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Multicolor fluorescence of mixed halide perovskites enormously enables their applications in photonics and optoelectronics.
However, it remains an arduous task to obtain multicolor emissions from perovskites containing single halogen to avoid phase
segregation. Herein, a fluorescent composite containing Eu-based metal-organic frameworks (MOFs), 0D Cs4PbBr6, and 3D
CsPbBr3 is synthesized. Under excitations at 365 nm and 254 nm, the pristine composite emits blue (B) and red (R)
fluorescence, which are ascribed to radiative defects within Cs4PbBr6 and 5D0→

7FJ transitions of Eu3+, respectively.
Interestingly, after light soaking in the ambient environment, the blue fluorescence gradually converts into green (G) emission
due to the defect repairing and 0D-3D phase conversion. This permanent and unique photochromic effect enables
anticounterfeiting and microsteganography with increased security through a micropatterning technique. Moreover, the RGB
luminescence is highly stable after encapsulation by a transparent polymer layer. Thus, trichromatic light-emitting modules are
fabricated by using the fluorescent composites as color-converting layers, which almost fully cover the standard color gamut.
Therefore, this work innovates a strategy for construction of tunable multicolor luminescence by manipulating the radiative
defects and structural dimensionality.

1. Introduction

During the past years, there has been an unprecedentedly
rapid development of lead halide perovskites, which is pow-
ered by their outstanding optoelectronic properties and
extensive applications in solar cells, light-emitting diodes
(LEDs), transistors, lasers, and scintillators [1–8]. The out-
standing external quantum efficiency (EQE) over 20% and
tunable wavelength from 400 to 740 nm by adjusting the
halide compositions are the superior advantages of perov-
skite LEDs (PeLEDs) [9–12]. Besides, the controllable multi-
color fluorescence also promotes the development of

anticounterfeiting labels [13–15]. For instance, perovskite
quantum dots (PQDs) with controlled halide compositions
were embedded into pretreated polymer gel to prepare a
printing ink [15]. Multicolor fluorescence patterns and
two-dimensional codes were printed for polychromatic anti-
counterfeiting applications with enhanced safety. On the
other hand, micropatterning to modulate fluorescence color
enables additional feature/information to be encoded, signif-
icantly enhancing data security [16, 17]. Zhou et al. demon-
strated the fabrication of various multicolor micropatterns
by femtosecond direct laser writing (DLW) on gradient
mixed halide perovskites, which paves the way for micro
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steganography and anticounterfeiting. Therefore, multicolor
fluorescence exhibits a great prospect for broad applications
in photonics and optoelectronics.

Multicolor fluorescence can be readily obtained from
mixed halide perovskites by adjusting the halide composi-
tions. However, the mixed halide perovskites suffer from
phase segregation, resulting in poor stability [17–23]. There-
fore, it is still urgent to develop single-halide perovskites
with multicolor emissions to avoid the intrinsic instability
caused by phase segregation. Introducing more emissive
centers by ion doping is a potential strategy to acquire mul-
ticolor emissions in the single-halide perovskites [24–26]. In
our previous work, Mn2+ doped CsPbCl3 (Mn:CsPbCl3)
perovskite nanocrystals (PNCs) were prepared to launch a
new emission at 600nm in addition to the excitonic emis-
sion of CsPbCl3 at ca. 405 nm. Through anion exchange with
CsPbBr3 PNCs, fluorescence covering from blue to orange
are obtained [27]. Although iodine-based perovskite is no
longer needed, the Mn:CsPb(Cl/Br)3 PNCs still cannot be
free from phase segregation, and the pure red emission is
missing.

