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a b s t r a c t

Cigarette smoke (CS) causes adverse health effects and, for smoker who do not quit, modified risk tobacco
products (MRTPs) can be an alternative to reduce the risk of developing smoking-related diseases.
Standard toxicological endpoints can lack sensitivity, with systems toxicology approaches yielding
broader insights into toxicological mechanisms. In a 6-month systems toxicology study on ApoE�/� mice,
we conducted an integrative multi-omics analysis to assess the effects of aerosols from the Carbon
Heated Tobacco Product (CHTP) 1.2 and Tobacco Heating System (THS) 2.2—a potential and a candidate
MRTP based on the heat-not-burn (HnB) principle—compared with CS at matched nicotine concentra-
tions. Molecular exposure effects in the lungs were measured by mRNA/microRNA transcriptomics, pro-
teomics, metabolomics, and lipidomics. Integrative data analysis included Multi-Omics Factor Analysis
and multi-modality functional network interpretation. Across all five data modalities, CS exposure was
associated with an increased inflammatory and oxidative stress response, and lipid/surfactant alterations.
Upon HnB aerosol exposure these effects were much more limited or absent, with reversal of CS-induced
effects upon cessation and switching to CHTP 1.2. Functional network analysis revealed CS-induced com-
plex immunoregulatory interactions across the investigated molecular layers (e.g., itaconate, quinolinate,
and miR-146) and highlighted the engagement of the heme–Hmox–bilirubin oxidative stress axis by CS.
This work exemplifies how multi-omics approaches can be leveraged within systems toxicology studies
and the generated multi-omics data set can facilitate the development of analysis methods and can yield
further insights into the effects of toxicological exposures on the lung of mice.

� 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Smoking is causally linked to several diseases, especially those
of the respiratory and cardiovascular systems. Tobacco smoke
exposure is a major risk factor for chronic obstructive pulmonary
disease (COPD), a major and increasing global health problem [1].
While smoking cessation is the most effective measure for
reducing the risk of smoking-related diseases [2], switching to less
harmful products can be an alternative for smokers who would
otherwise not quit.
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The US Family Smoking Prevention and Tobacco Control Act
defines a modified risk tobacco product (MRTP) as ‘‘any tobacco
product that is sold or distributed for use to reduce harm or the
risk of tobacco related disease associated with commercially mar-
keted tobacco products” [3]. The Carbon Heating Tobacco System
(CHTP) 1.2 and Tobacco Heating System (THS) 2.2 are potential
and candidate MRTPs, respectively, developed by Philip Morris
International based on the heat-not-burn principle [4,5]. Tobacco
is heated in a controlled fashion to release nicotine and volatiles
that contribute to tobacco flavors, but combustion is prevented.
To this end, THS 2.2 leverages electronic heating, while CHTP 1.2
has a carbon-heated tip from which heat is transferred to a tobacco
plug. Thermal decomposition of organic tobacco compounds at ele-
vated temperatures results in both pyrogenesis and pyrosynthesis
of many harmful or potentially harmful constituents (HPHC).
Therefore, preventing combustion produces an aerosol with lower
number and levels of HPHC compared to cigarette smoke (CS) [5,6].

Standard toxicological endpoints can lack sensitivity and only
yield limited insights into toxicological mechanisms [7,8]. By
employing ‘‘omics” methods, systems toxicology complements
these standard endpoints with comprehensive molecular analyses
to increase sensitivity and coverage for detection of exposure
effects [9,10]. CS exposure broadly affects lung biology, with detri-
mental effects on lung lipids [11,12], metabolites [13,14], proteins
[15], and transcriptional programs [16,17]. Integrative analyses of
multi-omics data can capture multilayer toxicological effects, as
demonstrated in case of renal cisplatin toxicity [18], lung nanopar-
ticle toxicity [19], cardiotoxicity of doxorubicin [20], and MRTP
assessment [21]. On the basis of such studies, the need to further
expand the use of such integrative multi-omics analyses has been
emphasized in recent review articles [9,22]. Here, we present
results from a multi-omics analysis investigating the lung effects
of aerosols from potential MRTPs, compared with CS, in a 6-
month inhalation toxicity study on ApoE�/� mice.
2. Material and methods

2.1. Overview of experimental design

Within the 6-month inhalation toxicity study on ApoE�/� mice
[23,24], female ApoE�/� mice were randomized into six groups:
Sham, exposed to filtered air; 3R4F, exposed to CS from the 3R4F
reference cigarette (600 mg total particulate matter [TPM]/L
aerosol; target exposure concentration equivalent to 28 mg
nicotine/L); CHTP 1.2, exposed to aerosol from CHTP 1.2 (nicotine
levels matched to those of 3R4F CS equivalent to 28 mg nicotine/
L); THS 2.2, exposed to aerosol from THS 2.2 (nicotine levels
matched to those of 3R4F CS equivalent to 28 mg nicotine/L); Ces-
sation, 3 months of exposure to 3R4F CS (600 mg TPM/L aerosol)
followed by exposure to filtered air; and Switch to CHTP 1.2 aero-
sol, 3 months of exposure to 3R4F CS (600 mg TPM/L aerosol) fol-
lowed by exposure to aerosol from CHTP 1.2 (nicotine levels
matched to those of 3R4F CS equivalent to 28 mg nicotine/L). The
maximum exposure duration was 6 months.
2.2. Animals

All procedures involving animals were performed in a facility
accredited by the Association for Assessment and Accreditation
of Laboratory Animal Care International and licensed by the Agri-
Food and Veterinary Authority of Singapore, with approval from
an Institutional Animal Care and Use Committee (IACUC protocol
#15015) and in compliance with the National Advisory Committee
for Laboratory Animal Research Guidelines on the Care and Use of
Animals for Scientific Purposes (NACLAR, 2004).
More details on the animals are provided in the summary
manuscript on this 6-month inhalation toxicity study [23] and on
INTERVALS [24]. Briefly, female B6.129P2-Apoetm1Unc N11 ApoE�/�

mice bred under specific-pathogen-free conditions were obtained
from Taconic Biosciences (Germantown, NY, USA). The mice were
approximately 6 to 8 weeks old on arrival and 8 to 10 weeks old
at the start of exposure. The mice were housed and exposed under
specific hygienic conditions with filtered, conditioned, fresh air at
22 ± 2 �C and 55% ± 15% humidity. The light/dark cycle was
12 h/12 h. A maximum of eight mice were housed per cage.
2.3. Aerosol generation, characterization, and animal exposure

More details on the exposure and exposure characterization are
provided in the summary manuscript on this 6-month inhalation
toxicity study [23] and on INTERVALS [24]. Briefly, the mice were
whole-body exposed to diluted mainstream CS from 3R4F cigar-
ettes (target concentration 600 mg TPM/L, equivalent to 28 mg nico-
tine/L), CHTP 1.2 aerosol (nicotine-matched to 3R4F, 28 mg/L), THS
2.2 aerosol (nicotine-matched to 3R4F, 28 mg/L), or filtered air for
3 h per day, 5 days per week, for up to 6 months. Intermittent daily
exposure to fresh, filtered air for 30 min after the first hour of
smoke exposure and for 60 min after the second hour of exposure
was provided to avoid build-up of excessive carboxyhemoglobin
concentrations in the 3R4F group.

3R4F reference cigarettes [25] were purchased from the Univer-
sity of Kentucky. CHTP 1.2 uses a pressed carbon heat source to
heat a tobacco plug in a specially designed stick to produce a
nicotine-containing aerosol [5]. THS 2.2 consists of a single-use
disposable stick containing a tobacco plug inserted into a
holder—containing a battery, electronics for temperature control,
a heating element, and a stick extractor [4,6]—that heats the
tobacco electrically in a controlled way to ensure that combustion
temperatures are not reached. In both CHTP 1.2 and THS 2.2, the
controlled heating of the tobacco generates an aerosol containing
mainly water, glycerin, nicotine, and tobacco flavors. For detailed
descriptions of CHTP 1.2 and THS 2.2, see [5,6]. CHTP 1.2 and
THS 2.2 sticks, as well as the holders, were provided by Philip Mor-
ris International (Neuchâtel, Switzerland).

