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Scoring is a challenging step in protein–protein docking, where typically thousands
of solutions are generated. In this study, we ought to investigate the contribution of
consensus-rescoring, as introduced by Oliva et al. (2013) with the CONSRANK method,
where the set of solutions is used to build statistics in order to identify recurrent
solutions. We explore several ways to perform consensus-based rescoring on the
ZDOCK decoy set for Benchmark 4. We show that the information of the interface
size is critical for successful rescoring in this context, but that consensus rescoring in
itself performs less well than traditional physics-based evaluation. The results of physics-
based and consensus-based rescoring are partially overlapping, supporting the use of
a combination of these approaches.

Keywords: protein–protein interaction, docking, scoring, prediction, interface

INTRODUCTION

Protein–protein docking aims at predicting the structure of a complex starting from the structures
of isolated components (Melquiond et al., 2012; Vakser, 2014). The CAPRI community-wide
initiative allows a blind assessment of the participant methods on common data sets and evaluation
criteria, offering an updated view of progress in the field since 2001 (Lensink et al., 2007, 2017;
Lensink and Wodak, 2010). Protein–protein docking methods typically generate thousands of
potential solutions for a particular complex. Scoring the models to discriminate near-native
solutions is a known bottleneck of docking methods (Moal et al., 2013a,b; Malhotra et al., 2015).
Most scoring functions are physics-based, attempting to capture the determinants underlying the
stability of protein–protein complexes, e.g., shape complementary, electrostatics and desolvation
potential (Dominguez et al., 2003; Cheng et al., 2007; Pierce and Weng, 2007, 2008; Moal and Bates,
2010; Ritchie and Venkatraman, 2010; Ohue et al., 2014). Knowledge-based functions, on the other
hand, aim at taking advantage of the information from available structures, via pair potentials (Lu
et al., 2003; Huang and Zou, 2008; Mezei, 2017), or multibody potentials (Khashan et al., 2012).
Docking methods often use scoring functions that combine physical terms with knowledge-based
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terms (Kozakov et al., 2006; Liang et al., 2009; Feliu et al., 2011;
Vreven et al., 2011). More recently, evolutionary information
has been successfully used for scoring (Andreani et al., 2013;
Yu et al., 2017).

Another approach consists in relying on the recurrences
observed in the set of solutions, i.e., consensus-based scoring.
Consensus-based scoring functions seek to identify solutions
with features that are the most frequent in the solution set,
independently of any physics-based or evolutionary evaluation.
The CONSRANK scoring function, proposed by Oliva et al.
(2013, 2015), Vangone et al. (2013), and Chermak et al. (2015,
2016) has shown very good results, based on the conservation of
interface contacts.

In this study, we compare several CONSRANK-like
scoring functions on large sets of docking poses generated
by ZDOCK, including CONSRANK. We then explore how to
combine consensus-based rescoring with the native scoring
function of ZDOCK.

METHODS

Docking Decoy Set
The ZDOCK3.0.2 decoy set (Pierce et al., 2011) (6 degree
sampling, fixed receptor format) for Benchmark4 (Hwang et al.,
2010a) was retrieved from https://zlab.umassmed.edu/zdock/
decoys.shtml. This data set encompasses 176 protein–protein
complexes, with 54,000 docking poses for each complex. For each
pose, the interface Cα RMSD, with respect to the bound structure,
is given. A near-native docking hit is defined as a prediction with
interface Cα RMSD < 2.5 Å.

Consensus-Based Rescoring Schemes
Following the CONSRANK method (Oliva et al., 2013; Chermak
et al., 2015), docking poses are rescored using the frequencies of
interface contacts in the set of docking poses. Interface contacts
are defined using a distance cut-off of 5 Å between the heavy
atoms of receptor and ligand proteins.

For each contact Cij between residue i from receptor and
residue j from ligand the relative frequency in the decoy set is
defined by:

S
(
Cij
)

=
F
(
Cij
)

N
∈ [0, 1] (1)

where F(Cij) denotes the frequency of Cij at the protein–protein
interface in the set of N decoys. These relative frequencies are
then averaged, i.e., normalized by the interface size, to compute
the CONSRANK score of each pose P:

CONSRANK_score (P) =

∑
Cij∈P S(Cij)

Ncont(P)
, (2)

where Ncont (P) denotes the number of interface contacts in
docking pose P.

