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Abstract

Protein design algorithms enumerate a combinatorial number of candidate structures to

compute the Global Minimum Energy Conformation (GMEC). To efficiently find the GMEC,

protein design algorithms must methodically reduce the conformational search space. By

applying distance and energy cutoffs, the protein system to be designed can thus be repre-

sented using a sparse residue interaction graph, where the number of interacting residue

pairs is less than all pairs of mutable residues, and the corresponding GMEC is called the

sparse GMEC. However, ignoring some pairwise residue interactions can lead to a change

in the energy, conformation, or sequence of the sparse GMEC vs. the original or the full

GMEC. Despite the widespread use of sparse residue interaction graphs in protein design,

the above mentioned effects of their use have not been previously analyzed. To analyze the

costs and benefits of designing with sparse residue interaction graphs, we computed the

GMECs for 136 different protein design problems both with and without distance and energy

cutoffs, and compared their energies, conformations, and sequences. Our analysis shows

that the differences between the GMECs depend critically on whether or not the design

includes core, boundary, or surface residues. Moreover, neglecting long-range interactions

can alter local interactions and introduce large sequence differences, both of which can

result in significant structural and functional changes. Designs on proteins with experimen-

tally measured thermostability show it is beneficial to compute both the full and the sparse

GMEC accurately and efficiently. To this end, we show that a provable, ensemble-based

algorithm can efficiently compute both GMECs by enumerating a small number of conforma-

tions, usually fewer than 1000. This provides a novel way to combine sparse residue interac-

tion graphs with provable, ensemble-based algorithms to reap the benefits of sparse

residue interaction graphs while avoiding their potential inaccuracies.
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Author summary

Computational structure-based protein design algorithms have successfully redesigned

proteins to fold and bind target substrates in vitro, and even in vivo. Because the complex-

ity of a computational design increases dramatically with the number of mutable residues,

many design algorithms employ cutoffs (distance or energy) to neglect some pairwise resi-

due interactions, thereby reducing the effective search space and computational cost.

However, the energies neglected by such cutoffs can add up, which may have nontrivial

effects on the designed sequence and its function. To study the effects of using cutoffs on

protein design, we computed the optimal sequence both with and without cutoffs, and

showed that neglecting long-range interactions can significantly change the computed

conformation and sequence. Designs on proteins with experimentally measured thermo-

stability showed the benefits of computing the optimal sequences (and their conforma-

tions), both with and without cutoffs, efficiently and accurately. Therefore, we also

showed that a provable, ensemble-based algorithm can efficiently compute the optimal

conformation and sequence, both with and without applying cutoffs, by enumerating a

small number of conformations, usually fewer than 1000. This provides a novel way to

combine cutoffs with provable, ensemble-based algorithms to reap the computational effi-

ciency of cutoffs while avoiding their potential inaccuracies.

Introduction

Computational structure-based protein design is an emerging field with many applications in

basic science and biomedical research [1]. Protein sequences have been designed to fold to spe-

cific tertiary structures [2–5]. Novel biological functions have been achieved by constructing

new ligand binding sites and by switching binding specificities of enzymes [6–13]. New drugs,

antibodies and nanobodies have been developed for therapeutic purposes by designing pro-

tein-protein and protein-ligand interfaces [14–19]. Negative design has also been used for pre-

dicting resistance mutations for highly drug-resistant pathogens [20, 21]. The above mentioned

studies are examples of the predictive power of computational protein design algorithms.