Mainstream CS from 3R4F cigarettes was generated on 30-port
rotary smoking machines, as described previously [26], while aero-
sols from CHTP 1.2 and THS 2.2 sticks were generated on modified
30-port rotary smoking machines equipped with the respective
stick holders [5,16]. Two modified smoking machines per chamber
were required to achieve the target CHTP 1.2 and THS 2.2 aerosol
concentrations. 3R4F cigarettes were smoked, and the aerosols
from CHTP 1.2 and THS 2.2 sticks were generated in accordance
with the Health Canada intense smoking protocol [27]. Several
minor deviations from this protocol were necessary for technical
reasons [26]. For example, butt length and static burning rate—typ-
ical smoking parameters—were measured only for the 3R4F machi-
nes or cigarettes, because they are only relevant for cigarettes. The
puff count ranged from 10 to 11 puffs per cigarette (average
10.4 ± 0.3) for the 3R4F sticks. The CHTP 1.2 and THS 2.2 machines
were always set for 12 puffs because of the device configuration.
The 3R4F cigarettes were smoked to a butt length range of 34–
36 mm (average 34.6 ± 0.4 mm), and the static burning rate was
467 s per 40 mm.
2.4. Exposure markers in urine

More details on the exposure characterization are provided in
the summary manuscript on this 6-month inhalation toxicity study
[23] and on INTERVALS [24]. Briefly, urine was collected for a 24-h
period, including the three 1-h exposure periods. Biomarkers were
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determined by ABF GmbH (Munich, Germany) (N = 10–12); for
details, see [16,26].

2.5. Tissue preparation for omics analyses

Molecular analysis (transcriptomics, proteomics, miRNAs, geno-
mics, and metabolomics) were performed after 3, 4, and 6 months
of exposure. Tissues were collected 16–24 h after exposure (sepa-
rate samples from the same tissues/organs for transcriptomics,
proteomics, lipidomics, and genomics analyses) from eight to ten
mice per group and processed as described previously [16]. For
transcriptomics, proteomics, and lipidomics analyses, the left lung
lobe was frozen on dry ice and stored at �80 �C. The lung lobe was
subsequently cryosectioned, and slices were collected in alternat-
ing order for the different omics analyses.

2.6. Transcriptomics

Total RNAwas isolated from tissues by using the miRNeasy Mini
Kit (Qiagen, Hilden, Germany) and quality-checked by using an Agi-
lent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA)
(N = 9) [23]. Samples were processed and analyzed in randomized
order. Total RNA (100 ng) was reverse-transcribed, amplified, puri-
fied, and hybridized on MG430 2.0 GeneChips (Affymetrix, Santa
Clara, CA, USA) and evaluated by using standard procedures (for
details, see Phillips et al. [16] and the protocol on INTERVALS [28]).
miRNA was analyzed by using microarrays and a previously
described method [14] (see protocol on INTERVALS [29]).

For statistical analysis, a linear model was fitted for each expo-
sure condition and the respective Sham group, p values were calcu-
lated from moderated t-statistics with the empirical Bayes
approach [30], and genes with a Benjamini–Hochberg FDR-
adjusted p value <0.05 were considered differentially expressed.

Transcriptomic data were also analyzed in the context of hierar-
chically structured network models describing the molecular
mechanisms underlying essential biological processes in non-
diseased lungs [31,32]. Leveraging the ‘‘cause-and-effect” network
models together with NPA algorithms, the gene expression fold
changes were translated into differential values for each network
node [33,34]. These were, in turn, summarized into a quantitative
NPA measure, and NPA values were aggregated into a biological
impact factor; details have been described elsewhere [26,35].

2.7. Proteomics

Proteome alterations were assessed by isobaric tag-based quan-
tificationwith the iTRAQ� approach (N = 8) (see [7,36,23] and proto-
col on INTERVALS [37]). Samples were processed and analyzed in
randomized order. Frozen lung tissue sliceswere homogenizedwith
a bead-assisted procedure in a Tissue Lyser II (Qiagen, Hilden, Ger-
many) in tissue lysis buffer (BioRad Laboratories, Hercules, CA,
USA) before acetone precipitation. Protein precipitates were resus-
pended in 0.5 M triethylammonium bicarbonate (Sigma-Aldrich,
St. Louis, MO, USA), 1 M urea (Sigma-Aldrich), and 0.1% sodium
dodecyl sulfate (Sigma-Aldrich). Next, 50-lg aliquots of the suspen-
sion were processed by using the iTRAQ� 8-plex labeling procedure
in accordancewith themanufacturer’s instructions (AB Sciex, Fram-
ingham,MA,USA). A trypsin–LysCmix (Promega,Madison,WI,USA)
was added to the samples at a 1:10 ratio (w/w). Thiswas followedby
overnight digestion at 37 �C. Trypsin-digested sampleswere labeled
with reporter-ion tags for different exposure groups.

Sample replicates were assigned to different iTRAQ� labeling
sets, as described previously [21] – essentially, following a ran-
domized complete block design. For this, separately for each anal-
ysis time point, iTRAQ� analysis sets with randomized set and
reporter ion channel assignments were defined: Each 8-plex
labeling replicate set included one sample of each exposure group
and one pooled reference mix combining all samples (note that per
default processing, scaling of the reporter ion set was done by the
median rather than reference mix value, because of the improved
variance properties [38,39]). All labeled samples that belonged to
one iTRAQ� replicate set were pooled and dried in a SpeedVac con-
centrator (RVC 2–25 CD Plus; Martin Christ, Osterode am Harz,
Germany). The samples were desalted by using 0.5-mL bed
detergent-removal columns (Pierce, Rockford, IL, USA) and then
with 1-cc C18 reversed-phase Sep-Pak columns (Waters, Milford,
MA, USA) in accordance with the manufacturers’ protocols. The
samples were dried in a SpeedVac evaporator and resuspended in
nanoLC buffer A (5% acetonitrile and 0.2% formic acid; Sigma-
Aldrich). They were analyzed in random order by using an Easy
nanoLC 1000 instrument (Thermo Fisher Scientific, Waltham, MA,
USA) connected online to a Q ExactiveTM mass analyzer (Thermo
Fisher Scientific). Peptides were separated on a 50-cm AcclaimTM

PepMapTM 100 C18 LC column (2-lm particle size; Thermo Fisher
Scientific) at a flow rate of 200 nL/min, with a 200-min gradient
from nanoLC buffer A to 40% acetonitrile with 0.2% formic acid.
Each sample was injected twice, with two different analytical
methods on the same column (one fast and one sensitive method),
as previously described [40]. The outputs of both MS runs were
combined as merged mass-lists and interrogated against the
mouse reference proteome set (UniProt, version July 2014, canon-
ical isoforms only) by using Proteome Discoverer, version 1.4
(Thermo Fisher Scientific). SequestHT (implemented in Proteome
Discoverer) was used as the search tool, and iTRAQ� reporter-ion
intensities were determined from Proteome Discoverer. The Perco-
lator node of Proteome Discoverer was used to estimate peptide-
level FDR-adjusted p values (q values).

iTRAQ� peptide-level quantification data were exported and
further processed in the R statistical environment [41]. Quantifica-
tion data were filtered for q values <0.01 and ‘‘unique” quantifica-
tion results, as defined by Proteome Discoverer. A global variance-
stabilizing normalization was performed with the corresponding
Bioconductor package in R [42,43]. Each iTRAQ� reporter-ion set
was normalized to its median, and protein expression values were
calculated as the medians of these normalized peptide-level quan-
tification values [39].

