
lar descent, development of the accessory sex glands and
external genitalia, masculinization of the brain, male sex-
ual behavior, and initiation and maintenance of sperma-
togenesis (male gamete production) [10]. INSL3, a small
peptide belonging to the insulin/relaxin/growth factor
family also produced by Leydig cells, regulates the first
phase of testis descent during fetal life [11,12] and acts as
a germ cell survival factor in adults [13].

Although the testis is the site of spermatogenesis, sperma-
tozoa that exit the testis do not have the capacity to ferti-
lize eggs. The final steps of spermatozoa maturation
(acquisition of motility, chromatin condensation) occur
in the epididymis, a convoluted and androgen-regulated
organ composed of one long tubule divided into three dis-
tinct regions called caput, corpus and cauda. Epididymal
segmentation is directly related to its function which is
species-conserved [14,15]. In addition to functionality,
each region of the epididymal tubule is characterized by a
distinct physiology. Therefore several genes have been
shown to have a region-specific expression along the
epididymis tubule [16]. In addition to its importance for
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sperm maturation, the epididymis also serves as a reser-
voir for spermatozoa [17].

The process of testis and epididymis formation, as for org-
anogenesis of all tissues, relies on a network of hormones
and signaling molecules that act by regulating expression
of genes involved in specifying the unique features and
functions of these tissues. Some of these genes encode
transcription factors. In recent years, some homeopro-
teins have been implicated in testicular and epididymal
development and include Emx2 [18], Lhx9 [19], Pbx1
[20], Arx [21], HoxA10 [22], and Pax2 [23].

Here we report the identification, through a degenerate
PCR approach, of additional homeobox factors expressed
in the male reproductive system. In addition, we have per-
formed a detailed characterization of the expression pro-
file during testicular and epididymal development of one
of the homeoprotein identified, the Ladybird-like home-
obox 2 (Lbx2) homeoprotein.

Results and Discussion

To identify novel homeoproteins in the male reproductive
system, we used a degenerate PCR strategy (see Additional
file 1: Degenerate PCR strategy). A mixture of degenerate
primers designed to amplify the homeodomain region
was used along with cDNAs from mouse Leydig cells and
epididymis as template. As shown in Fig. 1, a 180 bp frag-
ment corresponding to the homeodomain was success-
fully amplified. Because degenerate primers were used,
this band is likely composed of various homeodomain
sequences. To determine the nature of these homeodo-
mains, the PCR products were subcloned and several
independent clones were sequenced. As shown in Table 1,
we found nearly a dozen different homeoproteins in Ley-
dig cells and six in the epididymis. Some of these homeo-
proteins belong to the Hox family but the majorities are
non-Hox homeoproteins (Table 1). Interestingly, none of
the non-Hox homeoproteins had previously been
reported in Leydig cells and in the epididymis, although
some (Lbx2, Dmbx1, Emx2, Pbx1) have been detected in
the urogenital ridge/testis [18,20,24-26]. To confirm that
some of the non-Hox homeoproteins identified in our
screen are indeed expressed in male reproductive organs,
RT-PCRs with sequence-specific primers (Table 2) were
performed using cDNA from testicular tissues and cell
lines (Leydig and Sertoli) as well as from the three regions
of the epididymis (Fig. 2). As shown in the left panel of
Fig. 2, Prx2, Dmbx1, and Gbx1 were detected in all testic-
ular cell lines/tissues tested while Lbx2 and Emx2 were
only detected in some testicular cell lines (Fig. 2, left
panel). Lbx2 was present in adult mouse testis as well in
the Leydig cell lines MA-10 and mLTC-1 whereas Emx2
was detected in MA-10 and TM3 Leydig cell lines. In the
epididymis, all homeoproteins analyzed by this tech-
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Table I: Homeoproteins identified by degenerate PCR in Leydig
cells and epididymis

Leydig Epididymis
Dmbx | Hoxb-2, Hoxb-3
Emx2 Lbx2
Gbx|, Gbx2 Mox |
Hoxb-2, Hoxb-3, Hoxb-9 Msx |
Hoxc-13 Prx2
Lbx2
Prx2
Sax2

nique were detected (Fig. 2, right panel). Our results are
consistent with previous data reporting expression of
Emx2 and Dmbx1 in the urogenital system and testis
[18,25,27,28]. Since Lbx2 was detected in both tissues and
since scarce information was available regarding its
expression in the reproductive system, this homeobox fac-
tor was chosen for further analyses.

