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Abstract

Background: In primary breast cancer metastases frequently arise from a state of dormancy that may persist for
extended periods of time. We investigated the efficacy of plasma micro-RNA (miR)-21, miR-23b, miR-190, miR-200b
and miR-200c, related to dormancy and metastasis, to predict the outcome of patients with early breast cancer.

Methods: miRNAs were evaluated by RT-qPCR in plasma obtained before adjuvant chemotherapy. miRNA
expression, classified as high or low according to median values, correlated with relapse and survival. Receiver
operating characteristic (ROC) curves were constructed to determine miRNA sensitivity and specificity.

Results: miR-21 (p < 0.001), miR-23b (p = 0.028) and miR-200c (p < 0.001) expression were higher and miR-190 was
lower (p = 0.013) in relapsed (n = 49), compared to non-relapsed patients (n = 84). Interestingly, miR-190 was lower
(p = 0.0032) in patients with early relapse (at < 3 years; n = 23) compared to those without early relapse (n = 110).
On the other hand, miR-21 and miR-200c were higher (p = 0.015 and p < 0.001, respectively) in patients with late
relapse (relapse at ≥ 5 years; n = 20) as compared to non-relapsed patients. High miR-200c was associated with
shorter disease-free survival (DFS) (p = 0.005) and high miR-21 with both shorter DFS and overall survival (OS)
(p < 0.001 and p = 0.033, respectively) compared to low expression. ROC curve analysis revealed that miR-21,
miR-23b, miR-190 and miR-200c discriminated relapsed from non-relapsed patients. A combination of of miR-21,
miR-23b and miR-190 showed higher sensitivity and specificity in ROC analyses compared to each miRNA alone;
accuracy was further improved by adding lymph node infiltration and tumor grade to the panel of three miRs
(AUC 0.873). Furthermore, the combination of miR-200c, lymph node infiltration, tumor grade and estrogen
receptor predicted late relapse (AUC 0.890).

Conclusions: Circulating miRNAs are differentially expressed among relapsed and non-relapsed patients with early
breast cancer and predict recurrence many years before its clinical detection. Our results suggest that miRNAs
represent potential circulating biomarkers in early breast cancer.
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Background
Despite significant advances in diagnosis and treatment
of early breast cancer, almost 30% of patients will even-
tually have local or distant recurrence [1–3]. Recurrence
is considered to result from cancer cells that persist after
surgery and systemic therapy and remain in a dormant
state for many years before they start proliferating and
form local or distant metastases [4, 5]. Strategies to im-
prove the management of patients with early disease
should include the development of novel biomarkers for
the early recognition of patients at high risk of relapse.
Clinicopathological parameters are commonly used for

the prediction of patients’ prognosis; however, they often
lack individualized validity for the identification of pa-
tients at high risk, due to significant inter-patient hetero-
geneity [6]. In addition, molecular profiling tests have
been developed for prognostication but their routine
clinical implementation is problematic [7]. Furthermore,
the genetic profiling of solid tumors is currently per-
formed on biopsies that might fail to reflect
intra-tumoral heterogeneity and limit the opportunity to
track genetic alterations occurring during cancer evolu-
tion [8]. Therefore, there is an unmet need to identify
novel non-invasive biomarkers for the better prediction
of the risk of recurrence in breast cancer.
MicroRNAs (miRNAs), a large family of small (20–22

nucleotides) non-coding RNAs, regulate approximately
30% of the genes in the human genome at the
post-transcriptional level, by binding to the complemen-
tary sequences of the 3′- untranslated region (3’-UTR)
of their target messenger RNAs (mRNAs), leading to ei-
ther mRNA degradation or inhibition of protein transla-
tion [9]. miRNAs are deregulated in cancer, acting as
both oncogenes and tumor suppressor genes [10]. The
altered expression of miRNAs has been associated with
poor clinical outcome in patients diagnosed with a var-
iety of tumors [11]. In the past decade miRNAs have
emerged as promising biomarkers in breast cancer and
have been increasingly identified in biological fluids such
as serum or plasma as circulating miRNAs [12]. Circu-
lating miRNAs are significantly stable in biological fluids
[13, 14] and could potentially serve as a “liquid biopsy”
for the real-time evaluation of tumor status.
The assessment of dormancy and metastasis-related

miRNAs could be of importance for the identification of
patients at high risk of relapse. The mechanisms that
lead to dormancy or enable the formation of metastases
remain poorly understood. Data from in vitro models or
expression analysis in patients with breast cancer suggest
that miR-21, miR-23b, miR-190 and the miR-200 family
members, such as miR-200b and miR-200c, are import-
ant in cancer dormancy and metastasis. An epithelial to
mesenchymal transition (EMT)-related gene signature in
the primary tumor has been associated with both

