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Abstract

Host defence peptides (HDPs) are expressed throughout the animal and plant kingdoms. They have multifunctional roles in
the defence against infectious agents of mammals, possessing both bactericidal and immune-modulatory activities. We
have identified a novel family of molecules secreted by helminth parasites (helminth defence molecules; HDMs) that exhibit
similar structural and biochemical characteristics to the HDPs. Here, we have analyzed the functional activities of four HDMs
derived from Schistosoma mansoni and Fasciola hepatica and compared them to human, mouse, bovine and sheep HDPs.
Unlike the mammalian HDPs the helminth-derived HDMs show no antimicrobial activity and are non-cytotoxic to
mammalian cells (macrophages and red blood cells). However, both the mammalian- and helminth-derived peptides
suppress the activation of macrophages by microbial stimuli and alter the response of B cells to cytokine stimulation.
Therefore, we hypothesise that HDMs represent a novel family of HDPs that evolved to regulate the immune responses of
their mammalian hosts by retaining potent immune modulatory properties without causing deleterious cytotoxic effects.
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Introduction

Host defence peptides (HDPs) are found in all living organisms

and play a pivotal role as effector components of the innate

immune system [1,2]. They act as the first line of defence against

pathogenic assaults from bacteria, fungi, eukaryotic parasites and

viruses [3–5]. A range of HDPs with varied sequence lengths,

structures and activities have been characterized [6] and since

sequence identity between them is often very poor, their

classification is based largely on homologous secondary structures.

The two predominant HDP groups found in nature are the

cathelicidins, characterized by a-helical secondary structure, and

the defensins, which contain b-sheets stabilized by intra-molecular

disulfide bridges [7–9]. Despite the diversity in their sequences and

structures, HDPs are typically small amphipathic peptides (12–50

amino acids) with a net positive charge (+2 to +9) and consist of at

least 50% hydrophobic amino acids [10]. These biochemical

properties are central to the HDPs antimicrobial function by

allowing their interaction with, and disruption of, negatively

charged bacterial membranes [10].

The contribution of mammalian HDPs to the innate immune

response extends beyond direct bacterial killing. The elevated

expression of HDPs in response to damage (injury or infection) has

led to the suggestion that mammals utilize these peptides as

‘alarmins’ to activate the mobilization of a comprehensive immune

response [11]. Besides their antimicrobial activity, HDPs function

as potent immune regulators, selectively altering host gene

expression, inducing chemokine production, inhibiting bacterial-

or hyaluronan-induced pro-inflammatory cytokine production,

promoting wound healing and modulating T and B cell function

[reviewed in [12–14]. The net result of these activities is a balance

between pro- and anti-inflammatory immune responses which

prevents an exacerbated inflammatory response while concurrent-

ly stimulating the resolution of infection and repair of damaged

epithelia.

The immune response elicited by helminth (worm) parasites is

akin to the innate immune response to tissue injury and wound

healing [15,16]. Typically, this consists of a suppression of classical

pro-inflammatory responses and the induction of anti-inflamma-

tory regulatory Th2 type immune responses. While classical Th1-
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associated inflammatory mediators can provide protection from

helminths [17], there is a substantial cost in collateral damage to

host tissue [15,18]. In addition, due to their migration and feeding

activities, helminth parasites cause considerable local tissue

damage. Therefore, it has been proposed that on exposure to

helminths, the most beneficial outcome is to shut down a

destructive Th1-type response in favour of a Th2 response that

rapidly and effectively heals tissue [15,17,18]. Ultimately this

means that the parasite is tolerated by the host, remaining in situ

for many years and thus successfully completes its lifecycle.

Some advances have been made in identifying the signalling

molecules that initiate helminth-associated Th2 responses. Many

of these (such as IL-33 and Thymic stromal lymphopoietin

(TSLP)) are thought to be released by epithelial cells damaged by

migrating parasites [15,19]. However, a number of helminth-

derived products have also been shown to modulate the function of

innate immune cells and thus are potentially instrumental in the

initiation of Th2 immune responses [19,20]. We have previously

shown that a cysteine protease secreted by the trematode helminth

Fasciola hepatica prevented the induction of pro-inflammatory

macrophages and dendritic cells [21,22]. In addition, peroxir-

edoxin, also secreted by F. hepatica, promoted the development of

Th2 host immune responses [23,24]. Importantly, homologues of

these proteins are found in other medically-important trematode

parasites which we have suggested reveals a common mechanism

of immune-modulation employed by this class of pathogen.

As part of our on-going analysis of the secretome of F. hepatica

we recently discovered a novel 8 kDa protein. On analysis, this

protein shared structural and biochemical similarities to mamma-

lian cathelicidins and was therefore termed F. hepatica Helminth

Defence Molecule 1 (FhHDM-1) [25]. Like the human cathe-

licidin LL-37 precursor CAP-18, FhHDM-1 is proteolytically

processed (by a parasitic endopeptidase, cathepsin L1) to release a

34-residue C-terminal peptide previously named FhHDM-1 p2

[25]. This peptide adopts an amphipathic helix structure and, like

LL-37, can bind to Escherichia coli lipopolysaccharide (LPS) to

prevent its interaction with the toll-like receptor (TLR) 4/MD2/

CD14 complex on macrophages. Hence we proposed that F.

hepatica utilized FhHDM-1 as a molecular mimic of mammalian

cathelicidin-like HDPs as a means of controlling host innate

immune responses [25].

Phylogenetic analysis showed that FhHDM-1 is a member of a

family of HDMs conserved throughout several major animal and

human trematodes such as Schistosoma, Fasciola, Opisthorchis,

Clonorchis and Paragonimus species [25]. Importantly, all HDM

molecules in this family have preserved the C-terminal amphi-

pathic helix. Here, we have performed a comparative functional

study between several anti-microbial HDPs derived from well-

characterized mammalian cathelicidins and parasite-derived

peptides. For the helminth-derived peptides we selected

FhHDM-1p2 and two homologs derived from Schistosoma mansoni

which we term S. mansoni HDM-1 (SmHDM-1p146) and HDM-2

(SmHDM-2p58). In addition, we included a peptide derived from

a previously characterized secretory molecule of S. mansoni, termed

Sm16-p73 [26], which our phylogenetic studies suggest is a

divergent member of the HDM superfamily [25]. We show that, in

contrast to the mammalian HDPs (LL-37, CRAMP, BMAP-28

and SMAP-29), the trematode-derived HDMs are not cytotoxic or

bactericidal. However, like the mammalian HDPs, the trematode

HDMs suppress the activation of macrophages by microbial

stimuli and alter the isotype of immunoglobulin secreted by B cells.

We propose that HDMs represent a novel family of HDPs that

have undergone specific adaptation to retain potent immune

modulatory properties in the absence of deleterious cytotoxic

effects and are exploited by helminth pathogens to regulate the

immune responses of their mammalian hosts.

Methods

Synthetic mammalian and trematode peptides and their
biochemical properties

Four synthetic cathelicidin-derived peptides from diverse

mammalian species were used: SMAP-29 from sheep [27,28],

CRAMP from mice [29], LL-37 from human [30], and BMAP-28

from cattle [31]. The 34-residue C-terminal FhHDM-1 peptide,

termed FhHDM-1p2, has been previously described [25]. Sm16-

p73 peptide is 35 residues in length, corresponding to residues 73–

107 of the full-length protein S. mansoni Sm16 (GenBank accession

number: AAD26122.1). SmHDM-1p146 is 35 residues in length

and corresponds to residues 146–180 of the full length protein

(GenBank accession number XP_002580563.1). Finally,

SmHDM-2p58 is a 32 residue peptide that corresponds to residues

58–98 from the full length protein (GenBank accession number:

XP_002576627.1). All mammalian and trematode peptides were

synthesized by GenScript (NJ, USA) and supplied endotoxin-free.

The single letter code sequence of each peptide is shown in

Table 1.

The biochemical characteristics for each of the HDMs and

HDPs were calculated using tools available from the Antimicrobial

Peptide Database (http://aps.unmc.edu/AP/main.php) [32] and

are presented in Table 1. Predicted properties were total net

charge, Boman index, hydrophobic ratio and total hydrophobic

residues on the same hydrophobic surface of the alpha helix.

HDM sequence analysis
We have previously shown, using circular dichroism (CD)

spectroscopy, that FhHDM-1 has the propensity to adopt alpha-

helical structure in solution [25]. To assess whether HDMs from

Author Summary

In mammals, secreted host defence peptides (HDPs)
protect against a wide range of infectious pathogens.
They also perform a range of immune modulatory
functions which regulate the immune response to path-
ogens, ensuring that the protective inflammatory response
is not exacerbated and that post-infection repair mecha-
nisms are initiated. We identified a novel family of
molecules secreted by medically-important helminth
pathogens (termed helminth defence molecules; HDMs)
that exhibit striking structural and biochemical similarities
to the HDPs. To further investigate the extent of this
similarity, we have performed a comparative functional
study between several well characterized, anti-microbial,
mammalian HDPs and a series of parasite-derived pep-
tides. The parasite HDMs displayed immune modulatory
properties that were similar to their HDP homologs in
mammals, but possessed no antimicrobial or cytotoxic
activity. We propose that HDMs of these helminth
pathogens underwent specific adaptation, losing their
anti-microbial activity but retaining their ability to regulate
the immune responses of their mammalian hosts. This
absence of cytotoxicity and retention of immune-modula-
tory activity offers an opportunity to design novel
immunotherapeutics derived from the HDMs which could
be used to combat destructive inflammatory responses
associated with microbial infection and immune-related
disorders.