A major challenge for protein design algorithms is to efficiently explore and evaluate a vast

sequence and conformational search space, which increases exponentially with the number of

design positions and mutations allowed. Most design algorithms use a rigid backbone and

model side-chain flexibility using a discrete set of frequently-observed, low-energy conforma-

tions called rotamers [22]. However, even with a pairwise energy function, rigid backbone and

rotamer libraries, identification of the Global Minimum Energy Conformation (GMEC) is

NP-hard [23, 24]. Moreover, modeling of additional protein flexibility (both in the backbone

and side chains) for realistic biological representation increases the search space [1–3, 6, 9, 10,

12, 25–33], which in turn results in increased runtime for protein design algorithms. Due to

increased complexity, numerous heuristic techniques have been used to find a locally optimal

solution and generate solutions quickly [6, 7, 25–27, 34–38]. Provable algorithms, on the other

hand, guarantee the quality of the solutions found relative to the input model, and can generate

a gap-free list of low-energy conformations within a given energy window of the GMEC [39].

One example is dead-end elimination (DEE) [28, 30–32, 40] followed by A� search [29, 41, 42],

which has been used to approximate the thermodynamic ensemble and approximate the bind-

ing constant Ka [11, 43, 44]. However, in general provable algorithms require additional time

and memory. With limited resources, it is important for design algorithms to systematically

reduce the search space, without compromising on the quality and accuracy of design
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predictions. One way to do this is to use sparse residue interaction graphs for protein design,

as described below.

Sparse residue interaction graphs and protein design

Frequently, the goal of a protein design problem is to find the lowest energy sequences or con-

formations. Most protein design algorithms use pairwise energy functions to score protein con-

formations. Any such protein design problem can be represented by a residue interaction graph,

where the nodes represent residues, and edges represent the interaction between residues. The

energy functions usually consist of distance-dependent terms to model van der Waals and elec-

trostatic interactions between residue pairs, and the interaction energy decreases with increas-

ing distance between residues. Therefore, it is possible to neglect interaction energies between

distant residues and not add them to the overall energy of a conformation. This eliminates

edges between these negligibly-interacting residues from the residue interaction graph to con-

struct a sparse residue interaction graph, with the corresponding GMEC called the sparse
GMEC. We will refer to the residue interaction graph with no edges eliminated as the full resi-

due interaction graph, and the corresponding GMEC as the full GMEC.

Whether explicitly described or not, the concept of sparse residue interaction graphs is

ubiquitous in the field of protein design. Many design algorithms apply appropriate distance

cutoffs implicitly in the energy function (using different cutoffs for different kinds of energies

calculated) [24, 45–52], while others develop new algorithms to take explicit advantage of the

sparseness of the residue interaction graph [53–60]. By using sparse residue interaction graphs,

the number of interacting residue pairs is fewer than all pairs of mutable residues, and this

reduces the effective search space considerably. However, the energies omitted by deleting the

edges between negligibly interacting residues can add up, causing differences in sequence

(such as amino acid identity) of the GMEC returned or the rankings of the top sequences (spe-

cific examples are discussed in detail in the Sections entitled “Results” and “Discussion”).

While small sequence differences might not be consequential, larger differences in energies

and sequences can lead to design algorithms returning a protein sequence that may not have

the desired function. Therefore there is a potential tradeoff between reducing the search space

and guaranteeing the accuracy and quality of the computed GMEC. Despite the widespread

use of sparse residue interaction graphs in protein design, the effects of this tradeoff have not

been previously analyzed.

In this paper, we present the results of our analysis of using sparse residue interaction graphs

in protein design. We implemented a variation of the A� search algorithm in the protein design

software OSPREY [43], for design with sparse residue interaction graphs to return the corre-

sponding GMEC. OSPREY has been used in many successful designs in vitro [11, 13–15, 17, 18,

20], and even in vivo [14, 15, 18, 20]. We ran computational experiments on a total of 136 pro-

tein design problems, involving core, boundary, and surface residues. We used different energy

and distance cutoffs to generate the sparse residue interaction graph, and analyzed the sequence

and energy differences between the different GMECs returned. Our results show that com-

monly used distance cutoffs can return a GMEC whose sequence is different than that of the

GMEC returned without those cutoffs. The underlying assumption when using distance and

energy cutoffs is that neglecting long-range interactions do not have an effect on local interac-

tions. We show that, contrary to this assumption, neglecting long-range interactions can alter

favorable local interactions. Changes to the sequence and loss of favorable interactions between

residues can both result in structural and functional changes to the predicted protein.