stromal activation and escape from dormancy in breast
cancer [15], suggesting that intrinsic EMT features may
regulate the transition of disseminated tumor cells into a
dormant phenotype with the ability to outgrow as recur-
rent disease. In another report, the activation of the
EMT program, as orchestrated by the key regulator of
EMT, Zeb1, was sufficient to promote escape from la-
tency and stimulate the development of metastases [16].
The miR-200 family regulates EMT by targeting the
ZEB1/2-E-cadherin axis [17], whereas in other studies,
elevated levels of miR-200 family have induced EMT and
promoted metastasis in breast cancer [18]. Several lines
of evidence suggest that miR-21 is oncogenic in various
types of cancer by suppressing several apoptotic and
tumor suppressor genes [19] and by inducing cell prolif-
eration, migration, invasion and metastasis. miR-23b has
been shown to promote tumor dormancy in the meta-
static niche [20], whereas miR-190 upregulation has
been associated with prolonged tumor dormancy in
fast-growing tumors such as osteosarcomas and glio-
blastomas [21].
Based on the above, the aim of the present study was

to investigate the expression of miR-21, miR-23b,
miR-190, miR-200b and miR-200c in the plasma of pa-
tients with early breast cancer and evaluate their role in
the prediction of patients’ outcomes.

Methods
Patients’ characteristics and sample collection
A total of 209 consecutive patients with early breast cancer
who underwent surgery followed by adjuvant chemother-
apy administered at the Department of Medical Oncology
of the University Hospital of Heraklion (Crete, Greece) be-
tween years 2003 and 2010 and had available plasma sam-
ples, were included in the present study. Plasma samples
were obtained after the surgical resection of the primary
tumor and before the initiation of adjuvant chemotherapy.
Plasma samples were also collected from 23 normal blood
donors to serve as controls. All patients and normal do-
nors had provided signed informed consent to participate
in the study, which was approved by the Ethics and Scien-
tific Committee of Department of Medical Oncology of
the University Hospital of Heraklion (ID 13998/8–
10-2104; Crete, Greece). Clinical characteristics and
follow-up information for each patient were prospectively
collected. Peripheral blood from healthy donors and pa-
tients was drawn early in the morning and was collected in
EDTA tubes. Plasma was subsequently isolated within 2 h
by centrifugation at 2500 rpm for 15 min at 4 °C, followed
by a second centrifugation at 2000 g for 15 min at 4 °C to
remove cellular debris. Samples were kept in aliquots at

80 °C until further use. Plasma samples presenting a
change in color to pink, suggesting the presence of
hemolysis, were not processed for further analysis (Fig. 1).
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RNA isolation
Plasma samples were thawed on ice and centrifuged at
10000 rpm for 10 min in order to remove cellular debris.
Total RNA was extracted from 400 μl of plasma using
Trizol LS (Ambion, Life Technologies). After denatur-
ation, 5 μl containing 25 fmoles of a synthetic Caenor-
habditis elegans miRNA cel-miR-39 (Qiagen Inc., USA)
was added to each sample as an endogenous control to
allow for normalization of sample-to-sample variation.
Aqueous phase was separated from organic phase by
adding 250 μl chloroform followed by incubation on ice
for 10 min. After centrifugation, an equal volume of
700 μl of supernatant, from each sample, was transferred
to an Eppendorf tube. Then, RNA was precipitated by
adding 0.7 volumes of isopropanol and 1 μl glycogen
followed by incubation at 80 °C, overnight. On the
next day, and after centrifugation, RNA pellet was
washed three times with 75% ethanol, air dried and fi-
nally resuspended in 50 μl RNAse-free water. RNA from
all samples was kept in aliquots at 80 °C until further
use in the subsequent real-time qPCR.

Quantitative real-time PCR analysis and miRNA expression
Reverse transcription and RT-qPCR was performed
according to manufacturer’s instructions and as previ-
ously described [13]. Total RNA input of 1.67 μl was
reverse transcribed using the TaqMan miRNA Reverse
Transcription kit and miRNA specific stem-loop
primers (Applied Biosystmes, Foster City, CA, USA)
in a 5-μl reaction comprising 1 mM dNTPs, 1 × PCR
Reverse Transcription Buffer, 0.787 μl H2O, 3.3 units
Multiscribe Reverse Transcriptase, 0.252 units RNase
inhibitors and 0.2 × RT-specific stem-loop primers.

The reaction was performed in a Peltier Thermal Cy-
cler PTC-200 at 16 °C for 30 min, 42 °C for 30 min
and 85 °C for 5 min. Complementary DNA (cDNA)
was diluted at 30 μl and each miRNA was assessed
by RT-qPCR in a 5-μl reaction comprising 1 × of
TaqMan 2× Universal PCR Mater Mix, No AmpErase
UNG, 0.25 μl of TaqMan miRNA Assay and 2.25 μl
of diluted cDNA. The quantitative real- time PCR re-
action was carried out at 95 °C for 10 min, followed
by 40 cycles of 95 °C for 15 min and 60 °C for 1 min
on a ViiA 7 Real-Time PCR System (Applied Biosys-
tems, Foster City, CA, USA). All the assays were per-
formed in triplicates. Appropriate negative controls
were used in both cDNA synthesis and RT-qPCR re-
actions where RNA input was replaced by H2O and no
template control was used, respectively. The average ex-
pression levels for each miRNA were calculated by the
2-ΔCt method relative to the average of miR-23a.
Due to the lack of consensus concerning the