Helminth Cathelicidins Adapted for Immune Modulation
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the related trematode parasite S. mansoni also form alpha helices,

secondary structure prediction was performed using JPred 3 ([33];

http://www.compbio.dundee.ac.uk/www-jpred/). Specific re-

gions predicted to form alpha helices were then subjected to

helical wheel analysis using Heliquest ([34]; http://heliquest.ipmc.

cnrs.fr/cgi-bin/ComputParams.py) to identify those with distinct

hydrophobic faces; i.e. are amphipathic. The atomic structures of

the vertebrate HDPs LL-37 (PDB ID: 2K6O) and BMAP-28 (PDB

ID: 2KET) were visualised for comparison using the PyMOL

Molecular Graphics System, Version 1.5.0.4 Schrödinger, LLC.

(http://pymol.org/).

Bacterial lipopolysaccharide binding assay
Lipopolysaccharide (LPS) binding was performed using a

quantitative chromogenic Limulus amoebocyte assay (Chromo-

LAL assay; Associates of Cape Cod Incorporated) following

manufacturer’s recommendations. Assays were performed in flat-

bottom endotoxin- and glucan-free 96-well plates (Associates of

Cape Cod Incorporated). Stock solutions of each peptide were

prepared in endotoxin-free water (80 mg/ml) and diluted to a

final concentration of 250 pmol/ml. In the first step, 25 ml of

peptide solution was mixed with 25 ml of a solution containing 1

endotoxin U/ml of Escherichia coli O113:H10 LPS and incubated

for 30 min at 37uC to allow peptide and LPS binding to occur.

The second step involved the addition of 50 ml of the chromo-

LAL reagent. The liberation of r-nitroaniline was monitored

every 60 sec at 405 nm with a Synergy H1 hybrid reader (Biotek)

while the temperature was maintained at 37uC. Each peptide

concentration was also incubated with 25 ml of LPS-free water as

a control to determine if the peptide itself could activate the

Chromo-LAL assay. The experiment was conducted twice in

triplicate. Standard deviation was calculated from these six

replicates.

Antimicrobial assays
The minimal inhibitory concentration (MIC) of each peptide

against various bacteria was determined using a standardized

dilution method according to NCSLA guidelines [35]. Overnight

colonies of E. coli, Pseudomonas aeruginosa, Salmonella typhimurium,

Staphylococcus epidermis and Staphylococcus aureus, were suspended to a

turbidity of 0.5 OD units and further diluted in Mueller-Hinton

broth (MHB). For determination of MIC, peptides were prepared

in an acetic acid/BSA solution and used in graded concentrations

(0, 1, 2, 4, 8, 16, 32, 64, and 128 mg/ml) from a stock solution. Ten

microliters of each concentration was added to each corresponding

well of a 96-well polypropylene microtiter plate and 16105

bacteria in the volume of 90 mL. The plate was incubated at 37uC
for 16 h and then read at 600 nm with a Synergy H1 hybrid

reader (Biotek).

Haemolytic activity
The peptide’s haemolytic activities were determined using

human red blood cells (RBCs; Research Blood Components,

LLC) in 96-well polypropylene microtiter plates. One hundred

ml of 0.5% RBC suspension was added to an equal volume of a

peptide (8–256 mg/ml). After 1 h at 37uC, plates were

centrifuged at 14206g for 5 min and the optical density of

the supernatant was measured at 414 nm with a Synergy H1

hybrid reader (Biotek). Values for 0% and 100% lysis were

obtained by adding PBS or Triton X-100 (1%; final concen-

tration) to RBCs, respectively. All assays were performed in

triplicate and the values of percent lysis were within a 1%

standard deviation range.
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Measurement of cellular pore formation
RAW 264.7 murine macrophages (56105 cells) were incubated

in the presence of the fluorescent dye TO-PRO (Life Technolo-

gies) for 60 sec. After the peptides (50 mM) were added to the

culture media the uptake of dye was measured for 360 sec by flow

cytometry.

Cytotoxicity assay
RAW 264.7 murine macrophages (16106cells) were incubated

with a range of concentrations (2.5–50 mM) of peptides for 1 h at

37uC. The culture supernatants were collected and assayed for

LDH activity with the CytoTox LDH release kit (Promega)

according to the manufacturer’s instructions. The amount of LDH

released is expressed as a percentage of the total amount of LDH

released from cells treated with lysis buffer (regarded as 100%

cytotoxicity).

Effect of peptides on Cryptosporidium spp. sporozoite
viability

Oocysts of the Iowa C. parvum isolate [36] were propagated in

experimentally infected newborn Cryptosporidium–free Holstein bull

calves to obtain parasite material for study as previously described

[37,38]. Oocysts were isolated by sucrose density gradient

centrifugation, stored in 2.5% (W/V) potassium dichromate

(4uC) and used within 6 weeks of isolation [39]. Oocysts of the

TU502 C. hominis isolate [40,41] were propagated in gnotobiotic

piglets and isolated from feces at Tufts University [42] and used

within 4 weeks of isolation. Prior to excystation, oocysts were

treated with hypochlorite [37]. In vitro excystation (37uC, 0.15%

[W/V] taurocholate, 2 h) of oocysts used for all experiments was

$90%. Sporozoites were isolated from excysted oocyst prepara-

tions by passage through a polycarbonate filter (2.0 mm pore size;

Poretics, Livermore, California) and used immediately.

Sporozoite viability after incubation with peptides was assessed

using fluorescein diacetate (FDA) and propidium iodide (PI) with

modification [43]. In brief, freshly excysted sporozoites were

incubated (15 min, 37uC) in minimal essential medium (MEM)

containing individual peptides (2.5, 0.25, 0.025 mM) or in MEM

alone (n = 3). Peptide concentrations were selected based largely

on studies by our group and others evaluating the effects of various

antimicrobial peptides on C. parvum viability [44–47]. Heat-killed

(20 sec, 100uC) sporozoites were used as a control. FDA (8 mg/ml

final concentration) and PI (3 mg/ml final concentration) were

then added to the sporozoite preparations and incubated further

(5 min, 21uC). A minimum of 100 sporozoites were then examined

by epifluorescence microscopy for each preparation, and the

percent viability was determined. Percent reduction of viability

was calculated as ([MEM-treated sporozoite viability2peptide-

treated sporozoite viability]4MEM treated sporozoite viabili-

ty)6100. The mean values for test and control preparations were

examined for significant differences using Student’s t-test.

Purification and activation of bone marrow-derived
murine macrophages

CD11b+F4/80+ macrophages were derived (99% purity) from

the bone marrow of BALB/c mice by culturing with M-CSF

(ebioscience) over 6 days and then seeded in RPMI (with 10% FBS

v/v) at a concentration of 16105 cells/ml. These cells were

incubated with peptides (0.5 mM–5 mM) for 1 h at 37uC, in the

absence of mCSF. Following two washes with ice-cold PBS, cells

were incubated with a combination of E. coli LPS (10 ng/ml;

Sigma) and IFNc (10 ng/ml; BD Pharmingen) overnight. Super-

natants were then collected and the amount of TNF measured by

ELISA according to the manufacturer’s instructions (BD Pharmin-

gen).

Purification and activation of murine B cells
B cells were isolated from the spleens of BALB/c mice by

negative selection using a B cell isolation kit containing biotin-

conjugated mAbs to CD43, CD4, and Ter-119 (Miltenyi Biotec)

and then seeded at a concentration of 16106 cells/ml in RPMI

(with 10% FBS v/v). The cells were treated with a range of

concentrations of peptides (0.5 mM–5 mM) for 1 h at 37uC. After

washing, the B cells were incubated with a combination of either

E. coli LPS (10 mg/ml; Sigma) and IL-4 (10 ng/ml; BD Pharmin-

gen) or E. coli LPS (10 mg/ml) and IFNc (200 ng/ml; BD

Pharmingen) for six days. Supernatants were then collected and

the amount of IgG1 or IgG2a measured by ELISA (Sigma).

