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Abstract
INTRODUCTION: The tumor cells could escape from the immune elimination through the immunoediting mechanisms
including thegenerationof immunosuppressiveor immunoregulativecells.Bycontrast, allograft transplantationcouldactivate
the immune system and induce a strong allogenic response. The aim of this studywas to investigate the efficacy of allogenic
skin transplantation in the inhibition of tumor growth through the activation of allogenic immune response.METHODS: Full-
thickness skin transplantation was performed from C57BL/6 (H-2b) donors to BALB/c (H-2d) recipients that were receiving
subcutaneous injection of isogenic CT26 colon cancer cells (2 × 106 cells) at the same time. The tumor size and pathological
changes, cell populations and cytokine profiles were evaluated at day 14 post-transplantation.RESULTS: The results showed
that as compared to non-transplant group, the allogenic immune response in the skin-grafting group inhibited the growth of
tumors, which was significantly associated with increased numbers of intra-tumor infiltrating lymphocytes, increased
populations of CD11c+MHC-classII+CD86+ DCs, CD3+CD4+ T cells, CD3+CD8+ T cells, and CD19+ B cells, as well as
decreased percentage of CD4+CD25+Foxp3+ T cells in the spleens. In addition, the levels of serum IgM and IgG, tumor
necrosis factor (TNF)-α and interferon (IFN)-γwere significantly higher within the tumor in skin transplant groups than that in
non-transplant group. CONCLUSIONS: Allogenic skin transplantation suppresses the tumor growth through activating the
allogenic immune response, and it may provide a new immunotherapy option for the clinical refractory tumor treatment.
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troduction
has been generally well-known that tumors are genetically unstable
]. During the process of the tumor formation and development,
mor-specific antigens could be produced due to gene mutation and
me other reasons [2,3], and then tumor cells become the targets of
e immune cells [4], which is termed as immune elimination.
owever, with the tumors' continuous development and variation, as
ell as under the immune selection, more variants appeared in
mors. At this time, the tumors and the immune system are in the
ase of immune equilibrium, some tumors are eliminated, but the
her tumors with low immunogenicity survived and then they enter
e phase of immune escape. Simultaneously, these tumors can also
ange their microenvironment to establish an immunosuppressive
twork by both inducing the production of immunosuppressive or
munoregulative cells, including tolerogenic dendritic cells
ol-DCs), tumor associated macrophages, regulatory T cells
regs), regulatory B cells (Bregs) [5–7], and secreting cytokines,
ch as interferon (IL)-10 [8], transforming growth factor (TGF)-β
], and vascular endothelial growth factor (VEGF) [10]. The whole
scade network mentioned above is also called tumor immunoedit-
g [11]. Eventually, the tumors could escape from the immune
earance, expand and metastasize to other parts of the body.
The activation of the immune system has been pursued as an
portant strategy in the development of cancer treatment. In 1890,
oley et al. found that erysipelas could induce the immune system to
mbat the tumors, and up to now, immunotherapy has been
veloped gradually as an option for the treatment of cancer [12–14].
he anti-tumor effect of erysipelas is mainly through the activation of
e immune system by the bacteria such as Streptococcal. Similarly,
ere are many other ways to activate the immune system. As we
ow, allograft transplantation could induce allogenic immune
sponse effectively as it induces a strong immune-mediated
ansplant rejection. Numerous types of immune cells, antibodies
d cytokines would be activated and produced against the allograft
5,16]. It had been proposed in theory that the immune cells that are
tivated by the allografts could also act on the tumors, as both of
em have allogeneic or new antigens [17], and this proposal was first
amined in a mouse skin transplantation model [18]. In addition,
e clinical study shows some benefit of this strategy in some patients
ith hormone-refractory prostate cancer [19].
In comparison with other tissues the skin has the higher
tigenicity [20] that could induce a strong allogenic immune
sponse. At the same time, the skin transplantation has the several
vantages, for examples, the skin grafts are easy to access, the
erative procedure is simple with less trauma, and the observation of
e rejection is easy. The skin allografts began to fell of between
st-operative days 10–14. The objective of our current study was to
vestigate the inhibiting effect of allogenic skin transplantation on
e growth of the CT26 murine colon cancer cells in mice.
of
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nimals
Female adult BALB/c (H-2d) and C57BL/6 (B6) (H-2b) mice
ith 6–8 weeks old weighting 18-20 g were purchased from China
od and Drug Inspection Institute (Beijing, China). The mice were
used in the animal facility under a conventional experimental
vironment at Tianjin General Surgery Institute (Tianjin, China),
d provided with water and chow ad libitum. All the experiments
ere performed on the basis of protocols approved by the Animal
are and Use Committee of Tianjin Medical University (Tianjin,
hina), according to the Chinese Council on Animal Care
idelines.