normalization of circulating miRNAs we used miR-23a
as a reference gene that was stably and reproducibly
expressed among patients’ groups (Mann-Whitney test,
p = 0.458) and among patients and normal donors
(Mann-Whitney test, p = 0.12) [22]. Finally, the fold
change in target miRNAs relative to miRNAs expressed
in normal controls was calculated by the 2-ΔΔCt method
[23]. Samples with mean cycle threshold (Ct) > 35 for
target miRNAs (n = 17) were excluded from the analysis.
In addition, samples with mean Ct > 22 or Ct < 20 of
cel-miR-39 (n = 5), suggesting RNA extraction was not
efficient, were also excluded. Moreover, plasma samples
were tested for contamination with red blood cells by
measuring miR-451 and miR-23a expression levels [24].

Fig. 1 Flow chart of the study. Ct, cycle threshold
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Samples contaminated with red blood cells were not
processed for further analysis.

Statistical analysis
The statistical analysis was performed using the SPSS
software package, version 22.0 (SPSS Inc. Chicago IL,
USA). Cutoff points were set at the median value for ex-
pression of each miRNA. Patients with miRNA expres-
sion above or equal to the median values were
characterized as having high expression, whereas pa-
tients with miRNA expression below the median were
characterized as having low expression. Spearman’s test
was used to test correlation between expression of the
different miRNAs. The Mann-Whitney U-test and
Kruskal Wallis test were used to estimate associations
between miRNA expression and clinicopathological
characteristics. Differences in clinicopathological charac-
teristics between relapsed and non-relapsed patients
were evaluated by Pearson’s chi-square test. The associa-
tions between circulating miRNA expression levels and
disease-free survival (DFS) or overall survival (OS) were
assessed by the Kaplan-Meier method, log rank test
(Mantel-Cox) and Cox proportional hazard regression
models. DFS was calculated from the date of surgery
until the date of relapse or death from any cause,
whereas OS was calculated from the date of surgery
until the date of death from any cause or last follow up.
The Mann-Whitney test was used to examine the differ-
ential expression between the different groups of pa-
tients. To evaluate the value of circulating miRNAs in
predicting relapse, receiver operating characteristics
(ROC) curves were constructed and area under the
curve (AUC) calculated. The Youden index (sensitivity +
specificity – 1) was used to set the optimal cutoff point.
Logistic regression analyses were performed to identify
the best discriminating combinations of miRNAs with
clinicopathological features. Cross-validation analysis
was implemented in R using a generalized linear model
for logistic regression, with recurrence/non-relapse as
binary target variables (http://www.r-project.org/). Statis-
tical significance was set at p < 0.05 (two-sided test). This
report is written according to the reporting recommen-
dations for tumor marker prognostic studies (REMARK
criteria) [25].

Results
Study design and patients’ characteristics
The flow diagram of the study and patients’ characteris-
tics are summarized in Fig. 1 and Table 1, respectively.
Plasma samples from 155 patients with early breast can-
cer and from 23 healthy women were processed for
RNA extraction. There were 22 patients excluded from
the analysis as described above. After a median
follow-up period of 94.3 months (range 14.33–159.30),

84 out of the 133 patients with breast cancer who were
included in the analysis remained disease-free and 49
had relapsed. Demographics and clinical characteristics
were similar between patients who remained disease-free
and those who developed recurrence, except for the pro-
portions of patients with tumor size of > 5 cm (T3) and
four or more infiltrated axillary lymph nodes, which
were higher in patients who had recurrence (p = 0.015
and p = 0.003, respectively; Table 1). Patients were
divided into three groups according to the clinical
outcome: (i) patients who remained disease-free during
the whole follow-up period (n = 84), (ii) patients with
early relapse, defined as relapse within 3 years
post-surgery (< 3 years; n = 23) and (iii) patients with late
relapse, defined as relapse presenting at 5 years or more
post-surgery (≥ 5 years; n = 20). Consequently, 6 out of
49 relapses were observed in between 3 and 5 years.
Patients’ characteristics for the groups (ii) and (iii) are
shown in Table 2. The median age was 52, 55 and
53 years in each group, respectively.

miRNA expression and statistical correlations
No significant associations were observed between
miRNA expression (high expression, low expression)
and age, menopausal status, tumor size, histological
grade, number of infiltrated lymph nodes, estrogen re-
ceptor (ER), progesterone receptor (PR) or human epi-
dermal growth factor receptor 2 (HER2) status
(chi-square test, p > 0.05). However, miR-21 expression
was higher in PR-negative as compared to PR-positive
patients (63.4% vs 36.6%; chi-square test, p = 0.038). As
expected, there was strong correlation between expres-
sion of miR-200b and miR-200c (Spearman’s Rho 0.628;
p < 0.001) that belong to the same miR-200 family.
Moreover, there was strong correlation between miR-21
and miR-200b (Spearman’s Rho 0.447; p < 0.001) and
miR-200c (Spearman’s Rho 0.540; p < 0.001) expression,
as well. Weaker but still significant association was ob-
served between the dormancy-related miR-23b and
miR-190 (Spearman’s Rho 0.236; p < 0.001) (Table 3).