Next, in order to study if the sequence differences between the full and the sparse GMEC

lead to functional differences, we performed retrospective validation on 6 protein design
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problems for which experimentally determined thermal stability data was available, and ana-

lyzed the sequences differences between the GMECs returned with and without distance cut-

offs. Our analysis shows that across all 6 design problems, the sparse and full GMEC

predicted different amino acid identities at 13 residues. Out of these 13 residues that have a

different amino acid identity in the two GMECs, the more thermostabilizing mutation is pre-

dicted by the GMEC of the sparse residue interaction graph for 7 residues, and by the GMEC

of the full residue interaction graph (without using distance cutoffs) for the remaining 6 resi-

dues. This indicates that there is no clear trend on which of the two GMECs will predict

mutations with the desired function in vitro. Moreover, it can be difficult to correctly choose

between the GMEC of the full residue interaction graph and its less computationally expen-

sive sparse equivalent. Therefore it is beneficial to compute the GMECs for both the full and

the sparse residue interaction graph, and to do so efficiently, while still taking advantage of

the computational benefits of the reduced search space induced by the sparse residue interac-

tion graph.

To achieve this goal, we provide a novel approach, called Energy-bounding enumeration, to

combine sparse residue interaction graphs with provable, ensemble-based algorithms to gener-

ate both the GMECs efficiently. The gap-free list of low-energy conformations returned by an

ensemble-based provable algorithm is guaranteed to contain the GMEC for the full residue

interaction graph [59]. From this list, we prove that this GMEC can be found in additional

O(kn2) time, where n is the number of mutable residues, and k is the number of conformations

generated. We show that in practice, the full GMEC is almost always found within the first

1000 conformations returned. Because the number of conformations required to capture the

GMEC is usually small, protein designers can henceforth combine sparse residue interaction

graphs with provable, ensemble-based algorithms to exploit the reduced search space and still

compute the GMECs for both the full and the sparse residue interaction graph. In short: sparse

residue interaction graphs induce substantial differences in predicted sequences, conforma-

tions, and energies, with no way of telling which model will best predict the desired function.

But provable, ensemble-based algorithms rescue computational protein design from these dif-

ficulties by providing a way to compute both GMECs efficiently.

In particular, this paper makes the following contributions:

1. Implementation of a variation of the A� search algorithm in the open-source protein design

package OSPREY [11, 15–18, 20, 43] for protein design with sparse residue interaction graphs,

and proof of the asymptotic time complexity to enumerate the GMEC from the gap-free list

of conformations enumerated by this variant of A�.

2. Results showing that commonly used distance cutoffs can introduce large energy, confor-

mation, and even sequence changes in the GMEC.

3. Examples showing that neglecting long-range interactions can alter local interactions, and

an analysis of the sequence changes introduced when using sparse vs. full residue interac-

tion graphs.

4. Retrospective designs and analysis of 6 protein design problems with experimentally mea-

sured thermostability drawn from the literature, emphasizing the benefits of computing the

GMEC of both the full and the sparse residue interaction graph efficiently.

5. A novel approach, called Energy-bounding enumeration, to compute the GMEC of both the

full and the sparse residue interaction graph in the gap-free list of conformations enumer-

ated using the sparse residue interaction graph, and showing that the GMEC of the full resi-

due interaction graph is usually found within the first 1000 conformations returned.
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6. Examples of protein design problems in which A� with the full interaction graph failed to

compute the GMEC, but using sparse residue interaction graphs allowed A� to compute the

corresponding GMEC and also enumerate a gap-free list of conformations which is likely

to contain the GMEC of the full graph.

Materials and methods

Definitions related to sparse residue interaction graphs

Each protein design problem is defined by its input model, namely, the input protein structure,

the mutable residues, the allowed amino acids at each mutable residue, allowed side-chain con-

formations, and energy function.