For the statistical analysis, a linear model was fitted for each
exposure condition and the respective Sham group, p values were
calculated from moderated t-statistics with the empirical Bayes
approach [30], and proteins with a Benjamini–Hochberg FDR-
adjusted p value <0.05 were considered differentially expressed.

2.8. Lipidomics

Lipidomics profiles were assessed by using a high-resolution
MS/MS shotgun lipidomics protocol (N = 9) (see protocol on INTER-
VALS [44]).

All samples were analyzed in random order and split into
batches of up to 32 samples each. All batches included blank and
QC samples (quantified female mouse plasma) to monitor the per-
formance of the quantification workflow.

Frozen lung tissue slices were homogenized by using a Branson
W-450D digital sonifier (Branson, Danbury, CT, USA) in 150 mM
ammonium bicarbonate buffer. The total protein content of tissue
lysates was determined by the Bradford assay. Aliquots of tissue
lysates were spiked with an internal standard mixture (PC
15:0/18:1(d7), PE 15:0/18:1(d7), PS) from Avanti Polar Lipids
(Alabama, USA) and extracted by the BUME method [45]. High-
resolution MS-MS/MS was performed both in positive and negative
modes on a Q ExactiveTM Plus Orbitrap (Thermo Scientific,
Germany) equipped with a Triversa NanoMate robotic interface
(Advion, USA). NanoMate parameters were set to 1.25-psi gas
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pressure and 1.1-kV voltage over a 5-min delivery time. The MS
source settings were fixed at a column temperature of 250 �C
and S-lens RF level of 65.0. The MS method for the positive mode
involved 1 min of full scan covering the m/z range from 550 to
1000 at 140,000 resolution, with 1E6 automated gain control, a
maximum injection time of 50 ms, and a lock mass of 680.48022.
The 1- to 5-min DIA MS/MS acquisition was triggered with first
mass fixed at 250 m/z; resolution of 17,500; automated gain con-
trol of 1E5; and a maximum injection time of 64 ms at 20 NCE.
An isolation window of 1 m/z was set, with the inclusion mass list
starting from 550 to 1000 with a mass step of 1 Da. The MS source
settings were fixed at a column temperature of 250 �C and S-lens
RF level of 65.0. The MS method for the negative mode involved
1 min of full scan covering m/z range from 400 to 940 at 140,000
resolution, with 1E6 automated gain control, a maximum injection
time of 50 ms, and a lock mass of 529.46262. Then for 1 to 5 min,
DIA MS/MS acquisition was triggered with first mass fixed at
150 m/z; resolution of 17,500; automated gain control of 1E5;
and a maximum injection time of 64 ms at 35 NCE, with the inclu-
sion mass list starting from 400 to 940 with mass step of 1 Da.

Raw files from the positive and negative modes were converted
to mzML by using PeakByPeak software (SpektroSwiss, Switzer-
land), which provides automated noise subtraction. The converted
files were processed with Lipid Xplorer, v.1.2.7 [46]. Lipid identifi-
cation was performed by MS/MS, and quantification of identified
species was performed by using the MS level. Different lipid spe-
cies of PC, PE, PS, phosphatidylinositol (PI), phosphatidic acid
(PA), phosphatidylglycerol (PG), sphingomyelin (SM), DAG, and
TAG were listed with the sum of fatty acyl groups (e.g., PC 32:0).
Lyso-PC and lyso-PE are abbreviated as LPC and LPE, respectively,
and sterol/cholesteryl esters are abbreviated SE. Ether-linked phos-
pholipids are shown as PCO (alkyl) and PEO (alkyl).

The final lipid concentration was normalized per amount of
total protein. A linear model was fitted for each exposure condition
and the corresponding air-exposed group, and p values from a t-
statistic were calculated for log2-transformed data [30]. The Ben-
jamini–Hochberg FDR method was used to correct for multiple
testing effects. Lipids with an adjusted p value <0.05 were consid-
ered differentially abundant.

2.9. Metabolomics

Metabolomics analysis was performed by Metabolon, Inc.
(Research Triangle Park, NC, USA) (N = 9). Frozen right lung lobe
tissue samples were analyzed by using the Metabolon global
untargeted biochemical profiling platform. An earlier version of
the profiling platform was described by Evans et al. [47]. Briefly,
metabolites were extracted from each sample (normalized by tis-
sue weight) with methanol and analyzed by using four different
MS-based methods: two separate reverse-phase/ultra-
performance LC-MS/MS (UPLC-MS/MS) methods with positive-
ion mode electrospray ionization (ESI), one for analysis by
reverse-phase/UPLC-MS/MS with negative-ion mode ESI, and one
for analysis by hydrophilic interaction LC/UPLC-MS/MS with
negative-ion mode ESI. Under a strict quality-controlled process,
raw data were extracted, and peaks were identified by using Meta-
bolon’s proprietary software. The peaks were quantified based on
the area under the curve. By following the common approach taken
by Metabolon [48,49], missing values were assumed to be missing
because of low abundance and were imputed as the minimum
value separately for each metabolite. A linear model was fitted
for each exposure condition and the corresponding air-exposed
group, and p values from a t-statistic were calculated [30]. The Ben-
jamini–Hochberg FDR method was used to correct for multiple
testing effects. Metabolites with an adjusted p value <0.05 were
considered differentially abundant.
2.10. Multi-omics data analysis

MOFA was performed with the corresponding package (version
0.99.8) in the R statistical environment (version 3.5.1) by using the
default model and train options [50]. The mixOmics R package
(version 6.6.1) was used to perform sGCCA by using the block
sparse partial least squares method in canonical mode, with a fully
connected design matrix between the five omics data modalities
[51]. The sparsity constraint was set to 30 variates per component.

For association network analysis, an aggregated network was
compiled from the KEGG database (metabolite/enzyme links)
[52], STRING database (gene/protein links, version 10.5) [53], and
mirTarBase (micro-RNA/gene links, version July 2018) [54]. The
STRING database network was filtered for high-confidence links
(combined score >0.7), and accepted miRNA interactions had to
be reported by at least two publications and two non-high-
throughput methods. Edge weights for interactions were set to
0.1 for the KEGG database and mirTarBase and to (1 � combined
score) + 0.1 for the STRING database.

The PCSF graph optimization approach [55] was used to derive
the association network for LF 1 from the MOFA model (PCSF R
package, version 0.99.0) by using the aggregated network defined
above. A maximum of 200 terminal molecules for each data modal-
ity were considered and filtered for those with normalized abso-
lute weights two-fold higher than expected by chance, with the
normalized absolute weights set as prizes. A grid search was per-
formed (fixed parameter m = 0.0005; x = 0.2–1; b = 100–2000)
(Supplementary Fig. 7 [Supplementary file 1]), and the final net-
work was selected on the basis of the saturation of percent covered
with a decent number of trees (m = 0.0005; x = 0.6; b = 1000). To
create the final network, 10 runs with noise to the edge costs were
combined (r = 0.1). The network was clustered using the edge-
betweenness clustering algorithm.

Gene set enrichment analysis was performed by using the fgsea
algorithm (fgsea R package, version 1.8.0) [56], and gene set over-
representation analysis was performed by using Fisher’s exact test,
both with the piano package (version 1.22.0) for R [57]. Enrichment
of gene sets from the Reactome database was evaluated (version
April 2018) [58].

2.11. Availability of source code and requirements

The R script (Rmd file), R functions, and R data objects used for
conducting the presented multi-omics analyses are available from
a github repository:

� Project name: MouseLungMultiOmics
� Project home page: https://github.com/philipmorrisintl/
MouseLungMultiOmics

� Operating system(s): Platform-independent (tested on UNIX
only)

� Programming language: R
� Other requirements: KEGG database license
� License: GNU General Public License v2.0 or later (code), CC BY
4.0 (data)

In addition, the rendered script output in PDF format is avail-
able as Supplementary file 3.