rowth of CT26 Cancer Cells
The CT26 murine colon cancer cell line is derived from a BALB/c
ouse and was purchased from the Tumor Center of Chinese
cademy of Medical Sciences (Beijing, China). Cancer cells were
ltured in Roswell Park Memorial Institute (RPMI) 1640 (HyClone
boratories, Logan, UT, USA) medium supplemented with 10%
tal bovine serum (FBS) (HyClone) and 1% penicillin/streptomycin
ibco, Shanghai, China) in a 37 °C 5% CO2 incubator. Cells at
–80% confluence were used for the experiments. Serum-free media
00 μl) containing 2 × 106 cells (cell viability ≥95%) were slowly
jected subcutaneously into the right neck of mice by a 30-gauge
edle. Tumor growth rates were evaluated at intervals of 3 days after
mor initiation, and was determined by the volume of tumors using
e formula V = 0.5 × L × W2 [21], whereas L was the length of the
mor and W the width of the tumor.

llogenic Skin Transplantation and Experimental Groups
Full-thickness skin grafts from B6 mice were collected and cut
to pieces measuring 1 × 1 cm2, and then the grafts were
ansplanted onto the back of BALB/c recipient mice [22] at the
me day of tumor cells injection. There were four experimental
oups (n = 6, each group): (1) normal control group, without
mor cells injection or skin transplantation; (2) skin transplant
one group, with skin transplantation only; (3) tumor alone group,
ith tumor cells injection only; and (4) tumor with skin transplant
oup, with both tumor cells rejection and skin transplantation at
e same day.

istological examination
To examine the suppressive effect of skin transplantation on the
oliferation of tumor cells, the tumors from both tumor alone group
d tumor with skin transplant group were collected at day 14
st-transplanted and fixated in 10% formalin. These tissues were
en embedded in paraffin and sectioned at 4 μm for hematoxylin
d eosin (H&E) staining. The infiltration of immune cells in tissue
ctions were examined under light microscopy.

luorescence-Activated Cell Sorting (FACS) Analysis
The spleens from mice in each group were collected at day 14 post-
ansplantation, grinded and passed through sterilized meshes (100
eshes) to obtain a homogeneous cell suspension. After the red blood
lls were lysed in a lysis solution, the splenocytes were washed and
spended in phosphate buffered solution (PBS). FACS analysis was
rformed as previously described [23], to determine the phenotype
immune cells in splenocytes based on the positive stain with
tibodies against CD3e, CD4, CD8a, CD11c, CD19, CD25,
D86, Foxp3, or MHC class II. The levels of circulating CD3e+-

M+ and CD3e+IgG+ antibodies in the sera of BALB/c mice were
so measured by using FACS [24]. The sera were 1:20 diluted in PBS
d incubated with splenocytes (5 × 105 cells) of B6 mouse at 37 °C
r 30 min. Then after being washed, the splenocytes were double
ained with anti-mouse CD3e antibody and antibodies against either
M or IgG. All fluorescent-labeled antibodies were purchased from
ioscience (eBioscience, San Diego, CA, USA). The percentage of
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ch phenotype of immune cells or antibodies was analyzed by using
lowjo software.

nzyme-Linked Immunosorbent Assay (ELISA)
The serum levels of tumor necrosis factor (TNF)-α and interferon
FN)-γ in BALB/c mice in each group were measured by the ELISA
t (eBiosciences, San Diego, CA, USA) according to the manufac-
rer's instructions. The optical density (OD) value was measured
rough the Microplate Reader (Tecan, Männedorf, Switzerland).