Doping of lanthanide elements is a recognized approach
to modulate the fluorescence of perovskites [28–30]. Zeng
et al. [31] codoped Yb3+/Er3+/Bi3+ into perovskite single
crystal. The products showed yellow, warm white, and green
fluorescence under different excitation lights, which orients
a direction for the development of ecofriendly and high-
quality anticounterfeiting technology. Generally, intraconfi-
gurational f–f transitions of lanthanides are strictly spin
and parity forbidden, and the fluorescence is quite weak
due to its extremely low absorption coefficient. Only when
the 4f levels are coupled with orbitals having opposite-
parity wavefunctions, such as 5d orbitals, the selection rules
are partially allowed by spin–orbit coupling [32, 33]. There-
fore, crystal-field perturbations via coupling between organic
ligands and lanthanide ions have become an important way
to enhance luminous efficiency [32–37]. Cortecchia et al.
[38] synthesized an Eu3+-tetrakis β-diketonate metal-
organic frameworks (MOFs) to dope 2D layered perovskites.
And they demonstrated the sensitization by tetrakis β-dike-
tonate complex endowing an appropriate coordination
geometry and energetic landscape for the energy transfer to
Eu3+, leading to a nearly 30-fold improvement in lumines-
cence yield. Although lanthanide doping can introduce an
additional emission color, it is still a great challenge to
obtain multicolor fluorescence that covers the entire visible
range, hindering the applications in anticounterfeiting, full
color LEDs, and displays.

In this work, Eu-MOFs and radiative defects are jointly
introduced to endow single-halide perovskites with multi-
color fluorescence. Fluorescent composites containing Eu-
benzenetricarboxylic (Eu-BTC) MOFs, 0D Cs4PbBr6, and
3D CsPbBr3 perovskites were prepared by a simple solution
method. The as-prepared Eu-MOFs/perovskites composites
emitted blue and red fluorescence when excited at 365 nm
and 254nm, respectively. Interestingly, under continuous
light soaking, the blue fluorescence gradually disappeared,
while the green fluorescence quickly grew. Thus, a fluores-
cent micropatterning technique was developed based on this

interesting photochromic effect. Moreover, the trichromatic
fluorescence that nearly coves the entire visible range can
be obtained from the pristine and light-treated Eu-MOFs/
perovskites composites. Therefore, efficient trichromatic
LED modules were fabricated by using the Eu-MOFs/perov-
skites composites as color-converting layers. The long-term
stability of the color-converting layers was demonstrated.

2. Results and Discussion

2.1. Structures of the Eu-MOFs/Perovskites Composites. Eu-
MOFs/perovskites composites were prepared by a simple
solvent method under mild reaction conditions at room tem-
perature, as detailed in the experimental section. Scanning
electron microscopic (SEM) images of the Eu-MOFs/perov-
skites composites are shown in Figure 1(a) and Figure S1.
Most of the Eu-MOFs/perovskites composites show
morphologies of lamellar flakes with typical hexagonal
shapes, which may benefit from the framework played by
the MOFs. The thickness of a single flake is about 50 nm to
100 nm with a relatively nonuniform distribution. And the
edge length is about 0.5 to 2μm. The compositional
distribution is investigated by energy dispersive X-ray
spectroscopy (EDS) equipped on the transmission electron
microscope (TEM) (Figure 1(b) and Figure S2), which show
uniform distributions of Cs, Pb, Br, and Eu. High-
resolution transmission electron microscopic (HRTEM)
results reveal the coexistence of 0D Cs4PbBr6 and 3D
CsPbBr3 nanocrystals on the hexagonal flakes (Figure 1(c)
and Figure S3). Moreover, the presence of Eu in the form of
Eu3+ is confirmed by the X-ray photoelectron spectroscopy
(XPS) results (Figure S4).

Figure 1(d) presents X-ray diffraction (XRD) pattern of
the Eu-MOFs/perovskites composites. The diffraction peaks
related to CsPbBr3 and Eu-BTC are marked according to
PDF#54-0752 and CCDC No. 290771, respectively. The
obvious peaks at 21.6°, 30.6°, and 37.8° are attributed to the
(110), (200), and (211) crystal planes of CsPbBr3. In addi-
tion, due to the mild reaction conditions, 0D perovskite
(Cs4PbBr6, PDF#73-2478) also coexists in the product in
addition to CsPbBr3 and Eu-BTC. The diffraction peaks at
22.4° and 30.2° are ascribed to the (300) and (214) crystal
facets of the rhombohedra Cs4PbBr6. The diversity of struc-
tural dimensionality affords the opportunity for multicolor
emission. According to the structural analysis, the structure
of the Eu-MOFs/perovskites composites is illustrated in
Figure 1(e). Eu-BTC self-assemble into a flake structure
during the reaction, which is encapsulated by perovskite
nanocrystals.