Lbx2 is the second member of a family that also comprises
Lbx1 and Lbx3. The mammalian Lbx1 and Lbx2 gene are
the homologs of the Drosophila Ladybird genes Ladybird
late (Lbl) and Ladybird early (Lbe). Ladybird-like genes
were also identified in the chick embryo, Lbx1 and Lbx3,
which share a high degree of homology with mammalian
Lbx genes [29]. In Drosophila, Lbl and Lbe have been
shown to play important roles in neurogenesis, myogene-
sis, and cardiogenesis [30-33]. A consensus DNA binding

Leydig Epididymis
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Figure |

Identification of homeobox factors in testicular Ley-
dig cells and in mouse epididymis. A degenerate PCR
was performed using cDNAs from mLTC-| Leydig cell line,
purified Leydig cells from adult rats (ALC) and from all three
segments of the mouse epididymis and resulted in the ampli-
fication of a 180 bp fragment. The fragments were subcloned
in pBluescript and sequenced to determine the nature of the
homeoprotein (see Table ).
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site for Lbl and Lbe proteins, RVYTAAYHAG, was recently
identified [34]. This motif was then used in a ChIP-
enriched in silico target approach (ChEST) that led to the
identification of several target genes regulated by the
Ladybird factors in Drosophila [34]. These genes were
found to encode proteins involved in cardiac and muscle
cell fate specification as well as in cell shape, adhesion,
and motility [34]. Interestingly, in mammals Lbx1 was
reported to play equally important roles. Indeed, Lbx1-/-
mice have important defects in heart looping [35],
interneuron specification in the spinal cord [36-38], and
migration of muscle cell precursors [39-41]. As for Lbx3,
its role in chick remains unknown and no mammalian
homolog has been identified yet.

To confirm Lbx2 expression in the testis and epididymis,
we initially performed real time RT-PCR using primers
specific for Lbx2 on first strand ¢DNAs from various
sources. We used cDNAs from a panel of cell lines corre-
sponding to Leydig and Sertoli cells and found that Lbx2
was expressed at similar levels in all cell lines tested,
except for mLTC-1 Leydig cells which express higher levels
of Lbx2 (Fig. 3A, left panel). Similar results for the Leydig
cell lines were obtained by Northern blot (Additional file
2: Lbx2 Northern blot in Leydig cell lines). To gain
insights into the developmental expression profile of Lbx2
in the testis, real time PCR was performed on cDNAs iso-
lated from testes at various embryonic and postnatal
developmental stages. As shown in the right panel of Fig.
3A, we found that Lbx2 was present at all stages tested.
Lbx2 mRNA was detected at embryonic day 14 (E14),
peaked by E18 and postnatal day 1 (P1), and subse-
quently decreased by P5 to a level that remained stable
throughout adult life (P34 and P70). A similar real time
PCR approach was used to assess Lbx2 expression in the
epididymis. As shown in the left panel of Fig. 3B, Lbx2
mRNA was expressed at similar levels in the three regions
of the adult mouse epididymis (caput, corpus, and
cauda). Lbx2 was also expressed at a constant level
throughout embryonic and postnatal epididymal devel-
opment (Fig. 3B, right panel).

Although the presence of Lbx2 in the testis and epidi-
dymis has been confirmed (Figs. 2 and 3), the exact cell
type expressing this factor within these tissues remained
uncertain. To answer this question, we analyze Lbx2
expression and localization by in situ hybridization on tis-
sue sections using a DIG-cRNA probe. Each in situ hybrid-
ization analysis was performed using three different cRNA
probes which all gave similar results. Consistent with the
real time PCR data (Fig. 3), Lbx2 is already expressed in
the developing male gonad and mesonephros at E14 in
the mouse (Fig. 4). In the mesonephros, Lbx2 is present in
cells of the Wolffian duct (WD), the anlagen of several
male reproductive organs, including the epididymis.
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Expression of five homeoproteins in the testis and epididymis. PCR reactions were performed using sequence-specific
primers (see Table 2) for each of the indicated homeoproteins along with cDNAs from adult mouse testis, purified Leydig cells
from adult rats (ALC), various Leydig cell lines (MA-10, mLTC-I, TM3, R2C), a Sertoli cell line (MSC-1), and the three regions
of adult mouse epididymis (caput, corpus, cauda). The integrity and amount of cDNA used in the PCR assays was assessed by

amplifying tubulin mRNA. No template: negative control.

Staining is also detected in the lateral part of the mesone-
phros which would be in agreement with the location of
the degenerating Miillerian duct (MD) at that age [42,43].
In the testis, Lbx2 specifically labels cells within the devel-
oping seminiferous tubules (ST; dotted lines in Fig. 4) and
not the interstitial cells (Fig. 4). Our findings are in agree-
ment with previous data in the literature where Lbx2 was
reported to be expressed in several embryonic tissues,
including the urogenital ridge between E10.5 and E14.5
in the mouse [24,26]. No information, however, is avail-
able regarding Lbx2 expression in reproductive organs at
later developmental stages and in adult animals.