Statistical analyses
Statistical comparisons were performed with Prism 4.0 Software

(Graph- Pad), using two-tailed Student’s t test for comparisons of

two data sets, and ANOVA for multiple comparisons. Statistically

significant differences were determined by a p value of *,0.05,

**,0.01, ***,0.001.

Results

HDMs, like mammalian HDPs, are cationic, have a high
percentage of hydrophobic amino acids and form
amphipathic structures

The biochemical properties for each of the HDMs and HDPs

are presented in Table 1. The cathelicidins are known to be highly

cationic peptides. Except for the FhHDM-1p2 peptide, which has

a net charge of 0, all the peptides in the present study have a net

positive charge (+3 to +9) with a percentage of hydrophobic

residues ranging from 34 to 44. The Boman index is an estimated

potential of peptides to bind to other proteins. For this index, a low

value (#1) suggests that a peptide has more antibacterial activity,

whereas values ranging from 2.5–3.0 indicate that a peptide is

multifunctional with hormone-like activities [48]. While BMAP-28

has a low Boman index (0.81) which correlates to its high

antimicrobial activity, the Boman indices for the other peptides

range from 1.34–3.11. Overall, there is no striking difference

between the biochemical properties of HDMs and HDPs.

The atomic structures of the vertebrate HDPs LL-37, CRAMP,

BMAP-28 and SMAP-29 have been previously solved and

determined that each form an amphipathic helix [31,49–51]

(figure 1). The structures of LL-37 and BMAP-28 are shown in

figure 1A as representative for this group of peptides. Secondary

structure prediction of the parasite-derived peptides FhHDM-1p2,

SmHDM-1p146, SmHDM-2p58 and Sm16-p73 revealed that all

possessed regions likely to form alpha helices. Furthermore, helical

wheel analysis showed that each molecule contained an alpha

helix (32–35 amino acids) toward the C-terminal that was

distinctly amphipathic. The number of residues forming the

hydrophobic face of the parasite molecules ranged from 6–9

(figure 1B). Thus, like their vertebrate HDP counterparts, the

secreted helminth parasite molecules also form distinct amphi-

pathic helices.

Helminth defence molecules variably bind LPS
Mammalian HDPs have the ability to bind to and thus

neutralize the bacterial endotoxin LPS [52–57]. The capacity of

different mammalian and helminth peptides to bind LPS from E.

coli O113:H10 was compared using the chromogenic Limulus
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amoebocyte assay (Chromo-LAL). The Limulus amoebocyte lysate

contains enzymes that are activated in a cascade of reactions in the

presence of LPS [58–60]. The final enzyme in the series splits the

chromophore, r-nitroaniline (rNA), from the chromogenic

substrate, generating a yellow color. The amount of rNA released

is proportional to the amount of free LPS present in the system.

Consistent with that published in the literature, mammalian

HDP LL-37, BMAP-28, SMAP-29 and CRAMP inhibited the

activation of the Chromo-LAL assay at a concentration of

250 pmol/ml, indicating that they interact with LPS and thus

prevent the activation of the enzymatic cascade [52,53,55,61]

(figure 2). BMAP-28 was the most potent, preventing the

activation of the enzyme cascade with a Vmax of 3.1 and

SMAP-29 was less effective with a Vmax of 26.5. Of the helminth-

derived HDPs, both Sm16-p73 and SmHDM-1p146 displayed

no LPS-binding capacity with a Vmax of 40.4 and 31.1,

respectively, which were above the control reaction with no

peptide (Vmax of 28.5). By contrast, the helminth peptide

SmHDM-2p58 was the second best inhibitor of the series with

a Vmax of 12.5, just after BMAP-28.

Figure 1. Mammalian and helminth cathelicidin-like peptides share homologous secondary structure. (A) Most HDPs, including those
used in the present study, form amphipathic helices. Here, the atomic structures of LL-37 (PDB ID: 2K6O) and BMAP-28 (PDB ID: 2KET) are shown as
green ribbon with the residues comprising the hydrophobic face of the molecules coloured red. Structures were generated using Pymol (http://www.
pymol.org). (B) Helical wheel analysis shows that peptides derived from FhHDM-1p2 (residues 14–34), Sm16-p73, SmHDM-1p146 and SmHDM-2p58
(residues 9–26 for each) also form distinct amphipathic structures.
doi:10.1371/journal.pntd.0002307.g001
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We found that FhHDM-1p2 was capable of directly activating

the Chromo-LAL assay itself (data not shown) and, therefore, its

binding capacity could not be evaluated using this test. However,

using a plate-binding assay we have previously demonstrated that

FhHDM-1p2 does indeed bind to LPS [25].

Helminth defence molecules do not possess
antimicrobial or anti-protozoan activity

The bactericidal properties of mammalian HDPs are mediated

by direct antimicrobial activities, and are therefore easily evaluated

as the minimal concentration capable of inhibiting visible

Figure 2. Mammalian and helminth cathelicidin-like peptides display varied LPS binding capacity. 25 ml of peptide (250 pmol/ml) was
incubated with 25 ml of LPS from E. coli O113:H10 (1 EU/ml) for 30 min at 37uC to allow the interaction between both molecules. Chromo-LAL reagent
was then added and the liberation of r-nitroaniline was monitored every 60 sec at 405 nm. The top panel is a representative of the curves obtained
for each peptide. The data presented in the Table is the mean of three replicates from two separate experiments. The extent of binding of peptide to
LPS prior to adding the mixture to the Chromo-LAL is reflected in the reduced rate of cleavage of the substrates and a corresponding inability of the
reaction to reach maximum velocity (Vmax).
doi:10.1371/journal.pntd.0002307.g002
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microbial growth (MIC) against a panel of bacterial species.

Consistent with previous reports [28,31,62,63], we found that

SMAP-29 and BMAP-28 were effective against a broad group of

gram-negative bacteria, including E. coli, P. aeruginosa, and S.

typhimurium and two gram-positive bacteria, S. aureus and S.

epidermis, with MIC values of ,0.25–8 mg/ml (Table 2). LL-37 and

its mouse counterpart, CRAMP, showed bactericidal activity

against gram-negative bacteria with MIC ranging from 2 to 8 mg/

ml, but were ineffective against the gram-positive bacteria tested

(MIC,128 mg/ml). The inactivity of LL-37 against S. aureus and S.

epidermis is consistent with other studies [64]. However, the anti-

microbial effect of LL-37 on Staphylococcus could be strain

dependent as several studies have reported an effect of this peptide

on both S epidermis [65] and S. aureus [66,67]. Despite structural

similarities with the mammalian peptides tested, none of the

HDMs demonstrated bactericidal activity against any species of

bacteria at the concentrations tested (,0.25 to 128 mg/ml).

We have recently shown that cationic peptides, including the

cathelicidin LL-37, are highly parasiticidal against the apicom-

plexan parasite C. parvum in vitro [47]. Using the same methodology,

we compared the anti-parasite activity of the mammalian HDPs to

that of the four helminth-derived peptides. In keeping with our

previous data [35], LL-37 exhibited parasiticidal activity at a

concentration of 2.5 mM against C. parvum and the related species C.

hominis (figure 3). The other mammalian cathelicidins showed

greater parasiticidal activity, reducing the viability of protozoans at

lower concentrations of 0.025 and 0.25 mM. Of particular note,

BMAP-28 demonstrated the highest potency against both species of

protozoan at 2.5 mM (P,0.01). In stark contrast to these results, was

the relative absence of parasiticidal activity of the helminth-derived

peptides, even at the highest concentration of 2.5 mM.

Helminth defence molecules are not cytotoxic to
mammalian cells

The predominant mechanism of HDP bactericidal activity is the

formation of pores in the membrane lipid bilayer, destroying its

integrity and causing cell death [68]. However, this effect is not

specific to bacterial cells and HDPs have also been shown to be

cytolytic to eukaryotic cells, particularly at high concentrations

[69]. TO-PRO is a membrane impermeant dye and therefore its

detection within cells is indicative of pore formation. Using this

dye, we demonstrated that, as expected, all mammalian peptides

at a concentration of 50 mM (equivalent to the highest concen-

tration tested in the bactericidal assays) induced the formation of

pores in a murine macrophage cell line (figure 4). However, at the

same concentration none of the helminth peptides exhibited this

effect.

To more completely assess the cytotoxicity of the peptides, we

first examined their haemolytic activity against human RBCs at

various concentrations (8–256 mg/ml). After one hour of co-

incubation, all of the mammalian peptides induced concentration

dependent hemolysis (Table 3). BMAP-28 was the most potent of

all the peptides, with 50% of RBCs lysed at the lowest

concentration of peptide tested (8 mg/ml) and 70% at the highest

concentration of 256 mg/ml. In comparison, at this highest

concentration, the other mammalian peptides were much less

cytotoxic, lysing only 14.5–29.3% of RBCs. Notably, under the

same experimental conditions, the S. mansoni-derived peptides did

not lyse the cells at any concentration tested. The F. hepatica-

derived FhHDM-1p2 showed some low-level cytolytic activity,

with 11.4% of cells lysed at the highest concentration of 256 mg/

ml.