2.2. Photoluminescence of the Eu-MOFs/Perovskites Composites.
Photoluminescence (PL) spectra of the Eu-MOFs/perov-
skites composites are shown in Figure 2(a). When the excita-
tion wavelength is 365nm, the PL spectrum mainly contains
four peaks at 433nm, 460nm, 520 nm, and 618nm, respec-
tively. The two blue peaks at 433nm and 460nm are
significantly stronger than the other two. In particular, the
618 nm peak is extremely tiny. Therefore, under excitation
at 365nm, the fluorescence color is blue. When the excitation
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wavelength is changed to 254nm, the PL peaks at 433nm,
460nm, and 520 nm almost vanish. Meanwhile, other emis-
sion peaks at 579nm, 591nm, 648 nm, and 697nm appear.
It is worth noting that the 618nm PL peak becomes the
strongest among all the bands. Consequently, the fluores-
cence color turns to red. The excitation-emission mapping
is shown in Figure 2(b). With the increment of excitation
wavelength, the dominant PL peak position jumps from
618nm to 460nm. Therefore, blue (B) and red (R) fluores-
cence can be easily obtained from the Eu-MOFs/perovskites
composites by selecting appropriate excitation wavelength.

Interestingly, green (G) fluorescence can also be
obtained from the Eu-MOFs/perovskites composites. As
shown in Figures 2(c) and 2(d), when exposing the Eu-
MOFs/perovskites composites to a UV laser beam of 2mW
under an ambient condition, the blue PL peak under excita-
tion of 365nm gradually decreases while the green PL peak
prominently increases. Finally, the fluorescence color
changes from blue to green (Figure 2(e)). The corresponding
Commission International de l’Eclairage (CIE) color coordi-
nates of the PL variation are plotted in Figure 2(f), which
cover almost the whole color gamut from blue to green.
After storage in dark condition for 48 hours, this kind of
PL variation is not recoverable. PL quantum yields (QYs)
of the B, G, and R emissions are 10.81%, 26.83%, and
64.28%, respectively (Figure S5). Thus, the full color

fluorescence is obtained. Meanwhile, during the UV light
soaking, the PL spectra excited at 254nm are also recorded.
As shown in Figure S6, the red emission remains almost
unchanged. Besides, PL spectra of the Eu-MOFs/perovskites
composites are measured under different excitation power
intensities. As shown Figure S7, the B, G, and R emissions
show linear dependence on excitation power, implying
nonlinear effects, such as Auger recombination, saturated
absorption, defect filling, and strong electron-phonon
coupling are negligible under the relatively low excitation
power density.

2.3. Mechanism of the Tunable Multicolor Fluorescence. In
order to unveil the UV light soaking induced fluorescence
variation, the origins of the different emissions are discussed.
There is no doubt that the red emission peaks at 579nm,
591 nm, 618nm, 648 nm, and 697 nm are consistent with
the 5D0→

7FJ (J = 0− 4) transitions of Eu3+ [39]. Besides, it
is well accepted that the green emission peak at about 510
to 520 nm is caused by band-to-band transition of CsPbBr3.
The remaining mystery is the origin of the blue emission.
Previous reports have found that blue fluorescence can be
generated by Cs4PbBr6 nanocrystals (Supplementary Note
S1). Therefore, we tentatively propose that the blue lumi-
nescence comes from radiative defect states of the 0D
Cs4PbBr6. These defects are mainly caused by the
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Figure 1: Structural characterizations. (a–d) SEM image (a), EDS mappings (b), HRTEM image (c), and XRD pattern (d) of the Eu-MOFs/
perovskites composites. (e) Schematic diagram illustrating the formation of Eu-MOFs/perovskites composites.
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substitution of Pb2+ by Eu3+, as well as the vacancies caused
by the reduced halide ligands to satisfy the charge neutrality
[40]. Density functional theory (DFT) calculations are per-
formed to calculate the electronic structures of the Eu-
doped Cs4PbBr6 with defects. Trap states locating below
the minimum of the conduction band (CBM) are intro-
duced, which make the bandgap down shift to about
2.7 eV (Figure S8, S9). Radiative transitions of these trap
states explain the blue emissions [41–44].