To address this issue, we performed in situ hybridization
throughout fetal and postnatal testicular development in
the mouse. Lbx2 mRNA was detected in cells within the
seminiferous tubules at all ages tested (E18, P1, P5, P32,
P34, P36 and P70). In the embryonic (E18) and neonatal
(P1) testis, the lumen of the tubules is positive for Lbx2
(Figs. 5B and 5D) which indicates expression in Sertoli
cells since at this age their cytoplasm is known to fill the

tubule before the onset of spermatogenesis. This was fur-
ther confirmed by comparing Lbx2 mRNA staining with
that of the MIS protein, a well-known marker of Sertoli
cells specifically found in the cytoplasm (Fig. 5C and 5E).
Gonocytes, located in the tubules, are not labeled for Lbx2
as their small and round cytoplasm can easily be seen as
an unlabelled halo around their large nucleus (Fig. 5).
Later during postnatal development (P5, P32, P34, P36,
P70), Lbx2 expression remained high in cells within the
seminiferous tubules that can be identified as Sertoli cells
(Figs. 6A, 6C, 6D, 6E, and 6F) by comparing with MIS
immunostaining (Figs. 6B and 6G). In addition, some
germ cells are also positive for Lbx2 at P70 (Fig. 6F). Since
Sertoli cells are the main supporting cells for testicular
development and spermatogenesis [44], our data would
be consistent with a role for Lbx2 in these processes. In
addition to its expression in cells of the seminiferous
tubules, Lbx2 could also be detected in interstitial cells.
Low staining could be consistently detected in interstitial
cells between E18 and P5 (Figs. 5B, 5D, and 6A). This
would indicate that Lbx2 is weakly expressed in the fetal
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Figure 3

Lbx2 is expressed in the testis (A) and epididymis (B). Quantitative real time PCR were performed with primers spe-
cific for Lbx2 cDNA as described in Methods using first strand cDNAs from Leydig cell lines (MA-10, mLTC-1, TM3), Sertoli
cell lines (TM4, MSC-1, 15P-1), mouse testis at various developmental ages (E14, E18, PI, P5, P34 and P70), epididymal regions
(caput, corpus, cauda) from adult mice, and mouse epididymis at different developmental stages as indicated. Results were cor-
rected with the Rpl19 cDNA. Results are the mean of three individual experiments each performed in duplicate (x SEM).

Leydig cell population. Fetal Leydig cells are responsible  cell population, begins to differentiate around the second
for production of androgens during fetal life and are  week after birth and is responsible for the production of
known to disappear within the first week after birth [45].  androgens throughout postnatal life [46,47]. Contrary to
Another population of Leydig cells, called the adult Leydig  the fetal Leydig cells, we found that Lbx2 is highly
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Lbx2 is strongly expressed in mesonephric cells and in seminiferous tubules of the developing testis. Six um par-
affin sections of paraformaldehyde-fixed mouse developing urogenital ridge (E|4) were probed with DIG-labeled antisense (left
panel) and sense (right panel) Lbx2 cRNA probes in in situ hybridization experiments. Lbx2 mRNA was detected by immunos-
taining using an alkaline phosphatase-coupled anti-DIG antibody (appears as a blue-purplish staining). Tissues were counter-
stained with Neutral Red to visualize nuclei. Lbx2 mRNA was detected in cells of the Wolffian duct (WD), of the degenerating
Miillerian duct (MD), and in the developing seminiferous tubules (ST, outlined by dotted lines). Magnification: 200x.

expressed in the adult Leydig cell population around P32,
P34 and P36 (Figs. 6C, 6D, and 6E) whereas in mature
animals (P70), Leydig cells no longer expressed Lbx2 (Fig.
6F). Taken together our data indicate that Lbx2 is
expressed at low levels in fetal Leydig cells but at high lev-
els during the differentiation of the adult population of
Leydig cells. This raises the possibility that Lbx2 could reg-
ulate specific steps of the Leydig cell differentiation proc-
ess.