2.12. Availability of supporting data and materials

The raw, processed, and contrast data for the analyzed omics
datasets are available on INTERVALS (https://www.intervals.sci-
ence/) [59,24] (Table 1).

The mass spectrometry proteomic data are available from the
ProteomeXchange Consortium through the PRIDE partner

https://github.com/philipmorrisintl/MouseLungMultiOmics
https://github.com/philipmorrisintl/MouseLungMultiOmics
https://www.intervals.science/
https://www.intervals.science/


Table 1
Multi-omics datasets.

Data type Time
points
[months]

N INTERVALS Other
repository

Proteomics 3, 4, 6 8 processed [72]
contrast [73]

Pride [60]:
PXD010875

mRNA transcriptomics 3, 4, 6 9 raw [74]
processed [75]
contrast [76]

ArrayExpress [61]:
E-MTAB-7444

miRNA transcriptomics 3, 4, 6 9 raw [77]
processed [75]
contrast [76]

ArrayExpress [61]:
E-MTAB-7892

Metabolomics 3, 6 9 processed [78]
contrast [79]

MetaboLights [62]:
MTBLS158

Lipidomics 3, 4, 6 9 raw [80]
processed [81]
contrast [82]

–
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repository (http://www.ebi.ac.uk/pride/archive/) [60], with the
identifier PXD010875.

The transcriptomics data are available from ArrayExpress
(www.ebi.ac.uk/arrayexpress) [61], with accession numbers E-
MTAB-7444 (mRNA) and E-MTAB-7892 (miRNA).

The metabolomics data have been deposited in the Metabo-
Lights repository (https://www.ebi.ac.uk/metabolights/) [62], with
the identifier MTBLS158.

The lipidomics data are available on INTERVALS (https://www.
intervals.science/) [24,59].
3. Results

3.1. Overview on generated multi-omics datasets to assess lung
exposure effects

Here, we present the data and analysis results of a multi-omics
systems toxicology study to investigate the impact of aerosols from
CHTP 1.2 and THS 2.2, compared with CS, on the lungs of ApoE�/�

mice. Our multi-omics analysis included mRNA and microRNA
(miRNA) transcriptomics, proteomics, metabolomics, and lipido-
mics studies. The ApoE�/� mouse model is commonly used for
atherogenesis [63], especially for investigating smoking-related
atherosclerosis [64–67], as well as CS-induced lung inflammation
and emphysema [67–70].

With this, this report expands and complements our overview
publication on this study, which contains the full exposure charac-
terization and additional non-omics endpoints, including assess-
ment of cardiovascular effects [23].

In this study, groups of mice were exposed for up to 6 months to
filtered air (Sham), 3R4F CS, CHTP 1.2 aerosol, or THS 2.2 aerosol
(Fig. 1A; for further details see [23,24]). In addition, the mice were
exposed to 3R4F CS for 3 months before changing the exposure
conditions to filtered air (Cessation) or CHTP 1.2 aerosol (Switch).
The exposure conditions were matched by nicotine concentration
in CS and aerosols (28 mg nicotine/L), reflected by similar levels
of total nicotine metabolites in urine, whereas HPHC markers were
substantially lower in groups exposed to the candidate MRTP aero-
sols than in those exposed to CS (Fig. 1B) [23].

For multi-omics analysis, lung samples were obtained from
dedicated groups of mice after 3, 4, and 6 months of exposure.
To support comprehensive integrative analysis of animal-level
matched samples, left lung slices were assigned for transcriptomics
(mRNA and miRNA), proteomics, and lipidomics analyses, and a
right lung lobe was assigned for metabolomics analysis. Transcrip-
tomics analysis was performed by using Affymetrix microarrays,
and quantitative proteomics analysis was performed by isobaric-
tag labeling (iTRAQ�) and liquid chromatography (LC) coupled
with tandem mass spectrometry (MS/MS) [36]. Metabolomics
analysis was also LC-MS/MS-based [47], and shotgun lipidomics
analysis was conducted by using a direct-injection high-
resolution MS/MS method. In total, we captured approximately
17,500 mRNAs, 5000 proteins, 670 metabolites, 400 lipids, and
360 miRNAs in the lung tissues.

Fig. 1C summarizes the successfully analyzed lung samples for
each omics modality. Note that metabolomics analysis was con-
ducted only for the 3- and 6-month time points in order to limit
the number of samples for this analysis, which was performed by
an external provider. Proteomics analysis was conducted in eight
and the other omics analyses in nine replicates. In addition, a
few individual samples were excluded during quality control
(QC). Overall, we generated a comprehensive multi-omics dataset
for the lungs, which includes up to five data modalities for up to
144 samples: Three modalities were measured for 144 samples,
four for 129 samples, and all five modalities for 69 samples
(Fig. 1D, Table 1).

Beyond the analysis of this multi-omics dataset presented here,
we expect that these data can support the development of novel
data integration approaches in the future, and the data can be
mined for additional biological insights (e.g., on lung exposure
and stress responses).

3.2. CS exposure substantially affects the lungs across the five
molecular layers

To obtain a high-level overview of the exposure impact across
the five assessed molecular layers, we calculated differential abun-
dance profiles, comparing the abundance for each quantified bio-
molecule in the exposure groups with that in the corresponding
Sham groups (false discovery rate [FDR]-adjusted p value <0.05;
Fig. 2A; Supplementary file 2). Supporting a substantial effect on
all assessed molecular layers, the groups exposed to 3R4F CS
showed a marked differential expression/abundance response
across the five omics data modalities, with a maximum of 4324
affected mRNAs, 529 affected proteins, 173 affected metabolites,
43 affected miRNAs, and 122 affected lipids. In contrast, exposure
to CHTP 1.2 and THS 2.2 aerosols at matched nicotine concentra-
tion to 3R4F CS yielded only a single differentially expressed bio-
molecule: C1qtnf4 mRNA was downregulated following THS 2.2
exposure at the 6-month time point (C1qtnf4 not detected by pro-
teomics analyses.). Both the Cessation and Switch (to CHTP 1.2
aerosol) groups demonstrated differentially abundant biomole-
cules across all five omics datasets. However, compared with
3R4F CS, these were less numerous, and a discrepancy in the time
course between cessation and switching was noted when compar-

http://www.ebi.ac.uk/pride/archive/
http://www.ebi.ac.uk/arrayexpress
https://www.ebi.ac.uk/metabolights/
https://www.intervals.science/
https://www.intervals.science/
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ing the number of differentially expressed/abundant mRNAs and
proteins at the 4- and 6-month time points.

To complement these differential expression profiles—which
are sensitive to the FDR threshold—we quantitatively evaluated
the perturbation of the mRNA transcriptome by using a previously
published causal network enrichment approach (see [83,33] for a
more detailed explanation of this approach). For a collection of
causal biological network models relevant to lung biology [31],
the degree of network perturbation caused by a given exposure—
or network perturbation amplitude (NPA)—is calculated on the
basis of measured transcriptomic changes (Supplementary Fig. 1
[Supplementary file 1]). Subsequently, NPAs are aggregated to
derive the overall relative biological impact factors (RBIF) [84]
(Fig. 2B). Overall, this evaluation confirmed the trends observed
for the differential expression/abundance profiles, with a predicted
biological impact of 3R4F CS, reduced impact upon cessation and
switching, and low to absent perturbation upon exposure to CHTP
1.2 and THS 2.2 aerosols.

To evaluate how the different data modalities relate to each
other, we first correlated the mRNA and protein responses to
3R4F CS exposure (Fig. 2C). The coefficients of determination (R2)
ranged from 0.35 to 0.42, indicating a clear association but inability
of the different measurements to fully determine others. These R2
values were in the expected range, based on previous comparisons,
and reflect the different regulatory mechanisms acting at the pro-
tein and mRNA levels as well as technical variabilities [85]. Impor-
tantly, with respect to data integration, this observation supports
that these two data modalities can confirm and complement each
other.