miRNA expression and clinical outcome
Median expression levels of miR-21, miR-23b and
miR-200c were significantly higher (p < 0.001, p = 0.028
and p < 0.001, respectively) and median miR-190 expres-
sion was significantly lower (p = 0.013) in relapsed com-
pared to non-relapsed patients (Fig. 2). No significant
difference was observed in the median expression of
miR-200b (p = 0.063) between the two groups. Subse-
quently, we evaluated the DFS (Fig. 3) and OS (Fig. 4) in
patients classified into high and low expression groups,
according to the median value of each miRNA. We
found that patients with high miR-21 expression had sig-
nificantly shorter DFS compared to patients with low
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Table 1 Characteristics of patients with early breast cancer

All patients No relapse Relapse

Characteristic Number Percentage Number Percentage Number Percentage P

Number of patients 133 84 63 49 37

Age (years) nsa

Median 54 52 56

Range 27–79 35–79 27–75

Menopausal status nsa

Premenopausal 57 42,9 40 47.6 17 34.7

Postmenopausal 76 57.1 44 52.4 32 65.3

Tumor size (cm) 0.015a

T1 60 45.1 42 50 18 36.7

T2 66 49.6 41 48.8 25 51

T3 7 5,3 1 1.2 6 12.3

Histological grade nsa

I 6 4.5 6 7.1

II 59 44.5 41 48.8 18 36.7

III 58 43.6 31 36.9 27 55.1

Lobular 5 3.7 3 3.6 2 4.1

Unknown 5 3.7 3 3.6 2 4.1

Infiltrated lymph nodes 0.001a

0 49 36.8 37 44.0 12 24.5

1–3 44 33.1 28 33.3 16 32.7

≥ 4 34 25.6 13 15.5 21 42.8

Unknown 6 4.5 6 7.2

ER status

Positive 88 66.2 56 66.7 32 65.3

Negative 43 32.3 26 31 17 34.7 nsa

Unknown 2 1.5 2 2.3

PR status nsa

Positive 90 67.7 61 72.6 29 59.2

Negative 41 30.8 21 25 20 40.8

Unknown 2 1.5 2 2.4

HER2 status nsa

Positive 15 11.3 7 8.3 8 16.3

Negative 112 84.2 72 85.7 40 81.6

Unknown 6 4.5 5 6 1 2.1

Adjuvant chemotherapy nsa

Anthracycline-based 13 9.8 9 10.7 4 8.2

Taxanes+anthracyclines 90 67.7 51 60.7 39 79.6

Taxane-based 21 15.8 15 17.9 6 12.2

Others 9 6.7 9 10.7

Hormone therapy nsa

Yes 103 77.5 68 80.9 35 71.4

No 28 21.0 14 16.7 14 28.6

Unknown 2 1.5 2 2.4

ER estrogen receptor, PR progesterone receptor, HER2 human epidermal growth factor receptor 2, ns not significant
aPearson’s chi-squared test for comparison between patients with relapse and without relapse
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expression (105.03 months versus not reached; p < 0.001)
(Fig. 3a). Similarly, patients with high miR-200c expression
had significantly shorter DFS compared to those with low
miR-200c (105.03 vs not reached; p = 0.005) (Fig. 3e).

Finally, patients with high expression of both miR-21 and
miR-200c had shorter DFS compared to patients with only
one miRNA high or with both low (81.37 vs 132.9 and not
reached, respectively; p < 0.001) (Fig. 3f). No significant

Table 2 Characteristics of patients with early (< 3 years) and late (≥ 5 years) relapse

Early (< 3 years) Late (≥ 5 years)

Characteristic Number Percentage Number Percentage P

Number of patients 23 17 20 15

Age (years) nsa

Median 55 53

Range 27–75 38–74

Menopausal status nsa

Premenopausal 8 34.8 7 35

Postmenopausal 15 65.2 13 65

Tumor size (cm) nsa

T1 7 30.4 8 40

T2 12 52.2 10 50

T3 4 17.4 2 10

Histological grade nsa

I 0 0

II 10 43.5 6 30

III 12 52.2 14 70

Lobular 1 4.3

Infiltrated lymph nodes nsa

0 7 30.4 3 15

1–3 9 39.2 6 30

≥ 4 7 30.4 11 55

ER < 0.001a

Positive 9 39.2 19 95

Negative 14 60.8 1 5

PR 0.006a

Positive 10 43.5 17 85

Negative 13 56.5 3 15

Unknown

HER2 nsa

Positive 4 17.4 4 20

Negative 18 78.3 16 80

Unknown 1 4.3

Adjuvant chemotherapy nsa

Anthracyclines-based 2 8.7 2 10

Taxanes+anthracyclines 16 69.6 17 85

Taxane-based 5 21.7 1 5

Hormone therapy 0.002a

Yes 12 52.2 19 95

No 11 47.8 1 5

ER estrogen receptor, PR progesterone receptor, HER2 human epidermal growth factor receptor 2, ns not significant
Pearson’s chi-squared test for comparison between patients with relapse and without relapse
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differences in DFS were found among patients with
high or low expression of miR-23b, miR-190 or
miR-200b (Fig. 3b-d). Median survival was not reached
by patients with either high or low expression of any of
the miRNAs evaluated (Fig. 4b-e). Nevertheless, only pa-
tients with high miR-21 had significantly shorter OS com-
pared to those with low miR-21 (p = 0.033) (Fig. 4a).
To evaluate further the prognostic value of the circu-