The detection of Lbx2 expression in cells of the Wolffian
duct at E14 (Fig. 4) prompted us to test whether Lbx2 was
expressed in the epididymis during mouse development
since this tissue derives from the Wolffian duct. The epidi-
dymis is a segmented and regionalized organ [16] and
homeoproteins, such as the HOX proteins, are essential
regulators of body plan segmentation in the antero-poste-
rior axis [48]. As shown in Fig. 7, Lbx2 mRNA was
detected in all three regions of the epididymis from E18 to
adulthood. At the cellular level, Lbx2 was found to be
expressed in principal and basal cells of the epididymal
epithelium in adult male mice (Fig. 8). Lbx2 did not label
clear and narrow cells (data not shown). Interestingly, we
found that Lbx2 shows a highly compartmentalized

expression profile in the caput and corpus epididymis
(Fig. 9). Indeed, in the caput, which is a highly segmented
region of the epididymis [14], Lbx2 was found to be more
abundantly expressed in segment 1 (data not shown) and
2 (Figs. 9A and 9B) compared to segment 3 (Figs. 9A and
9C), 4 and 5 (data not shown). Similarly, Lbx2 expression
was stronger in the proximal than in the distal corpus
(Figs. 9D, 9E, and 9F). So far, only a handful of homeo-
proteins have been shown to have regionalized expression
in the male reproductive tract and most of them belong to
the Hox or Meis (Hox-interacting proteins) families [49].
Other transcription factors such as Pea3 and Rhox5 (a
member of the reproductive homeobox gene cluster) are
also known to be differentially expressed along rodent
epididymis [5,50,51]. To this date however, only Hoxal0
and Hoxall have been shown to be involved in segment
identity in vivo the mouse epididymis [52,53].

Although Lbx2 was found to be strongly expressed in both
tissues throughout development into adulthood, we did
not detect expression of the highly related Lbx family
member Lbx1 (data not shown). This is consistent with
the fact that Lbx1 and Lbx2 do not have overlapping
expression patterns in general [24,54] and are therefore
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Immunohistochemistry

Anti-MIS

Figure 5

Lbx2 expression in embryonic an neonatal testis. Six um paraffin sections of paraformaldehyde-fixed mouse testis were
probed with DIG-labeled antisense (B and D) and sense (A) Lbx2 cRNA probes in in situ hybridization experiments. Lbx2
mRNA was detected by immunostaining using an alkaline phosphatase-coupled anti-DIG antibody (appears as a blue-purplish
staining). Tissues were counterstained with Neutral Red to visualize nuclei. Lbx2 expression in the testis was assessed at E18
(B) and PI (D). Immunohistochemistry for the Sertoli cell marker MIS was performed on testis sections at EI8 (C) and PI (E)
as described in Methods and revealed using AEC (shows as a red-brownish staining). Expression of Lbx2 is evident within the
cytoplasm of Sertoli cells by comparison with MIS staining. A weak but consistent Lbx2 staining is also observed in interstitial
cells. Gonocytes are not labeled. No significant signal was detected with the sense probe (A). Go: gonocytes, S: Sertoli cells, I:

interstitial cells. Magnifications: 200 (D, E), 400x (A-C).

believed to play non-redundant roles during develop-
ment. The expression pattern of Lbx2 in the testis and
epididymis described herein supports the notion that this
transcription factor might be involved in the development
and/or the function of these organs. While this manu-
script was in preparation, Lbx2 null mice have been
reported [26]. Surprisingly, Lbx2-/- mice are viable and
show no gross morphological defects and both male and
female Lbx2-/- mice were found to be fertile, although no
detailed analyses of the reproductive system were reported
[26]. A mild partial lethality associated with Lbx2 defi-
cient mice was however observed but failed to reach statis-
tical significance [26]. As suggested by Wei et al, back
crossing the Lbx2 mutation in a different genetic back-

ground may be required to detect a phenotype associated
with Lbx2 deficiency [26]. Besides the genetic back-
ground, this lack of a penetrant phenotype might be
explained by a redundancy mechanism where another
homeobox factor could compensate for the absence of
Lbx2. This is very common amongst genes that are essen-
tial for development and cell differentiation, including
homeobox encoding genes [55-57]. Wei et al proposed
that the Tlx2 homeobox gene is an attracting candidate as
a substitute for Lbx2 for several reasons. First, TIx2 and
Lbx2 belong to the superclass of homeobox proteins [58].
Second, the genomic location and organization of the
TIx2 and Lbx2 genes are conserved in Drosophila and
mice [58]. And finally, TIx2 and Lbx2 expression patterns
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Lbx2 expression in postnatal testis. In situ hybridization (ISH) experiments using DIG-labeled antisense (A, C, D, E, F) and
sense (H) Lbx2 cRNA probes were performed on 6 um paraffin sections of paraformaldehyde-fixed mouse testis. Lbx2 mRNA
was detected by immunostaining using an alkaline phosphatase-coupled anti-DIG antibody (appears as a blue-purplish staining).
Tissues were counterstained with Neutral Red to visualize nuclei. Lbx2 expression in the post-natal testis was assessed at P5
(A), P32 (C), P34 (D), P36 (E), and P70 (F). By immunohistochemistry (IHC), the Sertoli cell cytoplasm in P5 (B) and P70 (G)
testis was labeled using an anti-MIS antiserum and revealed using AEC (shows as a red-brownish staining). Expression of Lbx2
is evident within the cytoplasm of Sertoli cells at all ages. In interstitial cells, a weak but consistent staining is observed at P5 (A)
while a strong signal is detected at P32, P34, and P36 (C-E). At P70, some germ cells are also labeled for Lbx2 (F). No signifi-
cant signal was detected with a sense probe as shown in the adult (H) section. Gc: germ cells, L: Leydig cells, S: Sertoli cells.
Magnifications: 200% (A, B), 400x (C-H).
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Epididymal region