Variations of CONSRANK Scores
First, we considered the un-normalized version of CONSRANK
scores (Oliva et al., 2013), denoted as CONSRANK_U, where the

relative frequencies of interface contacts are only summed, and
not averaged:

CONSRANK_U(P) =

∑
Cij∈P

S(Cij). (3)

Then, we implemented two other variations, by replacing relative
frequencies of contacts S(Cij) by relative frequencies of residues:

S(Ri) =
F (Ri)

N
∈ [0, 1] (4)

where F(Ri) denotes the frequency of residue i at the protein–
protein interface (distance between heavy atoms lower than 5 Å)
in the set of N decoys. The two related scores are respectively
defined by:

Residue_Average (P) =

∑
Ri∈P S(Ri)

Nres(P)
, (5)

Residue_Sum (P) =

∑
Ri∈P

S(Ri). (6)

where Nres(P) denotes the number of interface residues in pose P.
Here, interface residues are simply those involved in contacts
at the interface.

Note that is it possible to compute the contact and residue
frequencies (Eqs 1 and 4) on a given set of docking poses and then
to evaluate another set of docking poses (with Eqs 2, 3, 5, and 6).

Clustering
We implemented the BSAS clustering procedure (Basic
Sequential Algorithmic Scheme) (Koutroumbas and
Theodoridis, 2008; Jiménez-García et al., 2018) to reduce
the structural redundancy of docking poses. The principle of
BSAS is the following. Docking poses are ranked according to
a score in decreasing order. The pose with the highest score
initiates the first clusters. The other poses are sequentially
compared to already clustered poses: they are included in a
cluster if they are within a given cut-off of cluster members,
otherwise they initiate a new cluster. At the end of the process, the
pose with the highest score in each cluster is the representative
of each cluster. In order to allow a fast clustering process, we do
not compute the RMSD between ligand atoms. Instead we use
a distance cut-off between the centers of mass of the ligands,
here set to 8 Å.

Evaluation
The top 2,000 solutions according to the ZDOCK native scoring
function were rescored using the rescoring schemes detailed
below. We monitored the presence of near-native docking hits
(interface Cα RMSD < 2.5 Å) in the top 10 solutions after
re-ranking. Each protein–protein complex with a near-native
docking hit in the top 10 solutions is counted as a success.

Implementation
The consensus-based rescoring functions are implemented in
python code accessible on GitHub, which operates directly on
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ZDOCK output files, and allows to treat rapidly thousands of
docking poses (typically a few seconds for 2,000 poses, up to
1 min for 54,000 poses). In addition, the code allows to compute
statistics on a given set of poses and re-score another of structures
(see “Results” section). All the scripts necessary to reproduce the
results shown in this article are available at: https://github.com/
MMSB-MOBI/CHOKO.

RESULTS

In this study, we compare four consensus-based scores to identify
the near-native solutions among the ensembles generated by
ZDOCK. The traditional CONSRANK score (Oliva et al., 2013)
is considered, as well as its un-normalized version, and two
variations that consider residue statistics instead of contact
statistics. We first evaluate each consensus score separately. Then,
we combine these results with the native ZDOCK physics-based
scoring function. Finally, we add a clustering step, to reduce
structural redundancy and further improve the results.

Quality of Decoys
In the initial data set of 176 protein–protein complexes, ZDOCK
was able to generate at least one near-native docking hit (interface
Cα RMSD < 2.5 Å) in the first top 2,000 solutions for 90
protein–protein complexes. These 90 protein–protein complexes
thus constitute our reference data set for the rest of the study.
We explore if and how consensus-based rescoring is efficient at
scoring the decoys of these 90 protein–protein complexes.

Evaluation of Different Consensus-Based
Rescoring Functions
First, we compare the four versions of consensus-based rescoring
functions: either contact-based [following the CONSRANK
(Oliva et al., 2013) scheme] or residue-based, with or without
interface size normalization. We estimate the performance by
counting the number of successes, i.e., number of complexes with
at least one near-native hit (interface Cα RMSD < 2.5 Å) in
the first 10 solutions after rescoring. We also tested the effect of
varying the subset of docking poses used to compute the contact
and residue frequencies (Eqs 1 and 4): we used either the first 50,
100, 1,000 or 2,000 first poses provided by ZDOCK, or the full
set of 54,000 poses, referred as the frequency set. In any case, we
rescored the first 2,000 poses provided by ZDOCK.

The results of this evaluation are shown in Figure 1. We can
see that un-normalized rescoring functions (CONSRANK_U and
Residue_Sum) constantly outperform the normalized rescoring
functions (CONSRANK, Residue_Average). The size of the
subset used to compute contact and residue frequencies (Eqs
1 and 4) has a major influence on the number of successes.
Indeed, ZDOCK solutions are ranked by the ZDOCK native
scoring function; hence the top of the list is, in many cases,
enriched in near-native docking hits. Estimating contact and
residue scores on a reduced subset of poses at the top of
the list is logically more efficient. On the contrary, estimating
contact and residue scores from the full list leads to a loss of
information, and worsens the prediction. When frequencies were

FIGURE 1 | Number of successes after rescoring the first 2,000 solutions of
ZDOCK. The size of the frequency set refers to the set of poses used to
compute the residue and contact scores from Eqs 1 and 4. The horizontal red
dashed line indicates the number of successes achieved by the ZDOCK
native scoring function.

estimated on the 54,000 poses, the number of successes was 1
for CONSRANK, 10 for CONSRANK_U, 2 for Residue_Average,
and 17 for Residue_Sum. In the best settings tested here,
estimating the scores on the first 50 solutions to rescore the
first 2,000 solutions allows to reach a number of successes
equal to 27 with the Residue_Sum scoring function, versus 20
for the CONSRANK scheme. It is thus possible to rescore
large sets of docking poses using consensus-based scoring
functions, with better performance than the commonly used
CONSRANK scheme.