To gain more insight into the origin of the blue emission
and the light soaking-induced fluorescence variation, PL of
the Eu-MOFs/perovskites composites after different periods
of light soaking are investigated in depth. The pristine com-
posite without light soaking is labeled as initial state (I-state),
while the samples after a short period of light soaking for 8
minutes and a long period light soaking for 60 minutes are
designated as intermediate state (M-state) and final state
(F-state), respectively. As shown in insets of Figures 3(a)–

3(c), under excitation of 254nm, all the three states show
red fluorescence. The corresponding PL excitation (PLE)
spectra monitored at 618nm contain a broad band emission
with a maximum at about 260nm for all the three states,
which is ascribed to the π-π electron transition of the
organic BTC ligands [45]. Combination of the PL and PLE
results point out that the f–f transition of Eu3+ ion is sensi-
tized by the BTC ligands. When the excitation wavelength
is changed to 365 nm, the I-state exhibits blue fluorescence
while the other two states exhibit green fluorescence. The
PLE spectra corresponding to emissions at 433, 460, and
520 nm are very similar, which contain bands at 320, 370,
and 430nm corresponding to band-to-band transition of
the 0D Cs4PbBr6 and transition of defects. These optical
transitions are also discernible in the absorption spectra
(Figure S10).

The dynamics for different emissions are analyzed by
time resolved PL curves. As shown in Figure 3(d), the PL
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decay traces of the 433 nm, 460nm, and 520nm emissions
are fitted by triexponential functions. The fitting details are
given in Supplementary Note S2 and Table S1-S4. The
average lifetimes of the 433 nm and 460nm are 15.31 ns
and 9.70 ns in the I-state. With increasing light soaking
time, these PL lifetimes shorten to 11.19 ns and 8.29 ns,
respectively, implying the long-lived defective states are
repaired by light soaking. Similarly, from M-state to F-state,

PL lifetime of the 520nm shortens from 24.82 ns to 9.72 ns,
respectively, indicating the long-lived traps are removed
[46, 47], which is in a good agreement with the steady-state
PL spectra. Due to the long energy transfer path from
organic ligand to Eu3+, the lifetimes of 618nm emission
reach a submicrosecond scale. The PL lifetimes are 0.78ms
to 0.86ms and 0.99ms for the I-state, to M-state and
F-state, respectively.
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According to the spectroscopic analysis above, the light
soaking-induced PL variation is correlated to the defect
repairing caused by irradiation. The elimination of radiative
defects in Cs4PbBr6 results in quenching of blue emission
while the repairing of nonradiative defects in CsPbBr3 leads
to enhancement of green fluorescence. As a consequence, the
blue fluorescence transforms into green fluorescence. The
light soaking induced repairing of defects is supported by
our XPS measurements (Figure S11 and S12).

The light-driven migration of halide ions is a possible
mechanism for defect repairing, which generally completes
within tens of seconds with a rapid PL enhancement [48].
However, herein, the fluorescence variation lasts about one
hour, which is much slower than the irradiation-induced
halide migration. Thus, we propose passivation by
irradiation-induced active radicals is responsible for the
defect repairing in the perovskites lattice, which lasts tens
of minutes to hours [49]. To verify this hypothesis, light
soaking of the I-state composites in an oxygen-free environ-
ment is conducted. As shown in Figure S13, the PL spectra
are almost unchanged during continuous UV irradiation,
indicating oxygen plays a critical role in light induced defect
repairing. Besides, light irradiation may cause a thermal
effect. As shown in Figure S14, under continuous heating at