Figure 7

Lbx2 is strongly expressed throughout epididymal development. Top panel: schematic representation of the three
regions of the epididymis and of the 5 segments of the caput. In situ hybridization experiments were performed on six um par-
affin sections of paraformaldehyde-fixed mouse epididymis using DIG-labeled antisense (A, B, D-N) and sense (C, O) Lbx2
cRNA probes. Lbx2 mRNA was detected by immunostaining using an alkaline phosphatase-coupled anti-DIG antibody (appears
as a blue-purplish staining). Tissues were counterstained with Neutral Red to visualize nuclei. Lbx2 expression was assessed at
different developmental stages, E18 (A, B), PI (D-F), P5 (G-I), P34 (J-L), P70 (M, N), and in the three regions, caput (A, D, G, J,
M), corpus (B, E, H, K, N), cauda (F, |, L) of the epididymis. No significant signal was detected with a sense probe as shown in
the E18 (C) and adult (O) sections (- CTL). Magnifications: 100x (C, F, O); 200x (A, B, D, E, G, H, K, M); 400x (I, ], L, N).

Page 9 of 15

(page number not for citation purposes)



BMC Developmental Biology 2008, 8:22

Figure 8

Lbx2 is expressed in the principal and basal cells of
the epididymal epithelium. Top panel: schematic repre-
sentation of the caput epididymis and its 5 segments. A DIG-
labeled antisense Lbx2 cRNA probe was used in in situ
hybridization experiments on six um paraffin sections of
paraformaldehyde-fixed mouse adult epididymis. Lbx2
mRNA was detected by immunostaining using an alkaline
phosphatase-coupled anti-DIG antibody (appears as a blue-
purplish staining). Tissues were counterstained with Neutral
Red to visualize nuclei. (A) 400% magnification of the seg-
ment 2 of the caput epididymis that reveals strong signal in
the epididymal epithelium (EE). (B) The presence of Lbx2 can
be observed in principal (arrow) and basal (arrowhead) cells
using a 1000% magnification of (A). EE: epididymal epithelium;
IT: interstitial compartment; LU; epididymal lumen.
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are overlapping in numerous tissues including the testis
[24,26,59]. Besides TIx2, it is also possible that other yet
unidentified Lbx family members could also compensate
for the absence of Lbx2. In agreement with this is the iden-
tification of Lbx3 in the avian genome, although a mam-
malian homolog has yet to be identified [29]. If it does
indeed exist, this other Lbx family member would repre-
sent an interesting candidate to compensate for the
absence of Lbx2.

Conclusion

In conclusion, our present study provides new insights
into the expression profile of the homeobox factor Lbx2
throughout development of the testis and the epididymis.
The lack of overt phenotype in Lbx2 null mice may indi-
cate that Lbx2 does not play a dominant role in the devel-
opment and the function of these organs. Another
possibility is that other homeobox factors compensate for
the absence of Lbx2. Since Lbx2 expression is dynamic in
the testis and epididymis, Lbx2 constitutes a useful molec-
ular marker for histological and developmental studies.

Methods

Animals

C57BL/6 mice were maintained on a 12L:12D light cycle
with water and food ad libitum. Mice were killed at differ-
ent time points as indicated in the figure legends and the
testes and epididymides were harvested. Whole testis and
epididymis were fixed in 4% (w/v) paraformaldehyde for
24 h. Tissues were then dehydrate with ethanol, substi-
tuted with xylene, and embedded in paraffin. All experi-
ments complied with the regulations set by the Animal
Welfare Act (Public Law 91-579), the Canadian Council
for Animal Care, the Guide for the Care and Use of Labo-
ratory Animals (National Research Council, 1996) pub-
lished by the Department of Health and Human Services,
and the policies and procedures of the University of Vir-
ginia Institutional Animal Care and Use Committee. All
experiments have been approved by the Animal Care and
Ethics Committee of Laval University (protocol # 06-
059).