Combination With ZDOCK Native
Scoring Function
In this section, we explore how to combine rescoring functions
with the native scoring function of ZDOCK. Out of the 90
protein–protein complexes with at least one near-native docking
hit in the top 2,000 solutions, the ZDOCK native scoring function
identifies 29 successes, i.e., 29 complexes with at least one near-
native docking hit in the top 10, see Figure 1. This is indeed
better than the four consensus-based rescoring functions tested
here. One could wonder if it is then possible to improve the initial
prediction of ZDOCK using rescoring.

We first analyzed the overlap of the successful cases by
ZDOCK and each rescoring function, and found that many
successful cases achieved by rescoring are well predicted by the
ZDOCK scoring function, see Supplementary Figure S1. For
example, when estimating scores on the first 50 solutions for
the rescoring (Supplementary Figure S1A), all the successes
identified by the normalized rescoring functions CONSRANK
and Residue_Average are included in the successes identified by
ZDOCK. Un-normalized scoring functions are able to identify 1
case not included in the ZDOCK successes for CONSRANK_U,
and 4 for Residue_Sum.
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We then tested a combination of ZDOCK poses and rescored
poses by combining the first N1 poses of ZDOCK with the first
N2 poses after rescoring, with N1 + N2 = 10, and no redundancy.
Again, we vary the subset of docking poses used to compute
the contact and residue frequencies with Eqs 1 and 4 (frequency
set = top 50, 100, 1,000 or 2,000 poses) and in any case, we rescore
the first 2,000 solutions provided by ZDOCK using Eqs 2, 3, 5,
and 6. We estimate the performance by counting the number of
successes, i.e., number of complexes with at least one near-native
docking hit (interface Cα RMSD < 2.5 Å) in the first 10 solutions.

The results of this evaluation are shown in Supplementary
Figure S2. Regardless of the size of the frequency set, the best
combination is always obtained with the Residue_Sum scoring
function. Combining the first six ZDOCK poses with the first four
Residue_Sum rescored poses, and estimating the frequencies on
the full set of 2,000 poses (bottom right panel in Supplementary
Figure S2) allows to reach a number of successes equal to 32,
compared to 18 with Residue_Sum alone and 29 with ZDOCK
alone. This suggests the possibility to marginally improve the
native results of ZDOCK by a simple combination of poses. It
is interesting to note that, in this situation, the information about
residues is more efficient in rescoring than the information about
pairwise contacts.

Combining Clusters
Clustering is classically used to improve the performance,
by reducing the structural redundancy of docking solutions
(Kozakov et al., 2005; Hwang et al., 2010b; Koukos et al., 2020).
Here, we used the BSAS clustering algorithm, which takes into
account the scores, to cluster poses by their ligand center of mass.

When applied to ZDOCK results, independently of rescoring,
we obtained an improvement in terms of number of successes:
34 successes instead of 29, reflecting a structural redundancy of
the ZDOCK set. We first analyzed the overlap between ZDOCK
results and the results of each rescoring function when using
structural clustering, see Figure 2.

As shown in Figure 2, the results of ZDOCK and rescoring
functions are partially overlapping also after structural clustering.
The rescoring functions are able to identify between 2 and
8 additional successful cases, with more additional cases
brought by un-normalized scoring functions CONSRANK_U
and Residue_Sum. This means that a perfect combination of
ZDOCK and rescoring with no loss would reach a number of
successes equal to 42.

We then explore how to combine ZDOCK results and
rescoring results. We have tested a combination of clusters. On
the one hand, we computed clusters from the poses ranked by
their initial ZDOCK scores. On the other hand, we computed
clusters from poses reordered after consensus rescoring. We
then combine the representative poses of the first N1 ZDOCK
clusters, with the representative poses of the first N2 poses after
rescoring, with N1 + N2 = 10. We estimate the performance by
counting the number of successes, i.e., number of complexes with
at least one near-native hit (interface Cα RMSD < 2.5 Å) in the
first 10 solutions.