Lactate Dehydrogenase (LDH) is a soluble cytosolic enzyme

that is released into culture media following loss of membrane

integrity resulting from either apoptosis or necrosis. Therefore

LDH release is an indicator of cell membrane integrity and acts as

a measure to assess cytotoxicity. Consistent with the demonstration

of hemolysis, higher concentrations (.10 mM) of mammalian

peptides also resulted in the death of murine macrophages, with

the highest concentration tested (50 mM) resulting in 100%

cytotoxicity, compared to the effect of a lysis buffer (figure 5). By

contrast, none of the helminth peptides induced cell death at any

concentration tested. This lack of LDH detection was not due to

enzyme inhibition by the helminth peptides; when the peptides

were added directly to culture supernatant from lysed cells the

LDH activity was unchanged. Consistent with these data, the cells

treated with helminth peptides (10–50 mM) looked morphologi-

cally normal by light microscopy (data not shown).

Both mammalian- and helminth-derived peptides
suppress secretion of the inflammatory cytokine TNF
from macrophages

Activation of macrophages by microbial stimuli is central to the

induction of innate immune responses. IFNc is one of the key

Table 2. Antibacterial activity of mammalian- and helminth-derived peptides against gram-positive and gram-negative bacteria
assessed by micro broth assay.

MIC1 in mg/ml

Gram-negative Gram-positive

Escherichia coli Pseudomonas aeruginosa Salmonella typhimurium Staphylococcus epidermis Staphylococcus aureus

FhHDM-1p2 .128 .128 .128 .128 .128

Sm16-p73 .128 .128 .128 .128 .128

SmHDM-1p146 .128 .128 .128 .128 .128

SmHDM-2p58 .128 .128 .128 .128 .128

LL-37 4 8 2 .128 .128

CRAMP 2 4 4 .128 .128

SMAP-29 ,0.25 ,0.25 ,0.25 ,0.25 2

BMAP-28 1 4 4 4 8

1MIC: minimum inhibitory concentration determined by a conventional microbroth-based assay in Mueller Hinton medium supplemented with acetic acid/BSA [57].
doi:10.1371/journal.pntd.0002307.t002

Helminth Cathelicidins Adapted for Immune Modulation

PLOS Neglected Tropical Diseases | www.plosntds.org 7 July 2013 | Volume 7 | Issue 7 | e2307



cytokines in the innate immune response to intracellular patho-

gens, and augments cellular responses to TLR ligands such as

bacterial LPS [70,71]. To prevent excessive inflammation

potentially leading to sepsis, HDPs have been shown to inhibit

the response of macrophages to these inflammatory mediators

using mechanisms that are independent of direct binding to LPS

[72]. Significantly, macrophages isolated from animals and

humans infected with helminth parasites are also hyporesponsive

to stimulation with LPS and IFNc [73,74]. Therefore, here we

investigated whether helminth-derived peptides, like mammalian

HDPs, could suppress the activation of inflammatory macrophag-

es. At concentrations below cytotoxic levels (,5 mM), all

mammalian peptides significantly inhibited TNF production in

response to the combined stimulation with LPS and IFNc
(figure 6). Titration of the peptide concentration showed that

even at concentrations as low as 0.5 mM, the inhibitory activity

was preserved. In contrast, at the lowest concentration tested, the

helminth-derived peptides had no effect on the activation of

macrophages. However, as the concentration was increased, the

helminth peptides significantly suppressed the inflammatory

response of macrophages and in most cases more effectively than

the mammalian peptides (figure 6). It is worth noting that the

helminth-derived peptides could be tested at concentrations up to

50 mM as they are non-toxic to cells, whereas due to their

cytotoxicity the HDPs were not tested at concentrations above

10 mM (figures 4,5). At these higher concentrations (10, 25 and

50 mM) the helminth-derived peptides significantly reduced the

production of TNF from activated macrophages in a concentra-

tion dependent manner (data not shown).

Both mammalian- and helminth-derived peptides alter
the secretion of immunoglobulin from activated B cells

In addition to directly inhibiting inflammatory innate

immune responses, there is evidence that mammalian HDPs

have an additional role in regulating the magnitude of the

adaptive antibody responses. For example, it has been shown

that CRAMP functions to positively regulate the level of IgG1

produced by B cells [75], and LL-37 reportedly decreased the

production of IgG2a from mouse splenic B cells activated with

LPS and IFNc [76]. Consistent with these reports, our analyses

showed that with the exception of BMAP-28, all the

mammalian HDPs significantly increased the production of

IgG1 in response to a Th2 biased environment (LPS and IL-4)

Figure 3. Mammalian, but not helminth, peptides reduce Cryptosporidium spp. sporozoite viability. The viability of C. parvum (A) and C.
hominis (B) sporozoites was assessed after incubation with peptides or in medium alone (untreated). Following the addition of FDA and PI, the
percent viability for each preparation was determined by epifluorescence. The data shown are means 6 SD.
doi:10.1371/journal.pntd.0002307.g003
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(figure 7A). The apparent reduction in IgG1 production

recorded for the higher concentration of BMAP-28, likely

reflects some level of cell death rather than a reduction in

antibody production. Due to this cytotoxicity the HDPs were

not tested at concentrations above 5 mM. While there was

greater variability between the HDMs, peptides from F. hepatica

and S. mansoni significantly increased the production of IgG1 in

response to LPS and IL-4 even at low concentrations.

Conversely, mammalian peptides reduced the production of

IgG2a in a Th1 (LPS and IFNc) biased environment (figure 7B).

For the helminth peptides, only concentrations above 5 mM had

the same effect on B cells, significantly (p,0.001) inhibiting IgG2a

secretion (data not shown), suggesting a lower potency than

mammalian-derived peptides.

Discussion

Parasitic helminths secrete molecules that modulate host

immune responses to establish an environment that facilitates

their survival and a prolonged reproductive phase [20,77,78]. Co-

evolution of helminths with their hosts means that these parasites

are well adapted to the host’s immune system, making use of

endogenous regulation mechanisms to manipulate the immune

response to their benefit. In this study, we compared the biological

activities of a series of helminth-derived cathelicidin-like peptides

to that of their mammalian homologues and suggest how their

production by helminths can facilitate a successful parasitic life

cycle.

In vitro, most mammalian HDPs are effective antimicrobial

agents against a range of organisms including gram-negative and

gram-positive bacteria, protozoa, viruses and fungi [10,79,80]. In

general, the expression of HDPs is increased at the onset of an

infection and therefore the anti-pathogenic activity was thought to

be one of the most important immediate responses that the

mammalian host evolved to deal with invading pathogens. It has

been proposed that the specificity of HDPs for particular microbes

is subjected to significant variation and is particularly influenced

by the types of microbial biotas to which each HDP species is

exposed [81]. Consistent with this theory, we showed some

variation in the anti-microbial capabilities of the mammalian

HDPs examined. While sheep and bovine derived peptides were

effective against a broad range of both gram-positive and gram-

Figure 4. Mammalian, but not helminth, peptides induce the formation of pores in macrophages. RAW macrophages were incubated in
the presence of TO-PRO. After 60 sec, 50 mM of mammalian (left panel) or helminth (right panel) peptides was added to the medium. The uptake of
fluorescent dye was measured over a period of 360 sec.
doi:10.1371/journal.pntd.0002307.g004

Table 3. Hemolytic activity of mammalian- and helminth-derived peptides.

Peptide Hemolytic activity in % at peptide concentrations (mg/ml)

8 16 32 64 128 256

FhHDM-1p2 0 0 1.8 2.6 5.4 11.4

Sm16-p73 0 0 0 0 0 0

SmHDM-1p146 0 0 0 0 0 0

SmHDM-2p58 0 0 0 0 0 0

LL-37 0 1.7 4.1 10.4 20 20

CRAMP 0 2.6 5.8 9.1 20.1 29.3

SMAP-29 0 0 0 2.6 6.7 14.5

BMAP-28 50.2 60.4 48.8 49.5 52.9 70.23

doi:10.1371/journal.pntd.0002307.t003
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negative bacteria, the mouse and human HDPs were largely

ineffective against the gram-positive species tested. However, we

found that none of the helminth-derived peptides displayed gram

positive or negative bactericidal activity, even at the highest

concentration tested, implying that their specialised function is not

anti-microbial. However, we cannot exclude the possibility of the

peptides having anti-microbial activity on other, untested patho-

genic bacteria.

Despite lacking bactericidal activity, we showed previously that

FhHDM1-p2, like the mammalian peptides, interacts with LPS,

thus effectively neutralising the ability of infecting bacteria to

induce an inflammatory response [25]. We suggested that this may

be a mechanism used by the parasite to prevent excessive

activation of innate cells in response to the translocation of

microbes into circulation occurring as a result of damage to the

skin and/or gut epithelium during migration of the parasite [25].

As the two major factors mediating interaction between LPS and

HDPs are hydrophobicity and cationicity [82], inspection of the

sequence of the other HDMs would predict a universal ability to

bind to LPS. However, while SmHDM-1p146 appeared to bind

LPS as efficiently as the mammalian peptides, neither SmHDM-

2p58 or Sm16-p73 were particularly potent, indicating that the

neutralization of LPS may not be a common function of the

helminth-derived peptides.