Given this input model, the interaction energy between the mutable residues can be repre-

sented as an undirected graph, where vertices represent mutable residues, and edges represent

pairwise interactions. An edge is present between two vertices when the pairwise energies

between the two corresponding residues are included in the energy function. When the input

energy function models all interactions between all mutable residues as pairwise energies, the

residue interaction graph representing these interactions is the complete graph. We will refer to

the complete residue interaction graph as the full graph. Every edge in the graph corresponds

to a pairwise interaction between two mutable residues. By applying distance or energy cutoffs,

the pairwise interactions between some mutable residues are omitted from the energy func-

tion. For every pair of residues (vertices) whose interactions are omitted, the corresponding

edge between that pair is deleted from the residue interaction graph. This sparse graph, whose

omitted edges correspond to the pairwise interactions omitted by the energy function, is called

the sparse residue interaction graph. We will refer to the GMEC (which encodes both the con-

formation and sequence) of the full graph as the full GMEC and the GMEC of the sparse graph

as the sparse GMEC. We will show that the full GMEC and sparse GMEC can be different, in

both conformation and sequence. For any given conformation, we will refer to its computed

energy with respect to the full graph as its full energy, and its energy with respect to the sparse

graph as its sparse energy. For convenience, we will use δ and α to refer to distance and energy

cutoffs, respectively:

• Distance cutoffs prune edges between two mutable residues whose minimum distance

between any two atoms over all allowed rotamers is greater than a user-specified Euclidean

distance δ.

• Energy cutoffs prune edges between two mutable residues whose maximum absolute pair-

wise energy over all allowed rotamers is less than a user-specified energy α.

Fig 1 shows the full and sparse residue interaction graphs for a protein design problem with

8 mutable residues. In this section, we have given high-level intuition for sparse residue inter-

action graphs, and their corresponding energy functions. For the proofs of Lemma 1 and

Lemma 2 in S1 Text, however, precise definitions are useful to provide a mathematical basis

for our claims. Hence, in S2 Text, we provide formal definition of a residue interaction graph,

the sparse residue interaction graph, and the corresponding GMECs computed using such

interaction graphs. We also provide a mathematical model for the cutoff criteria used to prune

pairwise interactions from a residue interaction graph.

Computational experiments

To study the sequence differences between the full and the sparse GMEC caused due to

neglecting some pairwise energies, we need to compute the sparse GMEC first. We use the
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protein redesign package developed by the Donald lab, OSPREY for this study [43]. This section

describes the changes made to OSPREY to compute the sparse GMEC, and the computational

experiments designed to study the differences between the full and the sparse GMEC.

OSPREY uses dead-end elimination (DEE) followed by the A� search algorithm [41, 42, 61,

62] to provably return the GMEC and enumerate conformations in order of increasing energy.

DEE prunes a significant portion of the possible conformations, and following that, A� search

explores the unpruned search space to ensure that the first conformation returned is the

GMEC. After the GMEC is returned, A� continues to enumerate conformations in increasing

order of energy, until either all conformations within an energy window Ew of the GMEC are

enumerated, or the number of conformations returned reaches a user defined number. A�

guarantees that all conformations within Ew of the GMEC are returned, and the list of confor-

mations enumerated is gap-free.

To generate the sparse GMEC, we modified the A� search algorithm used by OSPREY to cal-

culate the sparse energy of a conformation (Eq. 2 in S2 Text). We will refer to this variant of

the A� search algorithm as Sparse A�. Sparse A� evaluates conformations based on sparse

energy (as opposed to full energy in traditional A� search), and can now be used for protein

design with sparse residue interaction graphs. As Sparse A� retains all the guarantees provided

by the A� search algorithm (because the algorithm is unmodified), the first conformation

returned by Sparse A� is guaranteed to be the sparse GMEC, and it can also return a gap-free

list of conformations within Ew of the sparse GMEC in increasing order of sparse energy. This

property of Sparse A� is used to prove a surprising result, namely, that Sparse A� can efficiently

generate not only the sparse GMEC, but also the full GMEC. This will be discussed later in the

Section entitled “Discussion”.