To further assess the multivariate molecular response captured
by each data modality, we evaluated the main directions in the
data by principal component analysis (PCA; Supplementary Fig. 2
[Supplementary file 1]). For both mRNA transcriptomics and pro-
teomics analyses, the first principal component clearly captured
the biological response to 3R4F CS exposure (11.1% and 18.3%
explained variance, respectively), whereas the separation on the
second principal component was not associated with specific expo-
sure groups. Metabolomics analysis also appeared to capture the
3R4F exposure effects on the first principal component but with
less separation. Lipidomics analysis captured the 3R4F CS exposure
effect only on the second principal component, whereas no clear
group separation was apparent for miRNA transcriptomics analysis
on the first and second principal components. Thus, the PCA find-
ings for the individual datasets support the idea that 3R4F CS
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Fig. 2. Molecular exposure responses in the lungs across the five data modalities. (A) Numbers of differentially expressed/abundant mRNAs, proteins, metabolites, miRNAs,
and lipids per group relative to Sham exposure (FDR-adjusted p value <0.05). (B) Evaluation of biological impact on lung tissue by using a causal network enrichment
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model; R2, coefficients of determination. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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exposure drives a clear separation of the samples on the principal
multivariate directions; however, joint evaluation and further
interpretation across all five data modalities require an integrative
multivariate approach.
3.3. Integrative multi-omics response profiles

Multi-omics factor analysis (MOFA) was developed as a frame-
work for the unsupervised integration of multi-omics datasets
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[50]. Briefly, data matrices with shared samples are decomposed
into one latent factor (LF) matrix and weight matrices for each data
modality. Similar to PCA for single-omics data, MOFA aims to iden-
tify an interpretable low-dimensional representation of the data,
with LFs capturing the major sources of variation across the data
modalities. A benefit of the MOFA implementation is that it effi-
ciently handles missing values, making it especially applicable to
the multi-omics lung dataset (Fig. 1C).

LF 1 substantially explained the observed variance across all
five data modalities and was especially associated with the major-
ity of overall explained variance for the proteomics data (Fig. 3A).
In contrast, LF 2 and LF 3 mostly explained the observed variance in
the metabolomics and lipidomics data, respectively. Pairwise score
plots for LFs 1–10, which represent most of the variance explained
by the MOFAmodel, revealed that only LF 1 was directly associated
with the exposure groups in the experimental design, reflecting the
multi-omics exposure response to 3R4F CS (Supplementary Fig. 3
[Supplementary file 1]). Fig. 3B shows the exposure group separa-
tion on LF 1, where 3R4F samples are clearly separated from the
cluster of overlapping samples from the Sham, CHTP 1.2, and THS
2.2 groups, whereas samples from the Cessation and Switch groups
had intermediate LF 1 scores. Overall, this multi-variate and multi-
omics perspective is consistent with the trends observed for the
individual modalities, supporting low to absent molecular expo-
sure effects for CHTP 1.2 and THS 2.2 aerosols compared with
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To further support the results obtained with the MOFA
approach, we complemented it with another multivariate, multi-
omics data reduction approach, sparse generalized canonical corre-
lation analysis (sGCCA) [86]. This method factorizes each data
matrix into a separate score and loading matrix, identifying factors
with maximal covariance across the considered data modalities. In
agreement with the MOFA model, sGCCA identified a first factor
that demonstrated a similar group separation as LF 1 across all five
data modalities (Supplementary Fig. 4A–C [Supplementary file 1]).
Of note, the selected variables for the first factor generally were
also highly ranked in the MOFA model (Supplementary Fig. 4D
[Supplementary file 1]).

Toward functional interpretation of LF 1 of the MOFAmodel, we
first conducted gene set enrichment analysis on the corresponding
weight vectors for the transcriptomics (Fig. 3C) and proteomics
(Fig. 3D) data by using the Reactome pathway collection [58]. Strik-
ingly, themajority of gene setsmost significantly associatedwith LF
1 were immune-related. CS is known to affect lung immune
responses [87], which have been associated with COPD develop-
ment [87,88], and strong immune responses to 3R4F CS have been
observed in previous mouse and rat inhalation studies (e.g.,
[16,89]). In the current study, 3R4F CS also induced a substantial
immune response in the lungs, as assessed by the quantification of
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Table 2
Metabolites and miRNAs implicated in exposure-related immune responses.

Molecule Exposure
association

Immune association
[examples]

Itaconate DA, LF1, BN Immune response regulator in macrophages [92–95]
Polyamines (putrescine, acetyl-putrescine,

acetyl-spermidine)
DA, LF1, BN Immune regulatory functions, including in lymphocyte and macrophage activation [98,99,107]

Dihydrobiopterin, biopterin DA, LF1 Dihydrobiopterin levels increased in activated inflammatory macrophages [108]
Quinolinate DA, LF1 Kynurenine pathway metabolite associated with immune activation [109,110]
Methylsuccinate DA, LF1 Likely itaconate product [111]
Prostaglandin D2 LF1, BN Lipid mediator involved in immune activation [112]
mmu-miR-146a DE, LF1, BN Negative regulation of immune activation, role in myeloid cells [100]
mmu-miR-21a DE, LF1, BN Upregulated in allergic airway inflammation [113]
mmu-miR-2137 DE, LF1 Possible anti-inflammatory role in macrophages [106]

DA, differential abundance; DE, differential expression; LF1, latent factor 1 of the multi-omics factor analysis model; BN, biological association network.
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immune cells and immunoregulatory proteins in bronchoalveolar
lavage fluid (BALF) and histopathological observations in the lungs
[23]. In a direct comparison between cellular and molecular assess-
ments, we observed a tight association between the results (Fig. 3E),
further confirming the group differences and supporting that the
lung immune response critically contributes to LF 1.

3.4. Complex interconnected molecular response

To expand the functional analysis and identify direct molecular
associations across the data modalities, we conducted a biological
network analysis for LF 1. For this, we leveraged an aggregated
gene/protein–metabolite–miRNA network and the Prize-
Collecting Steiner Forest (PCSF) algorithm [55] to derive a biologi-
cal association network between the most influential molecules for
LF 1 (Fig. 4A; see Supplementary Fig. 5 for an interactive version
[Supplementary file 1]). Network cluster analysis and annotation
indicated that this network covered diverse biological functions,
prominently including clusters linked to immune response, xeno-
biotic/oxidative stress response, lipid metabolism, and extracellu-
lar matrix (Supplementary Table 2 [Supplementary file 1]).
Fig. 4B visualizes the exposure response profiles for the identified
clusters. As expected, these profiles were consistent with the
aggregated trend observed for LF 1, but they also highlighted the
fraction of individually significantly differentially expressed/abun-
dant molecules in each cluster.

To gain further insights into the exposure response, we
explored the identified functional categories in more detail, includ-
ing the highlighted interactions across molecular layers (Fig. 4A),
as detailed in the following sections.

3.5. 3R4F CS-induced immune response encompasses metabolite and
miRNA changes

We focused on the immune response first. In both humans and
rodents, CS triggers an extensive immune response in the lungs
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[16,87–89], and the identified LF 1 of the MOFA model appeared to
capture this immune response in the current study (Figs. 3 and 4).
In previous studies, we highlighted several aspects of this immune
response, including macrophage polarization and lipid signaling
[21,90,91]. In the context of this multi-omics study, we specifically
focused on the involvement of the additional molecular layers.