Cell culture

Most cell lines used in the present study were obtained
from ATCC (Leydig: mTLC-1, TM3, R2C; and Sertoli:
TM4, 15P-1). The MA-10 Leydig cell line [60] was pro-
vided by Dr. Mario Ascoli (University of lowa, Iowa City,
IA) and the Sertoli MSC-1 cell line was a gift from Dr.
Michael Griswold (Washington State University, Pullman,
WA). The MSC-1 cell lines were grown in Dulbecco mod-
ified Eagle medium (DMEM) supplemented with 10%
fetal bovine serum, HEPES and 50 mg/liter of penicillin
and streptomycin sulfates. MA-10, were grown in Way-
mouth's MB752/1 medium supplemented with 20 mM
HEPES, 15% horse serum and 50 mg/liter of penicillin
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Figure 9

Lbx2 is expressed in a segment-specific manner in the adult epididymis. Top panel: schematic representation of the
five segments of the caput and the two regions of the corpus epididymis. Six um paraffin sections of paraformaldehyde-fixed
mouse epididymis were probed with a DIG-labeled antisense Lbx2 cRNA probe in in situ hybridization experiments. Lbx2
mRNA was detected by immunostaining using an alkaline phosphatase-coupled anti-DIG antibody (appears as a blue-purplish
staining). Tissues were counterstained with Neutral Red to visualize nuclei. Caput (A, B, C) and corpus (D, E, F). (A) Localiza-
tion of Lbx2 in segment 2 (s2) and 3 (s3) of the caput. The two segments are separated by a dotted line. (B) Magnification of
segment 2 seen in A. (C) Magnification of segment 3 seen in A. (D) Lbx2 expression in the proximal (p) and distal (d) corpus. A
dotted line separates the proximal and distal corpus. (E) Magnification of the proximal corpus seen in D. (F) Magnification of
the distal corpus seen in (D). EE: epididymal epithelium; IT: interstitial compartment; LU: epididymal lumen. Magnifications:
100x (A, D); 200x (B, C, E, F).
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Table 2: Sequence-specific primers used in the RT-PCR studies
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Gene Sequence

Lbx2 Forward: 5'-ATGGGTACCCGAAGCACCTTCTGCACCGC-3'
Reverse: 5-GCGAATTCAATCGTCCACCTGTATCTCCTC-3

Prx2 Forward: 5'-GCGAATTCAACAGCAGCCAGCTGCAGGCGC-3'
Reverse: 5'-GGCCTCGAGGCGAAGGCTGGCGATGCTGTTGGA-3'

Gbx| Forward: 5-GCTCTAGAGGGAAGGTGTACAGCTCAGATG-3'
Reverse: 5'-CGGGATCCATCTGTTGGTGCTGGCTGCGC-3'

Dmbx| Forward: 5'-CGGAATTCAATTGGGGAGTGTATCGAGTCCC-3'
Reverse: 5'-GAGGATCCCAAAGCTGAAAAGAGCCC-3

Emx2 Forward: 5'-GCTCTAGAGTTCCTCAACGGATTCCACTC-3'
Reverse: 5-GGGGTACCATTTCCTCCGGACTCGCCTGC-3'

Tubulin Forward: 5'-TCCATCCACGTCGGCCAGGCT-3'

Reverse: 5-GTAGGGCTCAACCACAGCAGT-3'

and streptomycin sulfates. All cell lines obtained from
ATCC were cultured as recommended by ATCC. Cell lines
were grown at 37°C and 5% CO,.