Computational experiments were performed on the following design problems to generate

the full and the sparse GMEC, and subsequently the energy, conformational, and sequence dif-

ferences were analyzed:

• Core designs: 62 protein design problems, with the number of mutable residues ranging

from 4-15 (each residue allowed to mutate to 5-10 amino acids) were taken from [32] and

used with the same mutable residues and allowed amino acids.

• Boundary designs: PDB files for protein structures used in [32] were run through Naccess

[63] to calculate the relative accessible surface area (RSA) for each residue. The residues with

Fig 1. Example of a sparse residue interaction graph. (a) Cobrotoxin protein (PDB id: 1V6P) with the wild-type side chains of the 8 core

mutable residues shown in cyan. (b) Design problem in (a) represented as a full residue interaction graph where all pairs of residues interact.

(c) Design problem in (a) represented as a sparse residue interaction graph using a distance cutoff of δ = 8 Å.

https://doi.org/10.1371/journal.pcbi.1005346.g001
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RSA between 20-50% were classified as boundary residues. Terminal residues, residues

forming disulfide bonds, and prolines were not designed. 46 design problems were chosen

and at most 20 residues were designed in each case. The residues were allowed to mutate to

their wild-type identities and all amino acids except proline.

• Surface designs: PDB files for protein structures used in [32] were run through Naccess [63]

to calculate the relative accessible surface area (RSA) for each residue. The residues with

RSA between 50-80% were classified as surface residues. Terminal residues, residues forming

disulfide bonds, and prolines were not designed. 28 design problems were chosen and at

most 20 residues were designed in each case. The residues were allowed to mutate to their

wild-type identities and all polar and charged amino acids.

In all experiments, the DEE pruning stage was followed by either A� to get the full GMEC,

or the following two steps to generate the sparse GMEC and gap-free list of conformations: 1)

sparse residue interaction graph generation using a user-defined distance cutoff δ or energy

cutoff α, and 2) Sparse A� run to generate the sparse GMEC. For each design problem, Sparse

A� was run four times using the following distance or energy cutoffs:

• δ = 8 Å;

• δ = 7 Å;

• α = 0.1 kcal/mol;

• α = 0.2 kcal/mol.

To further investigate how the differences in predicted sequence and conformation between

the full and the sparse GMEC correlate with experimental measurements, we performed retro-

spective validation against 6 full-sequence designs from the literature, for which the designed

mutants were experimentally determined to have improved thermal stability over the wild

type [64–67]. Each example taken from the literature consisted of a protein redesign with an

input structure together with experimentally measured melting point measurements showing

a more thermostable designed mutant compared to the wild type sequence. We then per-

formed computational redesign on the input structure. Consecutive residues of one or more

adjacent secondary structures were allowed to either retain the wild-type identity or mutate to

the amino acid identity of the designed, thermostabilized mutant. To compute the full GMEC,

DEE pruning was followed by A� search. To compute the sparse GMEC, DEE pruning was fol-

lowed by the generation of the sparse residue interaction graph with distance cutoff 7 Å, and

then Sparse A� search. The number of mutable residues varied from 10-19 residues. The full

and the sparse GMEC were then correlated against the measured melting point data.

The input model consists of a rigid backbone, rigid, discrete side-chain rotamers, and a

pairwise energy function. All designs were done keeping the backbone fixed and modeling

side-chain flexibility using the modal values of rotamers from the Penultimate rotamer library

[22]. The energy function consisted of the AMBER van der Waals and electrostatic terms and the

EEF1 pairwise implicit solvation model, as described in [11, 43]. Protein design formulations

that consider additional side-chain flexibility [29, 32], backbone flexibility [28, 30, 31], free

energy calculations [44, 61], or more accurate energy functions [68] have been developed. Nev-

ertheless most of them call as a subroutine the simplified model discussed in this paper, which

can be viewed as a core calculation common to most protein design software. Hence, the accu-

racy of this computation bounds the accuracy of the overall design. For more details on the

input model, such as protein structures, mutable residues, and design protocol, please refer to