The network enrichment approach based on transcriptomics
data supported perturbation of the macrophage activation network
upon CS exposure [31] (Fig. 5A), consistent with the observed
increase in macrophage numbers in BALF and lung tissues upon
CS exposure in this study [23]. In the molecular association
Fig. 5. Metabolite and miRNA changes associated with 3R4F CS-induced immune respon
show the overall NPA based on transcriptomics data; error bars show the 95% confiden
significance with respect to biological replicates; the green star (o statistic) indicates sig
and the blue star (k statistic) indicates significance with respect to permutation of the n
fold-change responses versus Sham, ordered and colored as in panel A. (C) Correlation be
linear model, with the 95% confidence interval band in grey. The correlation coefficien
metabolites. (E) Top 10 correlations of itaconate abundance against all mRNAs. (F) Poly
miRNAs. Log2 fold-changes versus Sham are color-coded, and statistical significance
interpretation of the references to color in this figure legend, the reader is referred to th
network, the metabolite itaconate was linked to aconitate decar-
boxylase (Irg1; also known as Acod1) in an immune-response-
associated cluster comprising many chemokines (Fig. 4A).
Itaconate has been implicated in the immune response of
macrophages [92–94], with Irg1 catalyzing its synthesis from cis-
aconitate [95]. Here, we observed a strong increase in the abun-
dance of itaconate and Irg1 upon 3R4F CS exposure (Fig. 5B).
Furthermore, 3R4F CS exposure was associated with a significant
increase in the abundance of aconitases (Aco1 and Aco2) and isoc-
itrate dehydrogenase 1 (Idh1), supporting the potential for
increased flux through this part of the citric acid cycle. Itaconate
se. (A) Network enrichment analysis of the macrophage signaling network. The bars
ce interval. Three statistical measures are shown: the red star indicates statistical
nificance with respect to permutation of genes downstream of the network nodes;
etwork topology (p < 0.05). (B) Itaconate metabolic pathway. Bar charts show log2
tween Irg1 mRNA expression and itaconate abundance. Blue line shows fit from the
t (Corr) is indicated. (D) Top 10 correlations of Irg1 mRNA expression against all
amine pathway, as in panel B. (G) Expression profiles for selected immune-related
is indicated: *FDR-adjusted p value <0.01; XFDR-adjusted p value <0.05. (For
e web version of this article.)
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and Irg1 mRNA abundance/expression were clearly correlated
(Fig. 5C), with itaconate being the metabolite with the highest cor-
relation with Irg1 (Fig. 5D). Of note, the mRNAs that showed the
highest correlation with itaconate included several other
immune- and macrophage-related genes, such as the complement
protein gene C1qc [96], macrophage expressed gene 1 (Mpeg1), and
Cd300c (GenBank: AF251705) [97] (Fig. 5E).

In the molecular association network, the polyamines putres-
cine and N-acetyl-putrescine were linked in a cluster that also
included arginase (Arg2) (Fig. 4A). Polyamines, including sper-
midine and spermine (and their acetylated variants), are synthe-
sized from ornithine (Fig. 5F). Polyamines have been implicated
in immune regulatory functions, including lymphocyte and macro-
phage activation [98,99]. Here, we observed a significant increase
in the abundance of putrescine, N-acetyl-putrescine, and N-
acetyl-spermidine upon 3R4F CS exposure. 3R4F CS exposure
increased the abundance of mitochondrial arginase (Arg2) and gly-
cine amidinotransferase (Gatm), which likely contributes to the
flux toward polyamine synthesis. It also caused a decreased abun-
dance of cytoplasmic arginase (Arg1) and no significant differences
in the abundance of ornithine decarboxylase (Odc1), spermidine
synthase (Srm), and spermine synthase (Sms). However, decreased
Fig. 6. Effects of the 3RF reference cigarette and heat-not-burn tobacco products on
Representation as in Fig. 5B. (B) Oxidative-stress-related metabolites. Log2 FC versus Sh
<0.01; XFDR-adjusted p value <0.05. (C) Expression of oxidative-stress-related proteins. (D
on transcriptomics data. See Fig. 5A for details.
abundance of ornithine carbamoyltransferase (Otc) and ornithine
aminotransferase (Oat) could limit alternative fluxes of ornithine
toward proline and citrulline, respectively, further promoting poly-
amine synthesis upon 3R4F CS exposure.

In addition to metabolites, the molecular association network
also implicated miRNAs in immune-related functions. The miRNA
mmu-miR-146a was found to be associated with immune-related
signaling molecules Traf6 and Irak1 and showed strong upregula-
tion upon 3R4F CS exposure (Fig. 5G). In fact, mmu-miR-146a
has been implicated in the regulation of immune responses [100]
and has recently been linked to the observed imbalance of Th1/
Th2 lymphocytes in the lungs of mice exposed to airborne fine par-
ticulate matter [101]. The miRNA mmu-miR-21a was also strongly
associated with LF 1 and found associated with programmed cell
death 4 (Pdcd4) and SMAD family member 7 (Smad7) in the net-
work. Pdcd4 and Smad7, as signal transduction regulators, are
not only linked to immune cells but also have reported roles in
immune regulatory processes, including via the interleukin (IL)-
6/Stat3 [102] and transforming growth factor beta pathways
[103]. Indeed, mmu-miR-21a has been identified as a negative
immune regulator in mouse liver regeneration (via nuclear factor
kappa B [NF-jB] inhibition) [104] and macrophage response in
oxidative stress. (A) Activation of the hemoglobin–biliverdin–bilirubin pathway.
am are color coded, and statistical significance is indicated: *FDR-adjusted p value
) Perturbation of the oxidative stress network. The bars show the overall NPA based
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peritonitis [105]. Finally, mmu-miR-2137 was strongly induced
upon 3R4F CS exposure; it was the secondmost strongly associated
miRNA (after mmu-miR-146a) with LF 1. Compared with mmu-
miR-146a and mmu-miR-21a, mmu-miR-2137 is less studied and
had no identified association in the molecular association network
in our study. However, an mmu-miR-2137 inhibitor was recently
found to increase tumor necrosis factor alpha (TNFa) secretion
and decrease IL-10 secretion in macrophages in the context of Por-
phyromonas gingivalis infection, suggesting an anti-inflammatory
role for mmu-miR-2137 [106].

Overall, the integrative analysis yielded further insights into the
complex lung immune response to 3R4F CS exposure that occurs
simultaneously on several molecular layers (Table 2). In contrast,
there were no signs of an immune response against CHTP 1.2
and THS 2.2 aerosol exposure.

3.6. Cellular stress responses

CSexposure is associatedwithextensive cellular stress responses
in the lungs, including oxidative stress response caused by direct
exposure and induced generation of reactive oxygen species (ROS)
[21,90,114–116]. Likely related to oxidative stress response, the
molecular association network highlighted the exposure effect on
bilirubin and its synthesizing enzyme, biliverdin reductase (Blvrb),
both of which were significantly increased in the 3R4F CS-
exposure group but not in the other exposure groups (Fig. 6A). Bili-
verdin, an intermediate in the bilirubin synthesis pathway, did not
show a clear response pattern across the groups (tendency of
increase at 4 months), whereas the abundance of heme oxygenases
Hmox1 and Hmox2 was increased by 3R4F CS. Hmox enzymes oxi-
dize and cleave hemoglobin to biliverdin, and the released iron is
captured by the iron-storage protein ferritin (composed of Fth1
and Ftl1 subunits), which was also increased in abundance after
3R4F CS exposure. Several studies have described the roles of the
heme–biliverdin–bilirubin pathway in oxidative stress responses,
including production of the antioxidants biliverdin and bilirubin
and depletion of the oxidant heme [117].

In addition to the heme–biliverdin–bilirubin pathway, other
metabolites linked to oxidative stress responses were affected in
the 3R4F CS-exposed groups (Fig. 6B). They included a prominent
increase in cysteine-glutathione disulfide and cystathionine levels
[118]. Furthermore, (acetylated) oxidizedmethionine, oxidized glu-
tathione, and the antioxidant alpha-tocopherol were significantly
affected by 3R4F CS exposure only at the 3-month time point.