RNA preparation and RT-PCR

Total RNA from adult mouse testis, epididymal segment
and the various cell lines was isolated using RNeasy Plus
extraction kit (Qiagen, Mississauga, Ontario, Canada).
First strand cDNAs were synthesized from a 2.5 pg aliquot
of the various RNAs using the Transcriptor Reverse Tran-
scriptase kit (Roche Diagnostics, Laval, Canada). The
degenerate PCR primers were designed by aligning the
sequence encoding the homeodomain of 16 homeopro-
teins (Additional file 1: Degenerate PCR strategy). The
sequences of the degenerate primers are as follow: forward
5'-GAT CTA GAS CAR CTG SAG GMG CTG GAG-3' and
reverse 5'-GCG GTA CCG CBC KSC GGT TCT KRA ACC A-
3'. The degenerate primers, which are located at each end
of the homeodomain, were used in PCR using first strand
c¢DNAs from Leydig cells purified from adult rats (ALC),
mLTC-1 Leydig cell line and mouse caput, corpus, cauda
epididymis. Total RNA from ALC was kindly provided by
Dr. Matthew Hardy, (The Population Council, Rockefeller
University, New York, NY). The procedure for cell isola-
tion has been described previously [61] and Leydig cells
are typically enriched more than 95% as determined by
histochemical staining for 3B-hydroxysteroid dehydroge-
nase activity [61]. As determined in Dr. Hardy's labora-
tory, expression of marker genes for other testicular cell
types (Sertoli, myoid, lymphocytes and blood cells) was
undetectable. The degenerate PCRs were done on a Ty, ien
thermocycler (Biometra) using the following conditions:
3 min at 94 °C followed by 30 cycles of 1 min at 94°C, 1
min at 51-59°C, 30 sec at 72°C, and a final extension of
5 min at 72°C. The PCR products were subcloned and
sequenced. The sequences of the primers specific for Lbx2,
Emx2, Prx2, Gbx1, Dmbx1, and tubulin are listed in Table
2. The PCRs were done on a T, gien, thermocycler (Biom-
etra) using the following conditions: 3 min at 94°C fol-
lowed by 30 cycles of denaturation (50 sec at 94°C),

annealing (1 min at various temperatures; see below),
extension (1 min at 72°C), and a final extension of 5 min
at 72°C. The annealing temperatures were 58 °C for Lbx2,
Prx2, tubulin and 60°C for Emx2, Gbx1, and Dmbx1. The
PCR products were subcloned in pBluescript (Stratagene)
and sequenced on an ABI 3730/XL automated sequencer
(Centre de génomique de Québec, Québec City, Canada)
to confirm the nature of the amplified cDNAs. The real-
time PCRs were carried out using a LightCycler 1.5 instru-
ment from Roche Diagnostics, Laval, Canada. Reactions
were performed according to the manufacturer's recom-
mendations. PCRs were performed using the following
Lbx2-specific primers: forward, 5'-GAC TGG GCC TGG
CTA AT-3' and reverse, 5'-CAG GGT CAG GGCTTG AA-3".
As an internal control, PCRs were performed using previ-
ously described Rpl19-specific primers [62]. The PCRs
were done using the following conditions: 10 min at
95°C followed by 35 cycles of denaturation (5 sec at
95°C), annealing (5 sec at 62°C for both Rpl19 and Lbx2
cDNAs), and extension (20 sec at 72° C) with single acqui-
sition of fluorescence at the end of each extension steps.
After amplification, the samples were slowly heated at
0.2°C/sec from 68°C to 95°C with continuous reading of
fluorescence to obtain a melting curve. The specificity of
each PCR product was then determined by using the melt-
ing-curve analysis program of the LightCycler software.
The Lbx2 and Rpl19 PCR products showed a single peak
in the analysis. Quantification of gene expression was per-
formed using the Relative Quantification Software (Roche
Diagnostics, Laval, Canada) and is expressed as a ratio of
Lbx2 to Rpl19 mRNA levels. Each amplification were per-
formed in duplicate using three different preparations of
first-strand ¢cDNAs for each of the two different RNA
extractions