tatistical Analysis
The experimental data were presented as mean ± standard error
the mean (SEM). The differences between two groups were
alyzed using independent- sample t test and the differences
ong multiple groups were analyzed using one-way analysis of
riance (ANOVA) following by post hoc analysis with the least
gnificant difference (LSD) test. P b .05 was considered statistically
gnificant.
gure 1. Skin transplantation inhibited tumors proliferation and increas
mor alone group and tumor with skin transplant group at post-transpl
atistical analysis was done by independent-sample t test, n = 6.
st-transplanted day 14. (c) Histology of tumors at day 14 (400×magni
the tumor with skin transplant group than that in the tumor alone gr
esults

kin Transplantation Inhibited Tumor Proliferation and
creased Intra-Tumor Immune Cell Infiltration
All the skin allografts had fallen off because of the rejection. In order
evaluate the suppressive effect of allogenic skin transplantation on the
oliferation of tumors, the tumor size or volume was calculated at
tervals of 3 days after tumor initiation. As shown in Figure 1,A and B,
e tumor volume in tumor with skin transplant group was reduced
gnificantly as compared to the tumor alone group at days 8, 11 and 14
ay 8: 57.67 ± 7.10 mm3 vs. 107.24 ± 10.00 mm3, P b .001; day
: 128.67 ± 20.01mm3 vs. 216.68 ± 29.87mm3, P b .001; day 14:
8.64 ± 31.59 mm3 vs. 352.19 ± 32.39 mm3, P b .001). In
dition, the H&E staining of the tumors showed that more
mphocytes infiltrated in the tumor with skin transplant group than
at in the tumor alone group (Figure 1C). These results demonstrate
at allogenic skin transplantation could increase intra-tumor immune
ll infiltration, and inhibit the growth of tumors.
ed immune cells infiltration. (a) The trend of tumor volume in both
anted day 8, 11 and 14. Values were presented as mean ± SEM,
*** indicated P b .001. (b) Gross pathological of tumors at

fication, H&E staining). More lymphocytes infiltrated in the tumors
oup. The yellow arrows indicated the infiltrated lymphocytes.
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in Transplantation Increased the Percentage of Mature DCs
To explore the population of mature DCs in different groups, the
C population in splenocytes was identified by double staining with
ti-mouse CD11c antibody, together with either anti-MHC class II
tibody or anti-CD86 antibody. The DC maturation were
termined by expressing high levels of both CD11c and antigen
esenting molecule MHC class II or co-stimulatory molecule CD86
DC surface through FACS analysis. As shown in Figure 2, the

pression of these two markers in skin transplant alone group were
gher than those of normal control group (MHC class II, P = .002;
D86, P = .11), and were further increased in the tumor with skin
ansplant group (MHC class II, P b .001; CD86, P b .001). At the
me time, the population of mature DCs in the tumor with skin
ansplant group was significantly increased as compared with that in
gure 2. Skin transplantation increased the percentage of mature DCs.
) Dot plots of CD11c+MHC class II+ DC and CD11c+CD86+ DC in
D11c+CD86+ DC in each group. Values were presented as mean ± S
e LSD test, n = 6. * indicated P b .05, ** indicated P b .01, *** indic
e tumor alone group (MHC class II, P b .001; CD86, P b .001),
hich indicate that the allogenic skin transplantation increases the
lenic mature DCs that could capture and present tumor/allogenic
tigens.

in Transplantation Increased the Population of T Cells but
ecreased the Population of Tregs
Generally, the mature DCs could present antigens to both CD3e+-

D4+ T-helper (Th) cells and CD3e+CD8a+ cytotoxic T lympho-
tes (CTLs), both of them are essential for adaptive immune system
d play a key role in cellular immunity. In contrast, the CD4+-

D25+Foxp3+ T cells, known as Tregs, can induce tolerance to the
mors. Thus, in this study we have measured the populations of
ese three types of T cells in these experimental groups. The CD3e+
FACS analysis of mature DCs was performed in the splenocytes.
each group. (b) Percentage of CD11c+MHC class II+ DC and

EM, statistical analysis was done by one-way ANOVA followed by
ated P b .001.
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cells were isolated from the splenocytes of BALB/c mice, and
mbination with either anti-mouse CD4 antibody or ant-mouse
D8a antibody was used to measure Th cells and CTLs, respectively.
s expected (Figure 3), the percentages of CD3e+CD4+ and CD3e+-