A number of studies have demonstrated the ability of amphibian

and mammalian HDPs to kill protozoan parasites in vitro [83,84].

For example, BMAP-28 possesses potent activity against the agent

of human leishmaniasis, Leishmania major [83], and we have shown

that LL-37 can reduce the viability and infectivity of sporozoites of

C. parvum, an intestinal infection of humans and agricultural

animals [47]. In the present study we confirm the activity of LL-37

against C. parvum and the related parasite C. hominis and show that

the other mammalian cathelicidins tested also have anti-protozoan

activity; BMAP-28 exhibited the most potent in vitro activity. By

Figure 5. Mammalian, but not helminth, peptides induce the release of LDH from macrophages. RAW macrophages were incubated with
peptides for 1 h at 37uC. The release of LDH by cells was measured and expressed as the percentage of LDH released after treatment of cells with lysis
buffer (regarded as 100%). Data shown are the means 6 SEM of triplicate samples and representative of three independent experiments.
doi:10.1371/journal.pntd.0002307.g005

Figure 6. Both mammalian and helminth peptides suppress secretion of the inflammatory cytokine TNF from macrophages. Primary
murine bone marrow derived macrophages were treated with peptides for 1 h, washed then subsequently stimulated with a combination of E. coli
LPS (10 ng/ml) and IFNc (10 ng/ml) for 16 h. The amount of TNF (pg/ml) secreted into the culture media was measured by ELISA. The data shown are
means 6 SEM of triplicate samples and are representative of three independent experiments.
doi:10.1371/journal.pntd.0002307.g006
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contrast, and consistent with their lack of antibacterial activity, the

helminth-derived HDMs did not kill either parasite in vitro.

Clearly, the particular physico-chemical properties of HDMs do

not confer an ability to penetrate and disrupt the surface

membrane of these parasitic organisms.

Although widely defined as antimicrobial, in fact, at the

concentrations normally found at human mucosal surfaces and

in physiological salt conditions, the mammalian cathelicidin-like

peptides do not display bactericidal activity. However, at these

same concentrations and under the same conditions, the peptides

exhibit a variety of immune modulatory functions [12,85]. This

has led to the suggestion that the cathelicidins are principally

immune modulators rather than antimicrobials, and like the

mammalian defensins, have traded their bactericidal capacities to

acquire the ability to broadly regulate the immune response

[12,86]. The mammalian cathelicidins have a diverse effect on the

cellular immune response, but in particular, the peptides have a

crucial role in regulating TLR-dependent innate inflammatory

responses. This means that they function to maintain homeostasis

in response to natural shedding of microflora-TLR agonists as well

as controlling the systemic inflammatory response to infection or

tissue damage [12,86,87]. We have shown here that the helminth-

derived cathelicidin-like peptides also regulated the innate immune

response to TLR stimulation by inhibiting TNF release from

macrophages stimulated with bacterial LPS. While the helminth

HDMs were not as effective as their mammalian homologues at

the lowest concentration tested, they were correspondingly more

potent as their concentration was increased towards quantities that

are likely secreted during infection. It is probable that the function

of these secreted HDMs is similar to the predicted role for the

mammalian HDPs, i.e. prevention of an excessive inflammatory

response, which acts to prevent the expulsion of the worm and to

protect the host from exacerbated tissue damage.

The role of HDPs in regulating the adaptive immune response

has been less extensively studied. Recent studies have shown that

LL-37 decreased the production of IgG2a from murine B cells

stimulated with LPS and IFNc [76], and that CRAMP increased

the amount of IgG1 in response to IL-4 [75]. These results are

consistent with the suggestion that HDPs are engaged in the

process of infection resolution and wound healing, as autoreactive

IgG1 antibody production is central to tissue repair processes [88],

while IgG2a are associated with IFNc/Th1-mediated inflamma-

Figure 7. Both mammalian and helminth peptides alter the secretion of immunoglobulin from activated B cells. Murine splenic B cells
were treated with a range of concentrations of peptides for 1 h at 37uC, washed and then incubated with a combination of either (A) E. coli LPS
(10 mg/ml) and IL-4 (10 ng/ml) or (B) E. coli LPS (10 mg/ml) and IFNc (200 ng/ml) for six days. Levels of IgG1 (A) and IgG2a (B) in cell supernatants were
measured by ELISA. The data shown are from triplicate samples, corresponds to the means 6 SEM, and are representative of two independent
experiments.
doi:10.1371/journal.pntd.0002307.g007
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tory responses. Consistent with these reports, the helminth-derived

peptides performed in a similar manner to their mammalian

counterparts, successfully enhancing the production of IgG1. At

high concentrations, the helminth-derived peptides were far more

effective than mammalian HDMs at suppressing the release of

IgG2a in response to IFNc, supporting their role as potent anti-

inflammatory agents.

Due to their immune modulatory activities, there is considerable

interest in developing HDPs as therapeutics such as anti-

inflammatory agents, adjuvants and wound healing agents. The

therapeutic potential of HDPs has been demonstrated and a

number of peptides are being developed as anti-inflammatory

agents [89]. However, the clinical use of these peptides as

injectable therapeutics has been hampered by indications of toxic

side-effects on mammalian cells and their ability to lyse eukaryotic

cells [90,91]. This had led to intense research into understanding

how HDPs function in terms of their physico-chemical properties.

Among the factors that appear to influence specificity between

their activity against prokaryotic and eukaryotic cells are the

ability to form an amphipathic a-helical structure, hydrophobicity,

overall charge distribution, and minimal peptide length [92]. At

first sight, the biochemical characteristics of the helminth-derived

HDMs would predict an inherent cytotoxic activity: they form

amphipathic helices (figure 1), they have a comparable proportion

of hydrophobic amino acids to mammalian HDPs and most of

them are cationic (Table 1). However, based on the assays

employed in this study, we found no correlation between the level

of hydrophobicity and cytotoxic activity.

The majority of mammalian HDPs have an overall net charge

ranging from +4 to +6.37 [93], implying an optimal range for

biological activity. HDPs with a net positive charge of ,+4 are

found to be inactive, whereas increasing the net charge from +4 to

+8 confers antimicrobial activity and some haemolytic activity

[79]. Three of the HDMs used in this study, FhHDM-1p2,

SmHDM-1p146 and SmHDM-2p58, all had a net charge ,+4

which is consistent with a non-bactericidal, non-haemolytic

peptide. However, despite possessing a net charge of +5, Sm16-

p73 displayed neither antimicrobial nor cytotoxic activities.

Recent studies have proposed that rather than a simple correlation

between net charge and haemolysis it is the localisation of the

positively charged amino acids within the peptide that also dictates

membrane interaction and selectivity. By increasing the charge of

an amphipathic HDP analog from +8 to +9, by the addition of one

positive charge on the polar face, the haemolytic activity of the

peptide was enhanced 32-fold [79]. Using this parameter, we

calculated that Sm16 has four positively charged amino acids on

its polar face compared to six for LL-37, CRAMP and BMAP-28

and seven for SMAP-29, which may provide some clue as to the

difference in cytotoxicity between these peptides. Likewise, all the

helminth HDMs used in this study have less positive charges on

their polar face compared to LL-37, which was the least cytotoxic

of all the mammalian peptides examined in this study.

It is generally accepted that the cytoplasmic membrane is the

main target of many mammalian HDPs, whereby peptide

accumulation in the membrane causes increased permeability

and a loss of barrier function, resulting in the leakage of

cytoplasmic components and cell death [94]. However, the

cytotoxic concentrations of HDPs are higher than the concen-

trations required for the destruction of microbes, which, some

authors suggest, reveals a cell-selective killing mechanism

[85,94]. The physiological concentration of HDPs at mucosal

sites is typically less than 2 mg/ml [12,80], well below the

concentration that is cytotoxic to mammalian cells in vitro. We

have found that helminth HDMs are abundant molecules within

the secretions of helminth parasites, which during a multi-

parasite infection would likely be at relatively high concentra-

tions in circulation. Therefore, it is essential for the success of

the parasite that these peptides do not possess cytotoxic activity,

whilst at the same time retain the beneficial immune modulatory

properties. The complete absence of antimicrobial activity by

helminth-derived peptides is likely linked to this need to prevent

host cell death during infection.

The extraordinary capacity of helminths to regulate the

immune response is central to their longevity in the mammalian

host and thus underpins their success as parasitic organisms

[77,78]. Therefore, it is perhaps unsurprising that helminth

secretory products contain homologues of components of the host

immune system that target the same mammalian pathways. In

addition to the HDMs identified here, helminth parasites express

highly conserved cytokine gene families that, like their mammalian

counterparts, ligate specific receptors on immune cells. Brugia

malayi and Ancylostoma ceylanicum express homologues of the

mammalian cytokine macrophage migration inhibitory factor

(MIF) [95], and in a Th2 environment, such as that activated by

helminth infection, Brugia MIF synergises with IL-4 to induce the

development of regulatory M2 macrophages [96]. Helminths also

express members of the Tumour Growth Factor-(TGF)b and

TGF-b receptor superfamilies [97–99], and similar to the

mammalian cytokine, Heligmosomoides polygyrus TGF-b homologue

has been shown to directly induce the differentiation of regulatory

T cells, demonstrating a key role in parasite immune regulation

[100].