100°C, the transition from blue to green fluorescence does
not occur, excluding the thermal effect. The model of
passivation by active radicals is further supported by the
DFT calculations. As shown in Figure S15, the formation
energy decreases after passivation, indicating these different
defects are both the preferred sites for adsorption of active
radicals. Moreover, the calculated electronic structure shows
that the defect state below the CBM disappears after radical
passivation (Figure S16), explaining the quenching of blue
fluorescence. Similar enhanced green emission of CsPbBr3
by radical passivation has been calculated by Ouyang et al.
[50]. Moreover, we would like to emphasize that the phase
conversion from 0D to 3D also contributes significantly to
the fluorescence variation. We find the photochromic effect
is related to moisture (Figure S17, S18). In fact, moisture can
induce phase conversion from 0D Cs4PbBr6 to 3D CsPbBr3,
which has been verified previously [51, 52]. Our absorption
edge highlighted in Figure S10, XRD shown in Figure S19,
and HRTEM images shown in Figure S20 confirm the phase
conversion from 0D to 3D during the light soaking in the
ambient environment. Therefore, moisture-induced phase
conversion is also partially responsible for the fluorescence
variations observed during light soaking in the ambient
environment.
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According to the above results and discussion, a model
to explain the multicolor fluorescence and the tunability is
illustrated in Figure 4(a). For the pristine Eu-MOFs/
perovskites, under the excitation of ca. 320 to 420nm,
both 0D Cs4PbBr6 and 3D CsPbBr3 components are excited.
The 520 nm emission of 3D CsPbBr3 is discernible but rela-
tively weak (Figure S21). The fluorescence of the composite
is dominated by the blue emission from radiative defects
within Cs4PbBr6, whereas after sufficient light soaking in the
ambient environment, both the radiative defects within
Cs4PbBr6 and nonradiative traps within CsPbBr3 are
passivated. Meanwhile, 0D Cs4PbBr6 is converted to 3D
CsPbBr3 due to the interactions with moisture (Figure 4(b)).
Consequently, the composites exhibit green emission of
CsPbBr3. If the excitation wavelength is 240-300nm, the
incident photon is mainly absorbed by the BTC ligands. The
excited energy is transferred to the 5D1 of Eu3+ via
intersystem crossing (ISC) and then relaxes to the 5D0 level.
The transition from 5D0 emission level to the ground state
generates the red fluorescence [39]. Since the coupling
between BTC ligands and perovskites is very weak, direct
energy transfer (ET) from BTC to perovskites is not allowed,
and blue or green fluorescence cannot be observed in this
situation. Thus, under excitation of 254nm, the composites
at different states constantly display red fluorescence.

2.4. Applications of the Tunable Multicolor Fluorescence. The
unique light soaking-induced permanent fluorescence
variation builds the foundation for laser fabrication. The
Eu-MOFs/perovskites powders are pressed into a flat film.
A direct laser writing (DLW) setup is used to pattern on
the fluorescent film (Figure 5(a)) [16]. A 405nm laser beam
of 2mW is focused on the film via an objective. As shown in
Figure 5(b), before laser writing, the whole film exhibits blue
fluorescence. After DLW, the processed region turns into
bright green fluorescence; thus, a pattern is obtained. The
pattern cannot be observed without an UV excitation beam,
which creates a unique security mechanism and is very sig-
nificant for anticounterfeiting and steganography. Moreover,
when the film is jointly excited by 365 and 254nm lights, the
background color changes from blue to red due to the excep-
tional excitation-dependent PL, which further increases the
difficulty of imitation, thus improving the security for anti-
counterfeiting. Figures 5(c) and 5(d) demonstrate that differ-
ent fluorescence patterns can be easily drawn. In addition,
characters at a microscale can be conveniently written by
the DLW method (Figure 5(e)). Figure 5(f) shows that the
polymer-protected fluorescence patterns are still readable
after storage in the ambient environment for 120 days.

Moreover, the Eu-MOFs/perovskites composites can real-
ize trichromatic emissions, showing enormous application

(a)

(b)

Camera

405 nm CW Laser

Moving Stage

Mirror

Objective

Before laser writing After laser writing 
Excited at 365 nmW/O excitation 

Dichroic mirror

Excited at
365 and 254 nm

(c) (d) (e)

(f)