lating miRNAs, univariate and multivariate analyses
were performed that included demographic and clinical
variables and the expression levels of the five miRNAs
(classified into high or low). Cox univariate analysis re-
vealed that patients with infiltrated axillary lymph nodes

Table 3 Coefficients of correlation among five miRNAs

miR-21 miR-23b miR-190 miR-200b miR-200c

miR-21 1.000

miR-23b 0.109 1.000

miR-190 0.160 0.236* 1.000

miR-200b 0.447** −0.144 0.005 1.000

miR-200c 0.540** 0.145 0.081 0.628** 1.000

**p < 0.01; *p < 0.05

Fig. 2 Relative expression levels of circulating miRNAs in relapsed and non-relapsed patients. Plasma levels of miR-21 (a), miR-23 (b), miR-190 (c),
miR-200b (d) and miR-200c (e) were evaluated by RT-qPCR. Statistically significant differences were determined using the Mann-Whitney test.
P values are shown
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and those with negative hormone receptor expression
had significantly shorter DFS (p = 0.013 and p = 0.028,
respectively) and OS (p = 0.044 and p = 0.01, respect-
ively) (Table 4). High miR-21 and miR-200c expression

levels were significantly associated with shorter DFS
(p < 0.001 and p = 0.007, respectively) and only
miR-21 high expression was associated with shorter
OS (p = 0.042) (Table 4). Cox multivariate analysis

Fig. 3 Kaplan-Meier analysis of disease-free survival (DFS) according to the expression of circulating miRNAs and their combination. DFS in
patients with high or low expression of miR-21 (a), miR-23b (b), miR-190 (c), miR-200b (d), miR-200c (e) and the combination of miR-21 and
miR-200c (f). Curves were compared using the log rank test. P values are shown
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revealed that the involvement of axillary lymph nodes and
hormone receptor negativity were independent prognostic
factors for shorter DFS (p = 0.019 and p = 0.012,
respectively) and OS (p = 0.029 and p = 0.006, respectively)

(Table 4). Furthermore, only high miR-21 and high
miR-200c expression emerged as independent prognostic
factors associated with shorter DFS (p = 0.003 and p =
0.037) (Table 4).

Fig. 4 Kaplan-Meier analysis of overall survival (OS) according to the expression of circulating miRNAs and their combination. OS in patients with
high or low expression of miR-21 (a), miR-23b (b), miR-190 (c), miR-200b (d), miR-200c (e) and the combination of miR-21 and miR-200c (f).
Curves were compared using the log rank test. P values are shown
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miRNA expression according to the timing of recurrence
We examined further whether the five circulating miR-
NAs are differentially expressed among patients classified
into groups according to the timing of recurrence. For this
purpose we compared miRNA expression levels in (i) pa-
tients who relapsed early compared to those who did not
experience early relapse i.e. in patients who had recur-
rence within 3 years (n = 23) and those who either re-
lapsed 3 or more years post-surgery or remained
disease-free for the whole follow-up period (n = 110) and
(ii) in patients with late relapse (at ≥ 5 years; n = 20) com-
pared to those who remained disease-free during the
whole follow-up period (n = 84). The Mann-Whitney test
revealed that miR-190 expression levels were lower in pa-
tients with early relapse (p = 0.0032), whereas no differ-
ences were recorded for the remaining miRNAs (Fig. 5).
Moreover, miR-21 and miR-200c expression was higher in
patients with late relapse as compared to non-relapsed pa-
tients (p = 0.015 and p < 0.001, respectively; Fig. 6a and e).

Combination of miRNA expression and clinicopathological
characteristics in a relapse-predictive model
Expression levels of various miRNAs were combined with
clinicopathological characteristics in relapse-predicting