D8a+ T cells in normal control group were lower than those in skin
ansplant alone group (CD3e+CD4+, P = .001; CD3e+CD8a+,
= .009), and further lower than those in tumor with skin transplant
oup (CD3e+CD4+, P b .001; CD3e+CD8a+, P b .001). At the
gure 3. Skin transplantation increased the percentage of T cells and
egs was performed in the splenocytes. (a) Dot plots of CD3e+CD4+

ch group. (b) Percentage of CD3e+CD4+ T cells, CD3e+CD8a+ T ce
esented as mean ± SEM, statistical analysis was done by one-way
dicated P b .01, *** indicated P b .001.
me time, we found that the populations of both CD3e+CD4+ and
D3e+CD8a+ T cells in the tumor with skin transplant group were
tremely higher than those in the tumor alone group (CD3e+CD4+,
= .002; CD3e+CD8a+, P b .001).
In the analysis of Tregs, the cells were firstly gated by anti-mouse
D4 antibody in the splenocytes, followed by the double positive
aining of anti-mouse CD25 and Foxp3 antibodies. As shown in
igure 3, the percentage of Tregs was lower in the skin transplant
decreased the percentage of Tregs. FACS analysis of T cells and
T cells, CD3e+CD8a+ T cells, and CD4+CD25+Foxp3+ T cells in
lls, and CD4+CD25+Foxp3+ T cells in each group. Values were
ANOVA followed by the LSD test, n = 6. * indicated P b .05, **



Figure 4. Skin transplantation increased the percentage of B cells, CD3e+IgM+ and CD3e+IgG+ antibodies. FACS analysis of B cells,
CD3e+IgM+ antibodies and CD3e+IgG+ antibodies was performed in the splenocytes. (a) Dot plots of CD19+ B cells, CD3e+IgM+

antibodies and CD3e+IgG+ antibodies in each group. (b) Percentage of CD19+ B cells, CD3e+IgM+ antibodies and CD3e+IgG+

antibodies in each group. Values were presented as mean ± SEM, statistical analysis was done by one-way ANOVA followed by the LSD
test, n = 6. * indicated P b .05, ** indicated P b .01, *** indicated P b .001.
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one group than that in the normal control group (P b .05), but
gher in the tumor alone group than that in the normal control group
b .001). However, as compared to the tumor alone group, skin
afting could significantly decrease the percentage of tumor-specific
regs (P b .001). Taken together, these data indicate that allogenic
in transplantation could active cellular immune system and suppress
mor-specific Tregs, which is associated with its anti-tumor effect.

kin Transplantation Increased B Cell Population, and
D3e+IgM+ and CD3e+IgG+ Antibody Levels
B cells mainly play humoral immunity by secreting antibodies such
CD3e+IgM+ and CD3e+IgG+ in the cancer treatment [25,26].
hus, we have measured the percentage of CD19+ B cells in the
lenocytes, as well as CD3e+IgM+ and CD3e+IgG+ antibodies in
e sera. The results in Figure 4 showed that the percentage of B cells,
D3e+IgM+ and CD3e+IgG+ antibodies in both skin transplant
one group and tumor with skin transplant group were all higher
an that in normal control group (skin transplant alone vs. normal
ntrol: B cells, P = .018; CD3e+IgM+, P b .001; CD3e+IgG+,
= .002; tumor with skin transplant group vs. normal control: B
lls, P b .001; CD3e+IgM+, P b .001; CD3e+IgG+, P b .001).
urther, the treatment effect of skin transplantation was also
sociated with an increase in the percentage of B cells, CD3e+IgM+