7 Days 120 Days30 Days0 Day
Cs-Pb-Br@Eu-BTC

2 mm2 mm

3 𝜇m

2 mm2 mm2 mm2 mm

Figure 5: Applications in micropatterning. (a) Schematic of the DLW setup. (b) Photos of the Eu-MOFs/perovskites film before and after
DLW. (c, d) Pigeon (c) and fish (d) patterns obtained by the DLW. (e) Fluorescent micrographs of the Eu-MOFs/perovskites film patterned
with “N,” “J,” “N,” and “U” characters. (f) Fluorescence patterns during storage in the ambient environment for 120 days (temperature of
10-40°C and humidity of 30%-70%).
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foreground at the aspects of LEDs and display. To verify the
feasibility, the I-state and F-state Eu-MOFs/perovskites com-
posites are encapsulated by polymethyl methacrylate
(PMMA) to yield LED color converters, which are then com-
bined with 365nm and 265nm InGaN chips. As shown in
Figures 6(a) and 6(b), light soaking-induced variation is pre-
vented due to the isolation of the Eu-MOFs/perovskites from
the air. After storage in the ambient environment for 30 days,
the PL intensities of the three LED modules almost keep con-
stant without spectral shift, indicating the outstanding long-
term stability with the encapsulation. The CIE coordinates of
the LED modules are shown in Figure 6(c), which cover
95.9% of the color gamut introduced in 1951 by the National
Television System Committee (NTSC) [53]. Electrolumines-
cence (EL) spectra of the trichromatic LED modules are
shown in Figures 6(d)–6(f). The UV emission of the InGaN
chip is successfully converted to RGB emissions. With the

increase of the driving current, the EL intensities of LEDmod-
ules linearly increase, without changing the peak positions and
band widths. When the current is 50mA, the brightness of the
blue, green, and red LED modules reaches 621.0 cd/m2,
705.8 cd/m2, and 1253.2 cd/m2, respectively. More parameters
related to the LED modules are shown in Table S5.

3. Conclusion

In summary, a strategy is innovated for construction of tun-
able multicolor luminescence by manipulating the radiative
defects and structural dimensionality. The fluorescent com-
posite containing Eu-BTC MOFs, 0D Cs4PbBr6, and 3D
CsPbBr3 is synthesized by a simple solvent method. The
as-prepared Eu-MOFs/perovskites composites emit blue
and red fluorescence when excited at 365nm and 254nm,
respectively. Under continuous light soaking, the blue
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Figure 6: Applications in LED modules. (a) PL spectra of the Eu-MOFs/perovskites encapsulated by PMMA after long-term storage
(temperature of 10-40°C and humidity of 30%-70%). (b) Fluorescent photos of the Eu-MOFs/perovskites encapsulated by PMMA after
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fluorescence gradually quenches while the green fluorescence
rapidly rises. Thus, the RGB emissions are obtained. The blue
emission is attributed to radiative defects within Cs4PbBr6.
The green emission originates from band-to-band transition
of CsPbBr3. And

5D0→
7FJ transitions of Eu3+ is responsible

for the red emission. After light soaking in the ambient environ-
ment, both the radiative defects within Cs4PbBr6 and nonradia-
tive traps within CsPbBr3 are passivated. Meanwhile, Cs4PbBr6
is converted to CsPbBr3 due to the interactions with moisture.
Consequently, the blue fluorescence turns into green. Based
on the photochromic process, microfluorescence patterns are
depicted by DLW, paving the way for applications in anticoun-
terfeiting and microsteganography. Moreover, trichromatic
LEDmodules are fabricated by using the Eu-MOFs/perovskites
composites as color-converting layers, which almost cover the
entire color gamut demanded by NTSC. Fluorescence of the
color-converting layers with the encapsulation are very stable
during working and long-term storage, exhibiting great applica-
tion potential in lighting and display.

4. Methods

4.1. Materials. Lead bromide (PbBr2, 99%, Aladdin), hexa-
noic acid (99.9%, Aladdin), octylamine (99.9%, Aladdin),
N,N-dimethylformamide (DMF, 99%, Aladdin), cesium car-
bonate (Cs2CO3, 99%, Aladdin), octadecene (ODE 99.9%,
Aladdin), oleic acid (OA 90%, Aldrich), oleylamine (OAm,
90%, McLean), Eu(NO3)3·6H2O (99.9%, Aladdin), 1,3,5-tri-
mesic acid (H3BTC, 98%, Aladdin), sodium acetate (NaAc,
99%, Aladdin), toluene (99%, Aladdin), and ethyl acetate
(99.9%, Aladdin) are used. All reagents were used without
any further purification.