models. We used binary logistic regression incorporating
various combinations of miRNAs and used the corre-
sponding ROC curves to determine the sensitivity and the
specificity of plasma miRNA expression, to discriminate
patients who subsequently had disease recurrence from
non-relapsed patients (Fig. 7 and Table 5). When assessing
single miRNAs, the ROC curves showed that the expres-
sion of miR-21 and miR-200c had the highest perform-
ance with an area under the ROC curve (AUC) of 0.685
(sensitivity 71.4%, specificity 63.9% (p < 0.001; 95% CI
0.592–0.777)) and AUC of 0.678 (sensitivity 75.5%, specifi-
city 61% (p < 0.001; 95% CI 0.586–0.769)), respectively
(Fig. 7a and e, respectively and Table 5). When assessing
combinations of miRNAs, binary logistic regression ana-
lysis resulted in a pattern of three miRNAs (miR-21,
miR-23b and miR-190) bearing the highest predictive
accuracy. The AUC from ROC analysis of this com-
bined model 0.765, with sensitivity 80% and specificity
65.3% (p < 0.001; 95% CI 0.673–0.850) (Fig. 8a and
Table 5). Eventually, the combination of the three miR-
NAs with the currently used clinical prognostic param-
eters, axillary lymph node infiltration and tumor grade,
resulted in superior discriminatory capability (AUC
0.873, sensitivity 89% and specificity 76.2% (p < 0.001;

Table 4 Univariate and multivariate analysis for DFS and OS in patients with early breast cancer

Univariate analysis

DFS OS

HR (95% CI) p value HR (95% CI) p value

Tumor size, T2–3 vs T1 1.48 (0.832–2.633) 0.177 1.584 (0.623–4.026) 0.334

Lymph nodes, pos vs neg 2.288 (1.192–4.391) 0.013 3.553 (1.034–12.206) 0.044

Histology grade, III vs I/II 1.650 (0.910–3.003) 0.099 1.276 (0.501–3.251) 0.609

ER, neg vs pos 1.318 (0.731–2.375) 0.359 2.120 (0.857–5.244) 0.104

PR, neg vs pos 2.003 (1.131–3.549) 0.017 2.323 (0.940–5.743) 0.068

ER/PR, neg vs at least one pos 2.010 (1.080–3.741) 0.028 3.324 (1.329–8.314) 0.01

Her2 pos vs neg 1.649 (0.771–3.525) 0.197 1.474 (0.429–5.065) 0.538

miR-21 high vs low 2.896 (1.556–5.390) <0.001 2.884 (1.038–8.013) 0.042

miR-23b high vs low 1.624 (0.903–2.919) 0.105 1.630 (0.629–4.227) 0.315

miR-190 low vs high 1.342 (0.749–2.405) 0.322 2.511 (0.877–7.186) 0.086

miR-200b high vs low 1.460 (0.821–2.599) 0.198 1.034 (0.417–2.565) 0.942

miR-200c high vs low 2.287 (1.258–4.156) 0.007 1.637 (0.640–4.184) 0.304

Both miR-21/mir-200c high vs others 2.360 (1.346–4.135) 0.003 2.225 (0.902–5.489) 0.082

Multivariate analysis

DFS OS

HR (95% CI) p value HR (95% CI) p value

Lymph nodes, pos vs neg 2.202 (1.138–4.260) 0.019 4.006 (1.151–13.935) 0.029

ER/PR, neg vs at least one pos 2.275 (1.202–4.305) 0.012 3.668 (1.457–9.233) 0.006

miR-21 high vs low 4.557 (1.685–12.869) 0.003 – –

miR-200c high vs low 3.158 (1.074–9.288) 0.037

DFS disease-free survival, OS overall survival, pos positive, neg negative, ER estrogen receptor, PR progesterone receptor, HER2 human epidermal growth factor receptor 2
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95% CI 0.802–0.940)) compared to the expression of
the three miRNAs alone or to the clinicopathological
features alone (Fig. 8b, c and Table 5). Using the same
procedure the combination of miR-200c expression, ax-
illary lymph node infiltration, tumor grade and ER sta-
tus resulted in an increased AUC of 0.890 with a
sensitivity 75% and specificity 89% (p < 0.001; 95% CI
0.818–0.972) for the prediction of late disease relapse
(Fig. 8d and Table 5). When the same model was fitted
to predict early relapse, there were no differences in the
discriminatory power when combining miRNAs with
clinicopathological parameters.

The robustness of the predictive performance of our
models was assessed through a cross-validation strat-
egy. A 10-fold cross-validation with a 70–30 split
(70% training data, 30% testing data) was imple-
mented in R and applied on nine different feature
combinations of miRNAs and clinicopathological fea-
tures. Mean AUC values were calculated for each
10-fold cross-validation. The mean AUC was then
compared to the AUC calculated from our initial re-
gression analysis. There were no significant differ-
ences in the values of AUC in any variable
combinations, indicating that the performance of

Fig. 5 Differential expression of the five circulating miRNAs in patients with early relapse. Relative expression levels of miR-21 (a), miR-23 (b),
miR-190 (c), miR-200b (d) and miR-200c (e) in plasma from patients that experienced early relapse (< 3 years) compared to those without early
relapse. Statistically significant differences were determined using the Mann-Whitney test
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these models is robust and can be generalized to in-
dependent datasets (Additional file 1: Table S1).