The cysteine protease inhibitors, cystatins, are an ancient

and conserved family of peptides in the animal and plant

kingdoms [101]. The cystatins of parasitic worms differ

substantially from those produced by free-living nematodes

with regard to their immune modulatory properties [102]. In

particular, the acquisition of an asparaginyl endopeptidase site,

similar to that of vertebrate cystatin C, confers an ability to

reduce the activation of host T cell responses by directly

inhibiting the presentation of antigen by dendritic cells

[103,104], suggesting a specific adaption to regulate host

immune responses [102,105]. Similar to the cystatins, HDPs

are conserved in all organisms, including plants, animals and

humans [106]. However, we show here that while the

helminth-derived HDMs are effective immune modulators,

they display no bactericidal activity. These observations would

suggest that like the cystatins, HDMs have become specifically

adapted to support a parasitic lifestyle, losing the more ancient

property of direct antimicrobial killing but acquiring the ability

to regulate immune responses in order to promote their

survival within the mammalian host. It is possible that HDM

immune modulation arose in trematodes following their

divergence from the chordate lineage (as acoelomates) and

their subsequent specialisation to an endoparasitic lifestyle,

distinct from the free-living acoelomate turbellarian flatworms

from which HDM homologues have yet to be identified

(unpublished observation).

The immune-modulatory properties of mammalian HDPs, and

in particular their ability to prevent excessive inflammatory

induced pathology associated with bacterial sepsis, has attracted

interest in exploiting these as anti-infectives. However, their

cytotoxicity, as also shown in the present study, has presented a

major drawback for their in vivo use. Accordingly, the absence of

cytotoxicity and retention of immune-modulatory activity ob-

served for the helminth-derived HDMs offer an opportunity to

design novel immunotherapeutics to combat microbial pathogens

and immune-related disorders.

Helminth Cathelicidins Adapted for Immune Modulation

PLOS Neglected Tropical Diseases | www.plosntds.org 12 July 2013 | Volume 7 | Issue 7 | e2307



Author Contributions

Conceived and designed the experiments: K. Thivierge, S. Cotton, M.

Riggs, M. Robinson, J. Dalton, S. Donnelly. Performed the experiments:

K. Thivierge, S. Cotton, D. Schaefer, M. Riggs, J. To, M. Lund, M.

Robinson, S. Donnelly. Analyzed the data: K. Thivierge, S. Cotton, D.

Schaefer, M. Riggs, J. To, M. Lund, M. Robinson, J. Dalton, S. Donnelly.

Contributed reagents/materials/analysis tools: M. Riggs, J. Dalton. Wrote

the paper: K. Thivierge, S. Cotton, D. Schaefer, M. Riggs, J. To, M. Lund,

M. Robinson, J. Dalton, S. Donnelly.

References

1. Hancock RE, Diamond G (2000) The role of cationic antimicrobial peptides in

innate host defences. Trends Microbiol 8: 402–410.

2. Bowdish DM, Davidson DJ, Speert DP, Hancock RE (2004) The human

cationic peptide LL-37 induces activation of the extracellular signal-regulated
kinase and p38 kinase pathways in primary human monocytes. J Immunol 172:

3758–3765.

3. Mookherjee N, Hancock RE (2007) Cationic host defence peptides: innate
immune regulatory peptides as a novel approach for treating infections. Cell

Mol Life Sci 64: 922–933.

4. Andes D, Craig W, Nielsen LA, Kristensen HH (2009) In vivo pharmacody-

namic characterization of a novel plectasin antibiotic, NZ2114, in a murine
infection model. Antimicrob Agents Chemother 53: 3003–3009.

5. Hsu KH, Pei C, Yeh JY, Shih CH, Chung YC, et al. (2009) Production of
bioactive human alpha-defensin 5 in Pichia pastoris. J Gen Appl Microbiol 55:

395–401.

6. Fjell CD, Hancock RE, Cherkasov A (2007) AMPer: a database and an
automated discovery tool for antimicrobial peptides. Bioinformatics 23: 1148–

1155.

7. Zanetti M (2004) Cathelicidins, multifunctional peptides of the innate

immunity. J Leukoc Biol 75: 39–48.

8. Lehrer RI (2004) Primate defensins. Nat Rev Microbiol 2: 727–738.

9. Ganz T (2003) Defensins: antimicrobial peptides of innate immunity. Nat Rev
Immunol 3: 710–720.

10. Hancock RE, Chapple DS (1999) Peptide antibiotics. Antimicrob Agents
Chemother 43: 1317–1323.

11. Oppenheim JJ, Yang D (2005) Alarmins: chemotactic activators of immune
responses. Curr Opin Immunol 17: 359–365.

12. Lai Y, Gallo RL (2009) AMPed up immunity: how antimicrobial peptides have

multiple roles in immune defense. Trends Immunol 30: 131–141.

13. Steinstraesser L, Kraneburg UM, Hirsch T, Kesting M, Steinau HU, et al.

(2009) Host defense peptides as effector molecules of the innate immune
response: a sledgehammer for drug resistance? Int J Mol Sci 10: 3951–3970.

14. Choi KY, Mookherjee N (2012) Multiple immune-modulatory functions of
cathelicidin host defense peptides. Front Immunol 3: 149.

15. Allen JE, Maizels RM (2011) Diversity and dialogue in immunity to helminths.
Nat Rev Immunol 11: 375–388.

16. Jackson JA, Friberg IM, Little S, Bradley JE (2009) Review series on helminths,
immune modulation and the hygiene hypothesis: immunity against helminths

and immunological phenomena in modern human populations: coevolutionary

legacies? Immunology 126: 18–27.

17. James SL, Glaven J (1989) Macrophage cytotoxicity against schistosomula of

Schistosoma mansoni involves arginine-dependent production of reactive
nitrogen intermediates. J Immunol 143: 4208–4212.

18. Allen JE, Wynn TA (2011) Evolution of Th2 immunity: a rapid repair response
to tissue destructive pathogens. PLoS Pathog 7: e1002003.

19. Perrigoue JG, Marshall FA, Artis D (2008) On the hunt for helminths: innate
immune cells in the recognition and response to helminth parasites. Cell

Microbiol 10: 1757–1764.

20. Harnett W, Harnett MM (2010) Helminth-derived immunomodulators: can
understanding the worm produce the pill? Nat Rev Immunol 10: 278–284.

21. Donnelly S, O’Neill SM, Stack CM, Robinson MW, Turnbull L, et al. (2010)
Helminth cysteine proteases inhibit TRIF-dependent activation of macrophag-

es via degradation of TLR3. J Biol Chem 285: 3383–3392.

22. Dowling DJ, Hamilton CM, Donnelly S, La Course J, Brophy PM, et al. (2010)

Major secretory antigens of the helminth Fasciola hepatica activate a
suppressive dendritic cell phenotype that attenuates Th17 cells but fails to

activate Th2 immune responses. Infect Immun 78: 793–801.

23. Donnelly S, Stack CM, O’Neill SM, Sayed AA, Williams DL, et al. (2008)
Helminth 2-Cys peroxiredoxin drives Th2 responses through a mechanism

involving alternatively activated macrophages. FASEB J 22: 4022–4032.

24. Donnelly S, O’Neill SM, Sekiya M, Mulcahy G, Dalton JP (2005) Thioredoxin

peroxidase secreted by Fasciola hepatica induces the alternative activation of
macrophages. Infect Immun 73: 166–173.

25. Robinson MW, Donnelly S, Hutchinson AT, To J, Taylor NL, et al. (2011) A
family of helminth molecules that modulate innate cell responses via molecular

mimicry of host antimicrobial peptides. PLoS Pathog 7: e1002042.

26. Rao KV, Ramaswamy K (2000) Cloning and expression of a gene encoding
Sm16, an anti-inflammatory protein from Schistosoma mansoni. Mol Biochem

Parasitol 108: 101–108.

27. Bagella L, Scocchi M, Zanetti M (1995) cDNA sequences of three sheep

myeloid cathelicidins. FEBS Lett 376: 225–228.

28. Skerlavaj B, Benincasa M, Risso A, Zanetti M, Gennaro R (1999) SMAP-29: a

potent antibacterial and antifungal peptide from sheep leukocytes. FEBS Lett
463: 58–62.

29. Gallo RL, Kim KJ, Bernfield M, Kozak CA, Zanetti M, et al. (1997)

Identification of CRAMP, a cathelin-related antimicrobial peptide expressed in

the embryonic and adult mouse. J Biol Chem 272: 13088–13093.