An oxidative stress response was also observed in the proteome
(Fig. 6C) and transcriptome (Fig. 6D). The protein response
included increased abundance of superoxide dismutase 2 (Sod2),
catalase (Cat), thioredoxin reductase 1 (Txnrd1), antioxidant 1 cop-
per chaperone (Atox1), and X-linked glucose-6-phosphate dehy-
drogenase (G6pdx). The latter indicated flux through the
pentose-phosphate pathway toward nicotinamide adenine dinu-
cleotide phosphate generation [21]. The transcriptome response
was evaluated in the context of the oxidative stress network model
(Fig. 6D), which further supported the conclusions about oxidative
stress response from other data modalities.

Overall, the multiple molecular layers supported a general
oxidative response profile in the lungs, with strong induction by
3R4F CS exposure, low to absent levels for CHTP 1.2 and THS 2.2,
and intermediate (remaining) levels for cessation and switching
to CHTP 1.2.

3.7. Effects on lipid metabolism

Consistent with the findings of our previous ApoE�/� mouse
study [21], 3R4F CS exposure substantially affected the lung lipi-
dome (Fig. 2A). The biological network analysis highlighted three
lipid-related clusters affected by the exposure: One cluster con-
tained genes/proteins involved in lipid biosynthesis (cluster #1),
one cluster contained phosphoglycerolipids and associated
enzymes (cluster #17), and one cluster was related to cholesterol
metabolism (cluster #18) (Fig. 4A; Supplementary Fig. 5 [Supple-
mentary file 1]).

The broad effects of 3R4F CS exposure on the lung lipidome
were evident at the lipid-class level, with significant changes in
several lipid classes including glycerolipids (e.g., diacylglycerol
[DAG] and triacylglycerol [TAG]) and glycerophospholipids (e.g.,
phosphatidylcholine [PC] and phosphatidylethanolamine [PE])
(Supplementary Fig. 6 [Supplementary file 1]). Interestingly,
whereas diacylated glycerophospholipids (e.g., PC and PE) showed
generally increased levels upon 3R4F CS exposure, the levels of
monoacylated glycerophospholipids (e.g., lyso-PC [LPC] and lyso-
PE [LPE]) were generally decreased. This was especially apparent
for PE and LPE lipids, which, irrespective of their conjugated fatty
acids, were significantly increased/decreased in concentration in
the 3R4F CS-exposure groups at all three time points (Fig. 7A). Con-
comitantly, 3R4F CS affected the expression of several genes
involved in glycerophospholipid metabolism (Fig. 7B), supporting
a coordinated lipidome response across the different molecular
layers. For several of these genes, the biological network approach
suggested possible functional links. Phosphatidylserine decarboxy-
lase (Pisd) converts phosphatidylserine (PS) to PE and is the key
enzyme that maintains the (elevated) PE levels of the inner mito-
chondrial membrane [119]. Patatin-like phospholipase domain
containing 7 (Pnpla7) is a lysophospholipase, which localizes to
the endoplasmic reticulum and lipid droplets. Pnpla7 was specifi-
cally associated with LPC lipolysis but also acts on LPE and lyso-
PS [120]. Phospholipase D3 (Pld3) is an intriguing case, because
the network approach suggested a link to PC lipids, but the func-
tional role of the protein encoded by Pld3 is still unknown. How-
ever, recently, Gavin et al. found that Pld3 possesses 50

exonuclease activity and found Pld3 expression by macrophages
controls toll-like receptor (Tlr) 9 activation, possibly by degrading
nucleic acids [121].

Pulmonary surfactant is a lipid–protein complex crucial for lung
homeostasis. It stabilizes the alveolar structure by reducing surface
tension and also acts as a component of the innate lung immune
response [122]. Consistent with our previous study [21], surfactant
metabolism was affected by 3R4F CS exposure at both the protein
and lipid levels, whereas no significant effects were detected for
the CHTP 1.2 and THS 2.2 groups, and lower effects were observed
upon cessation and switching to CHTP 1.2 (Fig. 7C). 3R4F CS expo-
sure increased the abundance of the surfactant proteins Sftpa1 and
Sftpd, which are involved in immune defense and surfactant home-
ostasis [123], whereas no change in abundance was detected for
the structural surfactant proteins Sftpb and Sftpc. Lysophos-
phatidylcholine acyltransferase (Lpcat1), a critical enzyme for syn-
thesis of surfactant lipids in mice [124,125], also increased in
abundance, together with candidate surfactant lipids [21], whereas
the abundance of Prdx6, which acts as a lysosomal-type phospho-
lipase A2 for surfactant lipids, decreased significantly [126].

Taken together, perturbation of the lung lipidome by 3R4F CS
exposure was supported across multiple molecular layers and
included differential effects on mono- and diacylated glycerophos-
pholipids and induction of lung surfactant-related processes. In
contrast, the CHTP 1.2 and THS 2.2 groups as well as the Cessation
and Switch groups were associated with weaker to absent effects
on the lung lipidome.

3.8. Discussion

Standard toxicological endpoints can lack sensitivity and only
yield limited insights into toxicological mechanisms [7,8];
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therefore, systems toxicology approaches that complement apical
measurements with high-resolution measurements using molecu-
lar profiling (omics) methods have been developed [9,10]. To
derive relevant toxicological insights from these data, robust com-
putational analysis approaches are essential. For transcriptomic
data, we have developed, and employed in this study, a causal bio-
logical network enrichment approach that quantitatively and sta-
tistically evaluates the perturbation of context-relevant causal
network models [33,34,83,127]. However, because toxicological
effects encompass multiple molecular layers simultaneously,
multi-omics measurements can support deeper insights into toxi-
cological mechanisms and strengthen conclusions. For example,
cigarette smoke (CS) exposure has detrimental effects on lung
lipids [11,12], metabolites [13,14], proteins [15], and transcrip-
tional programs [16,17]. Several previous studies have demon-
strated the benefit of such multi-omics approaches in toxicology
studies, including the investigation of renal cisplatin toxicity
[18], lung nanoparticle toxicity [19], and doxorubicin cardiotoxic-
ity [20] and assessment of candidate MRTPs [21]. Moreover, recent
review articles have emphasized the need for such integrative
multi-omics analyses [9,22].
To achieve such a multi-omics view within the current potential
MRTP assessment study, we complemented standard lung end-
point measurements with five omics data layers for lung tissues:
mRNA and miRNA transcriptomics, proteomics, metabolomics,
and lipidomics. Individually, all five molecular layers supported
the substantial effects of 3R4F CS exposure on the lungs of ApoE�/�

mice, whereas CHTP 1.2 and THS 2.2 aerosol exposure was associ-
ated with fewer to absent effects. However, the real strength of
multi-omics approaches comes from data integration. To create
such an integrative multi-omics view of the exposure effects, we
leveraged the recently developed MOFAmodel [50] and, for biolog-
ical interpretation, derived a functional association network for the
main multi-omics exposure direction using the PCSF algorithm
[55]. MOFA decomposes omics data matrices into one LF matrix
and a weight matrix for each data modality. Similar to PCA for
single-omics data, MOFA aims to identify an interpretable low-
dimensional representation of the data, with LFs capturing the
major sources of variation across the data modalities. For our data,
the first LF clearly captured the main exposure effect across all five
data modalities, further supporting a clear 3R4F CS effect on the
lung. Conversely, CHTP 1.2 and THS 2.2 aerosol- and
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Sham-exposed samples remained adjacent in the multi-omics
space, with intermediate (remaining) effects for the Cessation
and Switch groups. Gene set enrichment analysis of the mRNA
transcriptomics and proteomics data demonstrated that inflamma-
tory processes had a major role in this effect. The biological net-
work approach directly tied together the effects across the
different molecular layers by embedding the molecules associated
with the main exposure effect in the context of their known func-
tional associations. In addition to inflammation, this analysis
revealed xenobiotic/oxidative stress responses, lipid metabolism,
and extracellular matrix as functional categories associated with
the exposure response. Importantly, the molecular network
directly highlighted molecular links across data modalities
involved in these functional processes.