d CD3e+IgG+ antibodies in the tumor with skin transplant group
mpared to the tumor alone group (B cells, P b .001; CD3e+IgM+,
b .001; CD3e+IgG+, P b .001). These data may suggest that
logenic skin transplantation can also active humoral immune system
its anti-tumor activity.
gure 5. Skin transplantation increased the levels of serum TNF-α and
y 14. The levels of TNF-α and IFN-γ were measured by Elisa. Values w
e-way ANOVA followed by the LSD test, n = 6. * indicated P b .05,
kin Transplantation Increased Serum Levels of TNF-α and
N-γ
The serum concentrations of TNF-α and IFN-γ were measured by
ing ELISA in the experimental groups. As shown in Figure 5, the
west concentrations of both TNF-α and IFN-γ were found in the
rmal control group, and the highest levels of these cytokines were
tected in the tumor with skin transplant group, when compared
ith skin transplant alone group (skin transplant alone vs. normal
ntrol: TNF-α, P = .005; IFN-γ, P = .042; tumor with skin
ansplant vs. normal control: TNF-α, P b .001; IFN-γ, P = .001).
addition, the differences of the levels of TNF-α and IFN-γ
tween the tumor with skin transplant group and the tumor alone
oup were significant (TNF-α, P = .001; IFN-γ, P = .012). Taken
gether, allogenic skin transplantation can promote the secretion of
ti-tumor cytokines (TNF-α and IFN-γ) that may be part of
ti-tumor mechanisms induced by allogenic skin transplantation.

iscussion
uring solid tumor development, tumor cells escape from the
mune clearance, expand and metastasize gradually with the
munoediting mechanisms. For the cancer treatment, besides
rgery, the more frequently used methods in clinic are chemother-
y, radiotherapy and targeted drugs. However, their side-effects
nnot be ignored and limit their applications [27–29]. Therefore, in
der to maximally inhibit the tumor development, much more
eatment methods are needed. Immunotherapy is making an
azing progression recently, and some of them have been used in

inic, such as IL-2 [30] and IFN-α [31]. In this study, we have
IFN-γ. Serum samples were collected from mice of each group at
ere presented as mean ± SEM, statistical analysis was done by
** indicated P b .01.
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monstrated that activation of allogenic immune response by skin
lografting could inhibit tumor development by affecting immune
ll populations, antibody levels and cytokine profiles in a murine
ncer model.
DCs, T cells, B cells are essential immunosurveillance cells in the
mune system, together with the production of antibodies and
tokines, all of them present powerful immunoregulatory effect on
e cells with heterologous antigens generally. DCs are
ell-characterized as the strongest antigen presenting cells (APCs)
immune system [32], and play a key role in phagocytosing,
ocessing and presenting allogenic antigens, resulting in forming a
idge between innate and adaptive immune system [33,34]. The
ature DCs crosstalk with and activate T cells, as well as contribute
B cell-mediated immunity, by which both of the T cells and B cells
rther response to the allogenic cells and tissues to achieve immune
fense function [35]. However, the tumor cells can induce the
neration of tumor-toleragenic DCs through influencing and
ppressing the maturation of DCs mainly by secreting soluble
ediators, such as VEGF and TGF-β [32]. VEGF is important for
mor neovasculature, and it can also inhibit DCs maturation, induce
em apoptosis and recruit immature DCs to the tumor site [36,37].
GF-β secreted by the tumors can downregulate the expression of
C surface markers, such as MHC class II, CD86 and CD80
0,32]. In this study, the percentage of mature DCs in the tumor
ith skin transplant group was much higher than that of the tumor
one group, which was consistent with the smaller tumor size in the
mor with skin transplant group. These results may suggest that
logenic skin grafting could inhibit the growth of tumor cells by
ducing the differentiation of mature DCs.
T cells play a central role in cellular immunity in adaptive immune
stem. Both CD4+ and CD8+ T cells can be activated by DCs
rough antigen presentation. However, as the results showed in our
esent study, in tumor microenvironment, the tumor-toleragenic
Cs suppress the activity of T cells [38,39], and they can also induce
e generation of tumor-tolerogenic Tregs [40]. Tregs, as immuno-
gulatory cells, not only induce immune tolerance to the tumors, but
so inhibit the activation and differentiation of CD4+ and CD8+ T
lls [41,42]. At the same time, the tumors could also induce
tigen-specific T cell tolerance [43]. However, when it comes to the
ld of transplantation, the situation is inverted. The allografts could
duce the generation of both CD4+ and CD8+ T cells [44]. Thus, as
own in this study, allogenic skin transplantation could increase the
rcentage of both CD4+ and CD8+ T cells, as well as decrease the
rcentage of Tregs, and there together by facilitating the anti-tumor
fect of the allogenic skin transplantation.
B cells, as another kind of important adaptive immune cells, play a
ajor role in humoral immunity, by secreting antibodies such as IgM
d IgG, which could come into an anti-tumor action [25,26].
nfortunately, like T cells, the tumors can also attract naïve B cells
to their microenvironment and promote their differentiation into
regs that are tolerogenic to the tumors, and these Bregs can further
ppress other effector immune cells by secreting anti-inflammatory
ctors such as IL-10 [45]. As both allograft and tumors have new
tigens, the antibodies induced by allogenic skin transplantation can
so target the tumors. Then these antibodies would directly target the
mor cells, activate the complement system and make a bridge
tween immune effector cells and tumor cells, finally achieve a
mor killing effect [46]. In this study, the levels of both IgM and IgG
ere elevated in the tumor with skin transplant group compared to
ose of the normal control group and the tumor alone group. This
ding may indicate that humoral immunity enhanced by the skin
ansplantation is an important part of anti-tumor activity.
Cytokines play important roles in both tumor immunity and
ansplantation immunity. In this study, we measured the levels of
NF-α and IFN-γ to investigate the anti-tumor mechanisms of the
in transplantation. TNF-α is a pleiotropic cytokine that plays
portant roles in host defense, inflammation and apoptosis [47]. It
as first described in 1975 for causing different transplanted tumors
morrhagic necrosis in vivo and a mouse fibrosarcoma cell line
tolysis in vitro [47]. IFN-γ can be produced by both innate and
aptive immune cells and plays a role of preventing the development
tumors [47,48]. During the process of allograft rejection, the levels
TNF-α and IFN-γ are increasing [49,50]. In this study, the results
ve shown that both the serum levels of TNF-α and IFN-γ were
uch higher in the tumor with skin transplant group than those in
th the normal control and the tumor alone groups, suggesting that
in allografting has a therapeutic effect on tumor suppression.
In fact, the idea of using allogenic skin transplantation for cancer
eatment had been tested previously. Yolcuoğlu [18] and colleagues
owed that the rejection caused by allogenic skin graft, but not
tograft, could help the rejection of tumor cells. However, they came
to this conclusion only by measuring survival time of mouse,
ithout the further mechanism research. Muir [19] and colleagues
rried out a clinical study to observe the treatment effect of
ll-thickness skin transplantation from different, unrelated donors
the hormone-refractory prostate cancer by measuring the changes
serum prostate-specific antigen (PSA). For each patient, the