4.2. Preparation of Eu-MOFs/Perovskites Composites.
Cs2CO3 powders (0.407 g, 1.25mmol) were loaded into a
100mL 3-neck flask with ODE (18mL) and OA (1.74mL),
dried for 1 h at 120°C, and then heated to 150°C under N2
atmosphere until all Cs2CO3 powders were reacted. PbBr2
(0.183 g, 0.5mmol) was dissolved in a solution containing
dimethylformamide (10mL), caproic acid (0.58 g, 5mmol),
and octylamine (0.645 g, 5mmol). After Cs-oleate (0.5mL)
was added to the mixture, Eu(NO3)3·6H2O (0.089 g
0.2mmol) and NaAc (0.6mL) were added to the mixture
to form a metal precursor solution. Then, tricarboxylic acid
(H3BTC) (0.1 g, 0.50mmol) was added to the metal precur-
sors containing Eu3+ ions. After continuously stirring for 12
hours at room temperature, 1mL above mixture was added
to 10mL toluene, and the Eu-MOFs/perovskites composite
products were collected by centrifugation, washed by ethyl
acetate for several times, and dried naturally for 12 hours.

4.3. Preparation of Eu-MOFs/Perovskites Composites@PMMA.
In the fume hood, 1 g PMMA solid powders were added to a
40mL flask containing 10mL toluene solution. Then, mixture
was stirred vigorously at 40°C. After the PMMA was
completely dissolved, different states of Eu-MOFs/perovskites
composites were added to the mixed solution by continuous
stirring. Then, the resulting product was poured into the pre-
pared mold and dried naturally for 24h in a ventilated area.

4.4. Preparation of LED Modules. The Eu-MOFs/perovskites
composites@PMMA with different colors of fluorescence
were directly coupled to the InGaN blue light-emitting chip
to form the LED devices. The emission wavelengths of the
InGaN chip were 365nm and 265nm. In addition, to avoid
the leakage of UV light, the edges of the device were filled
with opaque silica gel.

4.5. Characterizations. XRD patterns were obtained by
D/max 2500/PC rotating target X-ray diffractometer. XPS
data were acquired from ESCALAB Xi+ X-ray photoelectron
spectrometer. SEM images were recorded by Apreo 2S
electron microscope. TEM images were recorded by JEM-
2100F electron microscope (JOEL). The compositional distri-
bution was investigated by EDS equipped on the TEM. The
absorption spectra were obtained by using Shimazu
UV2600 UV-vis spectrophotometer. PL spectra were
obtained by a Maya 2000 Pro high-sensitivity spectrometer
(Ocean Optics). The PL decay curves, PLE spectra, and
PLQYs were measured on Horiba Jobin Yvon FM-4P-
TCSPC fluorescence spectrophotometer.

4.6. DFT Calculations. The theoretical calculation was con-
ducted by using the DFT within the generalized gradient
approximation under CASTEP package. A kinetic energy
cutoff of 489 eV was used to represent the single-particle
wave functions. The geometric optimization was carried
out with convergence tolerances of 2 × 10−5 eV for energy,
0.05 eV/Å for maximum force, and 0.002Å for maximum
displacement.
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perovskites composites excited by 254nm. Figure S7: the opti-
cal properties of the Eu-MOFs/perovskites composites under
different excitation intensities. Figure S8: (a) the band struc-
ture of the pristine Cs4PbBr6; (b) the calculated PDOS of pris-
tine Cs4PbBr6. Figure S9: structural diagram and PDOS of
Cs4PbBr6 with Eu+VBr and Eu+IBr. Figure S10: absorption
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XPS spectra of the Eu-MOFs/perovskites composites. Figure
S12: XPS spectra of Pb 4f (a), Br 3d (b) and Cs 3d (c) in Eu-
MOFs/perovskites composites. Figure S13: light soaking
experiment of Eu-MOFs/perovskites composites in a vacuum
environment. Figure S14: heating experiment of Eu-MOFs/
perovskites composites. Figure S15: formation energies of
defects before and after adsorption of O2. Figure S16: struc-
tural diagram and PDOS of Cs4PbBr6 with Eu+VBr and Eu
+IBr after O2 adsorption. Figure S17: light soaking experiment
of MOFs/perovskites composites in a dry environment. Figure
S18: spray treatment experiment of Eu-MOFs/perovskites
composites. Figure S19: XRD patterns of Eu-MOFs/perov-
skites composites in different states. Figure S20: HRTEM
images of the Eu-MOFs/perovskites composites in I-state
(a-c) and F-state (d, e). Figure S21: Gaussian fitting of the
PL spectrum of the pristine Eu-MOFs/perovskites compos-
ites. (Supplementary Materials)
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