As mentioned, the identified multi-omics exposure response,
which was driven predominantly by the 3R4F CS effect, was most
clearly associated with lung immune response. Indeed, the scores
of LF 1 correlated well with the total number of (immune) cells
in BALF as a standard endpoint for the lung immune response. CS
is known to trigger an extensive immune response in the lungs
in both humans and rodents [16,87–89], and chronic lung inflam-
mation is an essential component of the pathomechanism of COPD
[128,129]. The current study further highlighted the highly inter-
connected immune response across the different molecular layers,
representing both immune activating/effector mechanisms as well
as an immunosuppressive/negative feedback mechanism (Table 2).

The metabolite itaconate and its enzyme Irg1 (Acod1) were
strongly increased in abundance upon 3R4F CS exposure. Itaconate
has been implicated as an immune-response regulator in macro-
phages [92–95], but its role in lung immune response has not been
characterized. Notably, a recently proposed anti-inflammatory
mechanism suggested that itaconate acts via posttranslational
modification of Keap1, leading to stabilization of the anti-oxidant
and anti-inflammatory transcription factor Nrf2 (Nfe2l2) [92].
Thus, the increased abundance of the Irg1/itaconate module upon
3R4F CS exposure may not only prevent overshooting macrophage
activation in the lungs but may also help counteract the oxidative
challenge from the activated immune system as well as directly
from CS exposure.

Polyamines (putrescine, N-acetyl-putrescine, and N-acetyl-
spermidine) are other metabolites with potential immunoregula-
tory roles which were significantly increased upon 3R4F CS expo-
sure. For example, polyamines have been implicated in the
regulation of lymphocyte and macrophage activation [98,99,107].
Hardbower et al. [99] discovered that putrescine can temper the
activation of proinflammatory M1 macrophages by controlling
M1 transcriptional programs via histone modifications. Further,
Fang et al. [107] found that ornithine decarboxylase (ODC1), the
rate-limiting enzyme for polyamine synthesis, inhibits the inflam-
matory response and ROS-induced apoptosis in macrophages. In
the context of lung diseases, Jain et al. [130] reviewed the possible
roles of elevated polyamine levels found in asthma, which might
involve activation of eosinophils, induction of oxidative bursts in
neutrophils, induction of histamine release by mast cells, and M1
to M2 polarization in macrophages.

Quinolinate is a metabolite of the kynurenine pathway, by
which tryptophan is metabolized to nicotinamide adenine dinu-
cleotide. Several metabolites of this pathway, including quinoli-
nate, are implicated in immunoregulatory functions [109,110]. Of
note, increased kynurenine levels have been observed in smokers
[131], further supporting a likely functional role of these metabo-
lites in CS exposure response.

miRNAs are important components of cellular response pro-
grams, including inflammatory responses in the lungs [132]. In
the current study, 3R4F CS upregulated the expression of mmu-
miR-146a, mmu-miR-21a, and mmu-miR-2137, all of which have
been implicated in the regulation of immune responses. Mmu-
miR-146a has been linked to the observed imbalance of Th1/Th2
lymphocytes in the lungs of mice exposed to airborne fine particu-
late matter [101]. mmu-miR-21a has been identified as a negative
immune regulator, including in mouse liver regeneration (via NF-
jB inhibition) [100], and an inhibitor of mmu-miR-2137 was found
to increase TNFa secretion and decrease IL-10 secretion in macro-
phages in the context of P. gingivalis infection [106].

In addition to metabolites and miRNAs, and consistent with
previous studies [12,21,133,134], the multi-omics approach also
associated lipid-related changes with the lung immune response
upon 3R4F CS exposure. 3R4F CS exposure was associated with
marked effects on the lung lipidome, encompassing a wide range
of lipid classes, whereas CHTP1.2 and THS2.2 aerosol exposure
had only very limited effects—with reversion of the 3R4F CS-
induced effects upon cessation or switching to CHTP1.2. In addi-
tion, to their role in stabilization of alveoli, lipid–protein surfactant
complexes are also essential components of the innate lung
immune response [122]. Together with candidate surfactant lipids,
only 3R4F CS exposure, not the MRTP aerosols, increased the abun-
dance of Sftpa1 and Sftpd, the surfactant components involved in
immune defense and surfactant homeostasis [123]. With this, con-
sistent with our previous study [21], the current data support low
to absent effects of the MRTP aerosols on lung lipid metabolism
and pulmonary surfactant, which is in contrast to the recently
reported observation that exposure to an e-cigarette aerosol –
while not causing lung inflammation nor emphysema – altered
lipid and surfactant-related processes in the lung of mice [135].

We also identified the increased abundance of phospholipase
D3 (Pld3) upon 3R4F CS exposure as a component of the lipid
metabolism cluster. Recently, an immune regulatory role was iden-
tified for Pld3, which can control Tlr9 activation of macrophages,
likely via its 50 exonuclease activity on nucleic acids [121].

Inflammatory and oxidative stress responses are tightly inter-
connected [12,87], which is also exemplified by the abovemen-
tioned stabilizing effect of itaconate on the anti-oxidant and anti-
inflammatory transcription factor Nrf2 (Nfe2l2) [92]. In the current
study, the transcriptomics, proteomics, and metabolomics data all
supported induction of oxidative stress response by 3R4F CS,
whereas no signs of oxidative stress response were observed after
CHTP 1.2 and THS 2.2 aerosol exposure, and both cessation and
switching resulted in reversal of 3R4F CS-induced effects. This is
consistent with the previously reported extensive cellular stress
responses triggered by CS exposure in the lungs, and the lower
to absent effects upon exposure to candidate MRTP aerosols
[7,14,21,90,91,114–116]. In particular, the multi-omics approach
revealed induction of the heme–biliverdin–bilirubin pathway by
3R4F CS. This pathway counteracts oxidative stress both by pro-
ducing antioxidants (biliverdin and bilirubin) and limiting the
accumulation of the oxidant heme [117,136,137]. Especially inter-
esting for our integrative network view of the effects of CS, engage-
ment of this pathway has been linked with reduction in
inflammatory markers in human subjects with Gilbert’s syndrome
[138].

Study strengths and limitations: This study was based on a
robustly generated systems toxicology data set for lung that com-
prises measurements across five molecular layers (mRNAs, miR-
NAs, proteins, lipids, and (other) metabolites). Beyond the
analyses presented here, these data can support testing of novel
multi-omics data analysis approaches and can be leveraged to gain
additional insights into pulmonary responses to toxicant expo-
sures. By combining latent factor identification (using the MOFA
approach [50]) and multi-omics network analysis (supported by
the Prize-Collecting Steiner Forest algorithm [55]), we demonstrate
how multi-omics data can help to pinpoint specific molecular
mechanisms – e.g., the engagement of specific immunoregulatory
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interactions and oxidative stress responses. These results can moti-
vate further research into the complex molecular interactions dur-
ing toxicological responses, as well as serve as a blueprint for the
investigation of molecular mechanisms in other multi-omics stud-
ies. However, limiting the mechanistic conclusions that can be
drawn from our study, the multi-omics measurements were con-
ducted for bulk tissue rather than for individual cell types or single
cells. Especially, single-cell mRNA sequencing is emerging rapidly
as a powerful technique and already yielded important insights
into lung cell types [139]. Lipidomics already has been applied to
investigate lipid profiles across pulmonary cell types [140]. While
it would be challenging to provide cell/cell type resolved data in
the context of such a large-scale multi-omics study, having this
information available would certainly support interpretation, espe-
cially of the observed immuno-regulatory processes. In addition,
especially, interpretation of the metabolic changes would have
benefited from a more dynamic view, e.g., using flux-based
approaches rather than focusing on the steady-state conditions
[141,142].
4. Conclusions

This work exemplifies how multi-omics approaches can be
leveraged within systems toxicology studies and the generated
multi-omics data set can facilitate the development of analysis
methods and can yield further insights into the effects of toxicolog-
ical exposures on the lung of mice.
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