The results of this evaluation are shown in Figure 3. In
agreement with the Venn diagram analysis, the best combination
is obtained using an un-normalized rescoring function,
CONSRANK_U. It constantly outperforms CONSRANK,
regardless of the frequency set. When using the first 1,000

FIGURE 2 | Venn diagrams showing the overlap between successful cases with the ZDOCK native scoring function and each of the rescoring functions, when using
structural clustering.
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FIGURE 3 | Number of successes after combination of clusters with the ZDOCK native scoring function. Each panel corresponds to different frequency sets, i.e.,
sets of poses used to compute the residue and contact scores from Eqs 1 and 4. In any cases, the first 2,000 solutions of ZDOCK are rescored. Gray lines represent
data from other panels for comparison.

poses to estimate the frequencies (bottom left panel in
Figure 3), the combination of five ZDOCK clusters and
five CONSRANK_U clusters achieves a number of successes
equal to 38, compared to 34 with ZDOCK alone and
34 with CONSRANK_U alone. This result suggests that
CONSRANK-like rescoring could be used together with
physics-based evaluation. Contrary to what was observed
in simple pose combination (Figure 2), the most efficient
rescoring scheme when dealing with clusters is based on
contact frequencies, not residue frequencies. It seems that,
after structural clustering, the information of pairwise contacts,
which is more precise than residues, becomes more useful
in discrimination.

Illustrative Examples
To complete this study, in this section, we present examples
to illustrate the asset of consensus rescoring when used in
combination with the native ZDOCK scoring function. We used
the results generated using the CONSRANK_U function, with
frequencies estimated on the first 1,000 poses, and combined
five ZDOCK clusters and five consensus clusters. As explained
in the previous section, this setting allows to reach 38 successes.
We present four examples from the ZDOCK decoy set where

the use of consensus rescoring is critical in Figure 4. For
all these protein–protein complexes, no near-native docking
hit is observed in the first 10 clusters of ZDOCK (or in
the first 10 poses). The use of CONSRANK_U rescoring in
conjunction with clustering allows the identification of near-
native docking poses in the top 10. In every case, these near-
native poses do not belong to the top of the ZDOCK initial
list: they are ranked 355 for 1AVX, 1568 for 1EAW, 250
for 1XQS, and 606 for 1E6E. These examples highlight the
usefulness of consensus-based rescoring to rescue poses with
poor initial ranks.

For the 38 successful complexes in this experiment, we
systematically computed the number of near-native poses coming
from ZDOCK clusters and the number of near-native poses
coming from CONSRANK_U clusters. Detailed results are
provided in Supplementary Table S1 for the 38 complexes
with at least one near-native pose in the top ten. In eight
cases, the near-native poses were present only in ZDOCK
clusters, in 10 cases, the near-native poses were present
only in CONSRANK_U clusters and in the 20 remaining
cases, near-native poses were present in both ZDOCK and
CONSRANK_U clusters. We observed no significant bias
in terms of functional category or interface size between
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FIGURE 4 | Examples of successful combination of ZDOCK clusters and consensus-based clusters. For each protein–protein complex, the receptor protein is
represented as a gray surface and the ligand as a red ribbon. Left column: representative poses of the first five clusters generated with ZDOCK native scoring
function, middle column: representative poses of the first five clusters generated with the CONSRANK_U rescoring function, right column: superimposition between
near-native docking hit and native structure. For each representative pose, initial ZDOCK rank is indicated next to the color legend. Near-native poses are underlined.
1AVX (Song and Suh, 1998): complex between the porcine trypsin (gray) and soybean inhibitor (red), 1EAW (Friedrich et al., 2002): complex between the catalytic
domain of serine proteinase MT-SP1 (gray) and bovine inhibitor (red), 1XQS (Shomura et al., 2005): complex between the human Hsp70 binding protein 1 (gray) and
Hsp70 (red), 1E6E (Müller et al., 2001): complex between NADPH:adrenodoxin oxidoreductase (gray) and adrenoxin (red).

protein complexes that were successful only with ZDOCK or
only with CONSRANK_U. This indicates that ZDOCK and
CONSRANK_U results are only partially overlapping, justifying
the need to combine them.

CONCLUSION

We have implemented four variants of consensus-based
rescoring functions: the CONSRANK score, the CONSRANK
un-normalized score, and their equivalents based on residue
frequencies and tested them on the rescoring of large sets of

docking poses of the ZDOCK benchmark. In this context,
un-normalized scores that do take into account the size of
the interfaces are in general more efficient than normalized
scores. When used alone, consensus-based scoring functions
degraded the initial performance of the physics-based
ZDOCK scoring function. However, when both physics-
based and consensus-based scoring functions were used in
combination, we observed a marginal improvement. This
calls for calibration when using consensus-based scoring
functions to re-rank large sets of docking decoys, since
they are, by definition, highly dependent on the docking
decoy population.
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