In situ hybridization

Three different probes for Lbx2 were tested. A 604 bp frag-
ment that encompasses the entire coding sequence (nt
60-624 of Genbank accession number NM_010692), a
504 bp fragment from nt 120 to 624, and a 263 bp frag-
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ment that contains the coding sequence C-terminal of the
homeodomain into the 3' UTR (nt 490-753). The frag-
ments were obtained by PCR and cloned into pBluescript
(Stratagene). Sense and antisense digoxigenin (DIG)-
labeled riboprobes for Lbx2 were subsequently obtained
by linearizing the plasmid followed by in vitro transcrip-
tion using T7 or T3 RNA polymerase (GE Healthcare) in
the presence of DIG-UTP (Roche Diagnostics, Laval, Can-
ada). The DIG-labeled riboprobes were then used in in situ
hybridization experiments on paraformaldehyde-fixed,
paraffin-embedded tissue sections. In brief, testis and
epididymis sections were dewaxed in xylene, rehydrated
in graded alcohols (95%, 70%, and 50%) and diethylpy-
rocarbonate-treated water, and digested by proteinase K
(10 mg/mL) for 15 min. Glycine (2 mg/mL) was used to
stop the proteinase K digestion. Tissues were then refixed
with 4% paraformaldehyde and treated with 0.25% acetic
anhydride in 0.1% triethanolamine (pH 8.0) for 10 min.
Between each step, the slides were washed twice in PBS
(pH 7.5) for 5 min. The sections were then prehybridized
in hybridization solution (0.3 M NaCl; 10 mM Tris-HCI,
pH7.5; 1 mM EDTA; 1x Denhardt's; 5% dextran sulfate;
0.02% sodium dodecyl sulfate; 50% formamide; and 250
pg/ml salmon sperm DNA) at 42°C for 16 hrs and finally
hybridized in 30 pl of the same solution containing 7.5
pg/mL DIG-labeled Lbx2 antisense or sense riboprobe at
42°C. On the next day, the slides were washed twice for
10 min at 42°Cwith 2 x SSC, 1 x SSC, 0.2 x SSC and 0.05
x SSC and incubated with a 1:1000 dilution of an alkaline
phosphatase-conjugated anti-DIG antiserum (Roche
Diagnostics, Laval, Canada) for 2 h at room temperature.
Nitroblue tetrazolium chloride and 5-bromo-4-chloro-3-
indolylphosphate p-toluidine (NBT/BCIP) were used as
substrates for the alkaline phosphatase reaction. Sections
were counterstained with 5% neutral red and mounted in
Permount (Fisher Scientificc Montreal, Canada). The
results presented were obtained with the 504 bp probe.

Immunohistochemistry

Paraformaldehyde-fixed, paraffin-embedded testis sec-
tions were dewaxed in xylene, treated 30 min in 0.3%
H,0, (Sigma-Aldrich, Oakville, Canada)/methanol, rehy-
drated in graded alcohols (95%, 70%, and 50%) and
treated for antigen retrieval. Sections were then blocked
for 2 h with 10% horse serum and incubated overnight at
4°C with an Anti-Miillerian inhibitory substance antise-
rum (MIS, 1:100, Santa Cruz Biotechnology) in PBS con-
taining 0.1% BSA. The next morning, the slides were
washed in PBS and incubated 45 min with a biotinylated
anti-goat antibody (1:1500, Vector Laboratories, Burling-
ton, Canada). After washing in PBS, sections were submit-
ted to an avidin-biotin complex (ABC) solution for 20
min at room temperature (Vectastain ABC Elite Kit, Vector
Laboratories, Burlington, Canada). The signal was
detected using a solution of 3-amino-9-ethylcarbazole
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(AEC, Sigma-Aldrich Canada, Oakville, Canada), 50 mM
acetate buffer pH 5.2 (0.2 M sodium acetate; 0.2 M acetic
acid) and 0.002% H,O,. Sections were then counter-
stained with Gill #1 hematoxylin and mounted in 15%
glycerol and 0.1% sodium azide in PBS.
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Additional material

Additional file 1

Strategy used to derive the degenerate PCR used to identify additional
homeoproteins expressed in the male reproductive system. (A) Schematic
representation of a homeoprotein with the homeodomain (HD) repre-
sented by a black box. DNA sequence alignment of the HD of 16 homeo-
proteins that have in common a lysine at position 50 of the homeodomain.
Sequences corresponding to the two degenerate primers are shown by
arrows. The HD is shown in black. (B) Sequences of the two degenerate
primers. The expected size of the amplicon is 180 bp. Since the primers
were located in different exons separated by an intron (not shown here),
it was simple (based on predicted band sizes) to discriminate between gen-
uine homeoproteins and amplification artifacts caused by any contaminat-
ing genomic DNA.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
213X-8-22-S1.pdf]

Additional file 2

Expression of Lbx2 in Leydig cell lines by Northern blot. Total RNA from
MA-10, mLTC-1, TM3 and R2C Leydig cell lines was extracted using the
RNeasy Plus extraction kit (Qiagen, Mississauga, Ontario, Canada) and
analyzed by Northern blot. Twenty ug of RNA were separated by agarose-
formaldehyde gel electrophoresis and then transferred onto a nylon mem-
brane (Hybond-N, GE Healthcare Life Sciences, Baie d'Urfé, Quebec,
Canada). Top panel: membrane hybridization with a Lbx2 32P-labeled
c¢DNA probe was done using the QuikHyb Hybridization Solution as rec-
ommended by the manufacturer (Stratagene, La Jolla, CA, USA). The
blot was washed under stringent conditions: 1 x SSC, 0.1% SDS for 30
min at 65°C and 0.1 x SSC, 0.1% SDS for 30 min at 65 °C. Lover panel:
to control for loading, the same membrane was stained with methylene
blue. The position of 18S and 288 ribosomal RNA is indicated.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
213X-8-22-82.pdf]
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