Discussion
An important area in current breast cancer research is
the identification of novel biomarkers for the prediction
of outcome in patients with early disease. In the present
study we investigated the predictive capacity of the dor-
mancy and metastasis-related miR-21, miR-23b,
miR-190, miR-200b and miR-200c when determined in
the plasma of patients with early breast cancer. We
found that miR-21, miR-23b, miR-190 and miR-200c,
evaluated before the initiation of adjuvant therapy, were

differentially expressed among patients who subse-
quently experienced disease recurrence, compared to pa-
tients who did not relapse. High expression of miR-21
and miR-200c was associated with shorter DFS com-
pared to patients with low expression, whereas high
miR-21 was also associated with shorter OS. Interest-
ingly, miR-21, miR-23b, miR-190 and miR-200c discrimi-
nated patients who relapsed from non-relapsed patients.
The combination of miR-21, miR-23b and miR-190 in
ROC curve analyses had higher sensitivity and specificity
compared to each miRNA alone; accuracy was further
improved by adding lymph node infiltration and tumor
grade to the panel of three miRNAs. Furthermore, the

Fig. 6 Differential expression of the five circulating miRNAs in patients with late relapse. Relative expression levels of miR-21 (a), miR-23 (b), miR-
190 (c), miR-200b (d) and miR-200c (e) in plasma from patients who relapsed late (≥ 5 years) compared to patients without relapse during the
follow-up. Statistically significant differences were determined using the Mann-Whitney test
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combination of miR-200c, lymph node infiltration,
tumor grade and ER status predicted late relapse.
In breast cancer, clinically detectable metastases

emerge after a period of dormancy and can last for

varying and frequently prolonged periods of time. As
miRNAs regulate tumor progression and metastasis we
hypothesized that dormant tumors could be distin-
guished from faster-growing tumors by the differential

Fig. 7 ROC curve analysis. Plasma miR-21 (a), miR-23 (b), miR-190 (c), miR-200b (d) and miR-200c (e) and their ability to discriminate between
patients with relapse and those without relapse. Red asterisk indicates the highest Youden’s score index (sensitivity + specificity-1). AUC, area
under the curve
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Table 5 Performance of miRNAs and their combinations to predict relapse in patients with early breast cancer

Potential predictors Cutoff value Sensitivity (%) Specificity (%) AUC (95% CI) p

Early breast cancer

miR-21 0.98 71.4 63.9 0.685 (0.592–0.777) < 0.001

miR-23b 1.35 38.8 83.3 0.614 (0.512–0.716) 0.029

miR-190 2.36 75.6 45.2 0.636 (0.534–0.738) 0.013

miR-200b 1.72 51.0 72.3 0.597 (0.498–0.696) 0.063

miR-200c 1.15 75.5 61.0 0.678 (0.586–0.769) < 0.001

Three miRNAS (miR-21, miR-23b, miR-190) 0.39 80 65.3 0.765 (0.673–0.850) < 0.001

Lymph nodes and grade 0.29 83 46.7 0.709 (0.614–0.804) < 0.001

Three miRNAS plus lymph nodes and grade 0.41 89 76.2 0.873 (0.802–0.940) < 0.001

Late relapse (≥ 5 years)

miR-200c and lymph nodes, grade and ER status 0.42 75 89 0.89 (0.812–0.972) < 0.001

AUC area under the receiver operating curve, ER estrogen receptor

Fig. 8 Combined ROC curve analysis. A three-miRNA panel (a) and clinicopathological parameters (b) alone or a three-miRNA panel in combination
with clinicopathological parameters (c) and their ability to discriminate between patients with relapse and those without relapse and between patients
with late relapse (≥ 5 years) compared to those without relapse (d). Red asterisk indicates the highest Youden’s score index (sensitivity + specificity-1)
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expression of miRNAs [26]. We show for the first time
that miR-190 expression was lower in patients with
early relapse, suggesting a potential role for this
miRNA in sustaining tumor dormancy in breast cancer.
Indeed, miR-190 was among the most upregulated miR-
NAs in a dormancy-related miRNA signature [21].
miR-190 is involved in the regulation of the transforming
growth factor (TGF)β pathway and in breast cancer TGFβ
has been shown to promote bone and lung metastases
[27, 28]. Thus, miR-190 could induce tumor dormancy
through the modulation of TGFβ signaling [29].
Previous studies showed that miR-23b induced dor-

mant phenotypes in a bone marrow, metastatic, human
breast cancer cell line, induced cell cycle arrest in glioma
cancer stem cells and suppressed glioma cell migration
and invasion [20, 30, 31] . On the contrary, the
miR-23b/27b/24 cluster correlated with increased meta-
static potential in human breast cancer cell lines and
was upregulated in lung metastases from breast cancer
[32]. Moreover, high miR-23b/27b/24 expression was as-
sociated with poor outcome in breast cancer [33]. Our
results demonstrate higher plasma miR-23b expression
in patients who relapsed, indicating that it is more likely
associated with the development of metastases in breast
cancer. Interestingly, the mature sequence of miR-23a
differs by just one nucleotide in comparison to its para-
log miR-23b, therefore they could share the same puta-
tive target genes and similar biological functions.
However, there are reports showing distinct function be-
tween miR-23a and miR-23b and in contrast to
miR-23b, we detected no variations in miR-23a expres-
sion levels among the different patient cohorts [34, 35].
Various preclinical studies have established that