30. Agerberth B, Gunne H, Odeberg J, Kogner P, Boman HG, et al. (1995) FALL-

39, a putative human peptide antibiotic, is cysteine-free and expressed in bone

marrow and testis. Proc Natl Acad Sci USA 92: 195–199.

31. Skerlavaj B, Gennaro R, Bagella L, Merluzzi L, Risso A, et al. (1996) Biological

characterization of two novel cathelicidin-derived peptides and identification of

structural requirements for their antimicrobial and cell lytic activities. J Biol

Chem 271: 28375–28381.

32. Wang G, Li X, Wang Z (2009) APD2: the updated antimicrobial peptide

database and its application in peptide design. Nucleic Acids Res 37: D933–

937.

33. Cole C, Barber JD, Barton GJ (2008) The Jpred 3 secondary structure

prediction server. Nucleic Acids Res 36: W197–201.

34. Gautier R, Douguet D, Antonny B, Drin G (2008) HELIQUEST: a web server

to screen sequences with specific alpha-helical properties. Bioinformatics 24:

2101–2102.

35. Wiegand I, Hilpert K, Hancock RE (2008) Agar and broth dilution methods to

determine the minimal inhibitory concentration (MIC) of antimicrobial

substances. Nat Protoc 3: 163–175.

36. Heine J, Pohlenz JF, Moon HW, Woode GN (1984) Enteric lesions and

diarrhea in gnotobiotic calves monoinfected with Cryptosporidium species.

J Infect Dis 150: 768–775.

37. Riggs MW, McGuire TC, Mason PH, Perryman LE (1989) Neutralization-

sensitive epitopes are exposed on the surface of infectious Cryptosporidium

parvum sporozoites. J Immunol 143: 1340–1345.

38. Riggs MW, Perryman LE (1987) Infectivity and neutralization of Cryptospo-

ridium parvum sporozoites. Infect Immun 55: 2081–2087.

39. Arrowood MJ, Sterling CR (1987) Isolation of Cryptosporidium oocysts and

sporozoites using discontinuous sucrose and isopycnic Percoll gradients.

J Parasitol 73: 314–319.

40. Akiyoshi DE, Feng X, Buckholt MA, Widmer G, Tzipori S (2002) Genetic

analysis of a Cryptosporidium parvum human genotype 1 isolate passaged

through different host species. Infect Immun 70: 5670–5675.

41. Chappell CL, Okhuysen PC, Langer-Curry R, Widmer G, Akiyoshi DE, et al.

(2006) Cryptosporidium hominis: experimental challenge of healthy adults.

Am J Trop Med Hyg 75: 851–857.

42. Akiyoshi DE, Mor S, Tzipori S (2003) Rapid displacement of Cryptosporidium

parvum type 1 by type 2 in mixed infections in piglets. Infect Immun 71: 5765–

5771.

43. Arrowood MJ, Jaynes JM, Healey MC (1991) In vitro activities of lytic peptides

against the sporozoites of Cryptosporidium parvum. Antimicrob Agents

Chemother 35: 224–227.

44. Giacometti A, Cirioni O, Del Prete MS, Barchiesi F, Scalise G (2000) Short-

term exposure to membrane-active antibiotics inhibits Cryptosporidium

parvum infection in cell culture. Antimicrob Agents Chemother 44: 3473–

3475.

45. Giacometti A, Cirioni O, Del Prete MS, Skerlavaj B, Circo R, et al. (2003) In

vitro effect on Cryptosporidium parvum of short-term exposure to cathelicidin

peptides. J Antimicrob Chemother 51: 843–847.

46. Zaalouk TK, Bajaj-Elliott M, George JT, McDonald V (2004) Differential

regulation of beta-defensin gene expression during Cryptosporidium parvum

infection. Infect Immun 72: 2772–2779.

47. Carryn S, Schaefer DA, Imboden M, Homan EJ, Bremel RD, et al. (2012)

Phospholipases and cationic peptides inhibit Cryptosporidium parvum

sporozoite infectivity by parasiticidal and non-parasiticidal mechanisms.

J Parasitol 98: 199–204.

48. Boman HG (2003) Antibacterial peptides: basic facts and emerging concepts.

J Intern Med 254: 197–215.

49. Wang G (2008) Structures of human host defense cathelicidin LL-37 and its

smallest antimicrobial peptide KR-12 in lipid micelles. J Biol Chem 283:

32637–32643.

50. Yu K, Park K, Kang SW, Shin SY, Hahm KS, et al. (2002) Solution structure

of a cathelicidin-derived antimicrobial peptide, CRAMP as determined by

NMR spectroscopy. J Pept Res 60: 1–9.

51. Tack BF, Sawai MV, Kearney WR, Robertson AD, Sherman MA, et al. (2002)

SMAP-29 has two LPS-binding sites and a central hinge. Eur J Biochem 269:

1181–1189.

52. Rosenfeld Y, Shai Y (2006) Lipopolysaccharide (Endotoxin)-host defense

antibacterial peptides interactions: role in bacterial resistance and prevention of

sepsis. Biochim Biophys Acta 1758: 1513–1522.

Helminth Cathelicidins Adapted for Immune Modulation

PLOS Neglected Tropical Diseases | www.plosntds.org 13 July 2013 | Volume 7 | Issue 7 | e2307



53. Hirsch T, Metzig M, Niederbichler A, Steinau HU, Eriksson E, et al. (2008)

Role of host defense peptides of the innate immune response in sepsis. Shock
30: 117–126.

54. Larrick JW, Hirata M, Balint RF, Lee J, Zhong J, et al. (1995) Human CAP18:

a novel antimicrobial lipopolysaccharide-binding protein. Infect Immun 63:
1291–1297.

55. Scott A, Weldon S, Buchanan PJ, Schock B, Ernst RK, et al. (2011) Evaluation
of the ability of LL-37 to neutralise LPS in vitro and ex vivo. PLoS One 6:

e26525.

56. Dzik JM (2006) Molecules released by helminth parasites involved in host
colonization. Acta Biochim Pol 53: 33–64.

57. D’Este F, Tomasinsig L, Skerlavaj B, Zanetti M (2012) Modulation of cytokine
gene expression by cathelicidin BMAP-28 in LPS-stimulated and -unstimulated

macrophages. Immunobiology 217: 962–971.
58. Nakamura S, Morita T, Iwanaga S, Niwa M, Takahashi K (1977) A sensitive

substrate for the clotting enzyme in horseshoe crab hemocytes. J Biochem 81:

1567–1569.
59. Iwanaga S, Morita T, Harada T, Nakamura S, Niwa M, et al. (1978)

Chromogenic substrates for horseshoe crab clotting enzyme. Its application for
the assay of bacterial endotoxins. Haemostasis 7: 183–188.

60. Hochstein HD (1987) The LAL Test versus the Rabbit Pyrogen Test for

endotoxin detection: update ’87. Pharma Technol 11: 124–129.
61. Turner J, Cho Y, Dinh NN, Waring AJ, Lehrer RI (1998) Activities of LL-37, a

cathelin-associated antimicrobial peptide of human neutrophils. Antimicrob
Agents Chemother 42: 2206–2214.

62. Travis SM, Anderson NN, Forsyth WR, Espiritu C, Conway BD, et al. (2000)
Bactericidal activity of mammalian cathelicidin-derived peptides. Infect Immun

68: 2748–2755.

63. Tomasinsig L, De Conti G, Skerlavaj B, Piccinini R, Mazzilli M, et al. (2010)
Broad-spectrum activity against bacterial mastitis pathogens and activation of

mammary epithelial cells support a protective role of neutrophil cathelicidins in
bovine mastitis. Infect Immun 78: 1781–1788.

64. Wang G, Epand RF, Mishra B, Lushnikova T, Thomas VC, et al. (2012)

Decoding the functional roles of cationic side chains of the major antimicrobial
region of human cathelicidin LL-37. Antimicrob Agents Chemother 56:845–

856.
65. Nelson A, Hultenby K, Hell E, Riedel HM, Brismar H, et al. (2009)

Staphylococcus epidermidis isolated from newborn infants express pilus-like
structures and are inhibited by the cathelicidin-derived antimicrobial peptide

LL37. Pediatr Res 66:174–178.

66. Kim SJ, Quan R, Lee SJ, Lee HK, Choi JK. (2009) Antibacterial activity of
recombinant hCAP18/LL37 protein secreted from Pichia pastoris. J Microbiol

47:358–362.
67. Werth BJ, Sakoulas G, Rose WE, Pogliano J, Tewhey R, et al. (2013)

Ceftaroline increases membrane binding and enhances the activity of

daptomycin against daptomycin-nonsusceptible vancomycin-intermediate
Staphylococcus aureus in a pharmacokinetic/pharmacodynamic model.