ansplant procedure was repeated about every two weeks and six
ins from different donors were received. Some of the patients who
rticipated and completed the study had a declined or stable serum
A levels for 1 to 2 years. Similarly, this research showed the
eatment effect mainly by the indicators of PSA, but the deeper
inciples did not present. In our study, compared to the previous
udies, we not only demonstrated the anti-tumor effects of the skin
lografting, but also explored and discussed the anti-tumor
echanisms of this strategy - mainly by activating the allogenic
mune response. More concretely, the anti-tumor effects were
lated to the increased numbers of intra-tumor infiltrating
mphocytes, increased populations of CD11c+MHC-classII+-

D86+ DCs, CD3+CD4+ T cells, CD3+CD8+ T cells, and
D19+ B cells, as well as decreased percentage of CD4+CD25+-

xp3+ T cells in the splenocyte, and further increased the levels of
rum IgM and IgG donor-reactive antibodies, TNF-α and IFN-γ.
ur study not only provides evidence for the further research but also
eoretical basis for the clinical development of this concept.
Although the current study is very inspiring, some limitations were
knowledged, such as the mechanism of how the immune cells
tivated by the transplanted tissues recognize and clear the tumor
lls, whether the transplanted tissues would bring some other
oblems to the recipients such as graft versus host disease (GVHD),
ed to be further elucidated in the future study.

onclusions
summary, in this study, we demonstrated that allogenic skin

ansplantation inhibited the development of the tumors through
tivating the immune system mainly by increasing the
mor-infiltrating lymphocytes, the percentage of DCs, T cells and
cells, and decreasing the percentage of Tregs in splenocytes, as well
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increasing the serum levels of IgM, IgG, TNF-α and IFN-γ.
lthough more in-depth understanding of its mechanism is needed,
e provide a new idea for the immunotherapy for the tumor
eatment, and it may offer alternative choice for the clinical
eatment of refractory tumors.
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