miR-21 is involved in tumor growth, invasion and migra-
tion, extracellular matrix modification and survival [36].
In primary breast cancer, miR-21 expression is
associated with tumor progression, advanced clinical
stage, lymph node metastasis and poor patient outcome
[37, 38]. In support of the tumor-promoting role of
miR-21, serum miR-21 distinguishes patients with breast
cancer from healthy controls and patients with distant me-
tastasis from those with locoregional disease, and it is as-
sociated with poor prognosis in breast cancer [36, 39, 40].
Accordingly, we show that high circulating miR-21 dis-
criminated between patients with early breast cancer who
relapsed and those who remained disease-free and specif-
ically, high expression was associated with late relapse. Im-
portantly, patients with high plasma miR-21 expression
levels had worse DFS and OS compared to patients with
low expression, whereas high miR-21 also emerged as an
independent predictive factor for shorter DFS (p = 0.003).
Iorio et al., demonstrated that the TGFβ gene was a target
for miR-21 and Yan et al. showed that TGFβ1 and the re-
ceptor TGFβR2 were identified among the putative target

genes of miR-21 [37, 38]. These data suggest that the
tumor promoting effects of miR-21 in breast cancer, could
be exerted through the regulation of TGFβ signaling.
The miR-200 family (miR-200a, miR-200b, miR-200c,

miR-141 and miR-429) has opposing roles in the regula-
tion of EMT and metastasis [41]. On one hand, they
negatively regulate the E-cadherin transcriptional repres-
sors ZEB1/2 preventing EMT and on the other, they
have been associated with global shifts in gene expres-
sion which promote metastatic colonization in breast
cancer mouse models [17, 42]. Conflicting results have
been also reported on the clinical relevance of miR-200
family members in breast cancer [43, 44]. By adopting a
global profiling approach, Madhavan et al. showed that
miR-200b and miR-200c were among the panel of six
miRNAs with significantly increased expression in pa-
tients with early breast cancer who developed metastases
[45]. Our results also support the association between
the plasma miR-200 family and metastatic progression
in breast cancer. Importantly, high miR-200c was associ-
ated with late relapse and emerged as an independent
prognostic factor for worse DFS (p = 0.037).
ROC curve analysis confirmed the value of the plasma

miRNAs in the prediction of disease recurrence in breast
cancer. The combination of miR-21, miR-23b and
miR-190 had higher accuracy compared to each miRNA
alone. Moreover, the addition of common clinicopatholog-
ical prognostic factors further improved the discrimin-
atory capability of the three miRNAs. These results
provide novel opportunities for breast cancer therapeutics
employing the aforementioned miRNAs in a combinator-
ial miRNA approach [46]. From a network analysis per-
spective, further insights might be achieved through the
incorporation of information on the expression of the
protein-coding mRNA associated to the involved miRNA.
The formulation of a model of intervention efficiency
based on a combination of miRNA, their gene targets and
associated pathways would thus provide complementary
information orthogonal to the one obtained from patho-
logical characteristics.
In breast cancer, late relapses are common and impose

considerable concern among disease-free patients, and
there are no accurate tools to identify patients at risk.
Importantly, in our study miR-200c expression com-
bined with the clinical information on axillary lymph
node status, tumor grade and ER status yielded an AUC
of 0.89 with sensitivity of 75% and specificity of 89% for
the prediction of late relapse (p < 0.001).
Our study is among the first to demonstrate the po-

tential of metastasis-promoting miRNAs to serve as cir-
culating predictive markers in early breast cancer.
Importantly, (a) this patient cohort had long-term follow
up, (b) plasma samples and clinical information were ob-
tained prospectively, (c) the prediction of relapse was
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possible years before metastasis emerged and (d) circu-
lating miRNAs added independent predictive value to
common clinicopathological parameters. Furthermore,
we considered pre-analytical and analytical parameters
very carefully, taking into account the variables that
could lead to bias in miRNA quantification [22, 47].
Limitations of our study include that results are de-

rived from the analysis of a relatively small group of pa-
tients and lack validation in an independent cohort.
However, by performing cross-validation analysis of our
data [48], the predictive performance of the aforemen-
tioned miRNAs was confirmed, therefore it could prob-
ably be verified in an independent dataset. Nevertheless,
our results should be viewed as preliminary and warrant
prospective validation in a larger cohort of patients with
early disease.

Conclusions
Our results suggest that dormancy and metastasis-related
miRNAs are differentially expressed in plasma in patients
with early breast cancer who experience disease recur-
rence and in those that will remain disease-free. The iden-
tified miRNAs might be of potential use in the
development of a multimarker blood-based test to com-
plement and improve prognostication based on clinico-
pathological characteristics. Furthermore, these results
imply that circulating miRNAs could serve as novel surro-
gate markers for the presence of occult micro metastatic
disease and for increased risk of recurrence in early breast
cancer. Finally, they provide potential insights into the
procedures and pathways involved in the regulation of
dormancy and metastasis in breast cancer.
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