Antimicrob Agents Chemother 57:66–73.
68. Oren Z, Shai Y (1998) Mode of action of linear amphipathic alpha-helical

antimicrobial peptides. Biopolymers 47: 451–463.
69. Ciornei CD, Sigurdardottir T, Schmidtchen A, Bodelsson M (2005)

Antimicrobial and chemoattractant activity, lipopolysaccharide neutralization,

cytotoxicity, and inhibition by serum of analogs of human cathelicidin LL-37.
Antimicrob Agents Chemother 49: 2845–2850.

70. Schroder K, Sweet MJ, Hume DA (2006) Signal integration between
IFNgamma and TLR signalling pathways in macrophages. Immunobiology

211: 511–524.

71. Held TK, Weihua X, Yuan L, Kalvakolanu DV, Cross AS (1999) Gamma
interferon augments macrophage activation by lipopolysaccharide by two

distinct mechanisms, at the signal transduction level and via an autocrine
mechanism involving tumor necrosis factor alpha and interleukin-1. Infect

Immun 67: 206–212.

72. Brown KL, Poon GF, Birkenhead D, Pena OM, Falsafi R, et al. (2011) Host
defense peptide LL-37 selectively reduces proinflammatory macrophage

responses. J Immunol 186: 5497–5505.
73. Sasisekhar B, Aparna M, Augustin DJ, Kaliraj P, Kar SK, et al. (2005)

Diminished monocyte function in microfilaremic patients with lymphatic
filariasis and its relationship to altered lymphoproliferative responses. Infect

Immun 73: 3385–3393.

74. Flynn RJ, Irwin JA, Olivier M, Sekiya M, Dalton JP, et al. (2007) Alternative
activation of ruminant macrophages by Fasciola hepatica. Vet Immunol

Immunopathol 120: 31–40.
75. Kin NW, Chen Y, Stefanov EK, Gallo RL, Kearney JF (2011) Cathelin-related

antimicrobial peptide differentially regulates T- and B-cell function.

Eur J Immunol 41: 3006–3016.
76. Nijnik A, Pistolic J, Wyatt A, Tam S, Hancock RE (2009) Human cathelicidin

peptide LL-37 modulates the effects of IFN-gamma on APCs. J Immunol 183:
5788–5798.

77. Maizels RM, Balic A, Gomez-Escobar N, Nair M, Taylor MD, et al. (2004)
Helminth parasites–masters of regulation. Immunol Rev 201: 89–116.

78. van Riet E, Hartgers FC, Yazdanbakhsh M (2007) Chronic helminth infections

induce immunomodulation: consequences and mechanisms. Immunobiology
212: 475–490.

79. Jiang Z, Vasil AI, Hale JD, Hancock RE, Vasil ML, et al. (2008) Effects of net

charge and the number of positively charged residues on the biological activity
of amphipathic alpha-helical cationic antimicrobial peptides. Biopolymers 90:

369–383.

80. Chen Y, Mant CT, Farmer SW, Hancock RE, Vasil ML, et al. (2005) Rational
design of alpha-helical antimicrobial peptides with enhanced activities and

specificity/therapeutic index. J Biol Chem 280: 12316–12329.
81. Zelezetsky I, Pontillo A, Puzzi L, Antcheva N, Segat L, et al. (2006) Evolution

of the primate cathelicidin. Correlation between structural variations and

antimicrobial activity. J Biol Chem 281: 19861–19871.
82. Porro M (1994) Structural basis of endotoxin recognition by natural

polypeptides. Trends Microbiol 2: 65–66; discussion 66–67.
83. Lynn MA, Kindrachuk J, Marr AK, Jenssen H, Pante N, et al. (2011) Effect of

BMAP-28 antimicrobial peptides on Leishmania major promastigote and
amastigote growth: role of leishmanolysin in parasite survival. PLoS Negl Trop

Dis 5: e1141.

84. Haines LR, Thomas JM, Jackson AM, Eyford BA, Razavi M, et al. (2009)
Killing of trypanosomatid parasites by a modified bovine host defense peptide,

BMAP-18. PLoS Negl Trop Dis 3: e373.
85. Bowdish DM, Davidson DJ, Lau YE, Lee K, Scott MG, et al. (2005) Impact of

LL-37 on anti-infective immunity. J Leukoc Biol 77: 451–459.

86. Selsted ME, Tang YQ, Morris WL, McGuire PA, Novotny MJ, et al. (1993)
Purification, primary structures, and antibacterial activities of beta-defensins, a

new family of antimicrobial peptides from bovine neutrophils. J Biol Chem 268:
6641–6648.

87. Mookherjee N, Brown KL, Bowdish DM, Doria S, Falsafi R, et al. (2006)
Modulation of the TLR-mediated inflammatory response by the endogenous

human host defense peptide LL-37. J Immunol 176: 2455–2464.

88. Nishio N, Ito S, Suzuki H, Isobe K (2009) Antibodies to wounded tissue
enhance cutaneous wound healing. Immunology 128: 369–380.

89. Easton DM, Nijnik A, Mayer ML, Hancock RE (2009) Potential of
immunomodulatory host defense peptides as novel anti-infectives. Trends

Biotechnol 27: 582–590.

90. Oren Z, Lerman JC, Gudmundsson GH, Agerberth B, Shai Y (1999) Structure
and organization of the human antimicrobial peptide LL-37 in phospholipid

membranes: relevance to the molecular basis for its non-cell-selective activity.
Biochem J 341 (Pt 3): 501–513.

91. Risso A, Zanetti M, Gennaro R (1998) Cytotoxicity and apoptosis mediated by
two peptides of innate immunity. Cell Immunol 189: 107–115.

92. Dathe M, Wieprecht T (1999) Structural features of helical antimicrobial

peptides: their potential to modulate activity on model membranes and
biological cells. Biochim Biophys Acta 1462: 71–87.

93. Tossi A, Sandri L, Giangaspero A (2000) Amphipathic, alpha-helical
antimicrobial peptides. Biopolymers 55: 4–30.

94. Kai-Larsen Y, Agerberth B (2008) The role of the multifunctional peptide LL-

37 in host defense. Front Biosci 13: 3760–3767.
95. Vermeire JJ, Cho Y, Lolis E, Bucala R, Cappello M (2008) Orthologs of

macrophage migration inhibitory factor from parasitic nematodes. Trends
Parasitol 24: 355–363.

96. Prieto-Lafuente L, Gregory WF, Allen JE, Maizels RM (2009) MIF
homologues from a filarial nematode parasite synergize with IL-4 to induce

alternative activation of host macrophages. J Leukoc Biol 85: 844–854.

97. Gomez-Escobar N, Gregory WF, Maizels RM (2000) Identification of tgh-2, a
filarial nematode homolog of Caenorhabditis elegans daf-7 and human

transforming growth factor beta, expressed in microfilarial and adult stages
of Brugia malayi. Infect Immun 68: 6402–6410.

98. Osman A, Niles EG, LoVerde PT (2001) Identification and characterization of

a Smad2 homologue from Schistosoma mansoni, a transforming growth factor-
beta signal transducer. J Biol Chem 276: 10072–10082.

99. McSorley HJ, Grainger JR, Harcus Y, Murray J, Nisbet AJ, et al. (2010) daf-7-
related TGF-beta homologues from Trichostrongyloid nematodes show

contrasting life-cycle expression patterns. Parasitology 137: 159–171.

100. Grainger JR, Smith KA, Hewitson JP, McSorley HJ, Harcus Y, et al. (2010)
Helminth secretions induce de novo T cell Foxp3 expression and regulatory

function through the TGF-beta pathway. J Exp Med 207: 2331–2341.
101. Margis R, Reis EM, Villeret V (1998) Structural and phylogenetic relationships

among plant and animal cystatins. Arch Biochem Biophys 359: 24–30.
102. Gregory WF, Maizels RM (2008) Cystatins from filarial parasites: evolution,

adaptation and function in the host-parasite relationship. Int J Biochem Cell

Biol 40: 1389–1398.
103. Dainichi T, Maekawa Y, Ishii K, Zhang T, Nashed BF, et al. (2001)

Nippocystatin, a cysteine protease inhibitor from Nippostrongylus brasiliensis,
inhibits antigen processing and modulates antigen-specific immune response.

Infect Immun 69: 7380–7386.

104. Manoury B, Gregory WF, Maizels RM, Watts C (2001) Bm-CPI-2, a cystatin
homolog secreted by the filarial parasite Brugia malayi, inhibits class II MHC-

restricted antigen processing. Curr Biol 11: 447–451.
105. Schierack P, Lucius R, Sonnenburg B, Schilling K, Hartmann S (2003)

Parasite-specific immunomodulatory functions of filarial cystatin. Infect Immun
71: 2422–2429.

106. Zhu S (2008) Did cathelicidins, a family of multifunctional host-defense

peptides, arise from a cysteine protease inhibitor? Trends Microbiol 16: 353–
360.

Helminth Cathelicidins Adapted for Immune Modulation

PLOS Neglected Tropical Diseases | www.plosntds.org 14 July 2013 | Volume 7 | Issue 7 | e2307