S3 Text.
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Results

Out of the 62 core, 46 boundary, and 28 surface protein redesign problems, A� returned the

full GMEC, and Sparse A� returned the sparse GMEC (with all four distance and energy cut-

offs given in the Section entitled “Computational experiments“) for all 62 core, 21 boundary,

and 12 surface design problems, shown as green dots in Fig 2. These design problems were

used to study the effects of different distance and energy cutoffs. Three kinds of differences

Fig 2. Overview of the 136 protein design test problems on 62 proteins studied in this paper. Different problems required different

amounts of resources. (a) 62 core protein design problems, (b) 46 boundary design problems, and (c) 28 surface design problems. Design

problems where A* returned the full GMEC and Sparse A* returned the sparse and the full GMEC are shown in green. Design problems

where A* ran out of memory (30GB) before returning the full GMEC and Sparse A* returned the sparse GMEC are shown in blue. Design

problems where both A* and Sparse A* ran out of memory (30GB) before returning any conformation are shown in red.

https://doi.org/10.1371/journal.pcbi.1005346.g002
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were studied between the full and the sparse GMEC for each of the distance and energy cutoffs:

rotamer, sequence, and energy. The following subsections (entitled “Core redesign”, “Bound-

ary redesign”, and “Surface redesign”) discuss the details of this analysis. The protein design

problems for which only Sparse A� run finished (blue points) and for which both A� and

Sparse A� ran out of memory (red points) are discussed in the Section entitled “Discussion”.

Core redesign

For 62 core designs, Sparse A� with both distance cutoffs returned the sparse GMEC identical

to the full GMEC for all 62 design problems, and in 59 design problems with energy cutoff α =

0.1 kcal/mol, and in 58 design problems with energy cutoff α = 0.2 kcal/mol. For the four core

problems where the full GMEC was different from the sparse GMEC, the full GMEC was the

second conformation returned by Sparse A�, and the energy difference between the full and

the sparse GMEC was less than the energy cutoff of 0.2 kcal/mol. Out of these four design

problems, two had sequence differences between the full and the sparse GMEC: the human

sulfite oxidase cytochrome b5 domain (PDB id: 1MJ4) and bacterial iron-sulfur protein (PDB

id: 3A38) had single amino acid differences between the full and the sparse GMEC (residue 50

for 1MJ4 and residue 26 for 3A38). In both cases, serine in the full GMEC was replaced by ala-

nine in the sparse GMEC. Except for these two cases, distance and energy cutoffs did not have

sequence-changing effects on the GMEC returned for core designs. Interestingly, using an

energy cutoff of 0.2 kcal/mol results in omitting a large fraction of residue pairs for most of the

core design problems, between 45% to 80% (S1 Fig). Despite the tightly packed nature of the

protein core, the energy interactions were less than 0.2 kcal/mol, which is less than the typical

van der Waals interaction energy of 0.5-1 kcal/mol.

Boundary redesign

Unlike core designs, the number of boundary design problems where the sparse GMEC was

identical to the full GMEC was larger for energy cutoffs than distance cutoffs, as shown in Fig

3(a). The energy cutoff of α = 0.1 kcal/mol gave the best results, returning the sparse GMEC

identical to the full GMEC in 19 out of the 21 boundary design problems. For problems where

the full GMEC and the sparse GMEC were different, the full energy and sequence difference

between the full and the sparse GMEC are larger for distance cutoffs than for energy cutoffs,

(Fig 3(b) and 3(c)), with the distance cutoffs introducing sequence differences in a total of 24

residues as compared to 11 residues with energy cutoffs (S1 Table). For a single design prob-

lem, this number can be as high as 6 (C-terminal domain of the Rous Sarcoma Virus capsid

protein, PDB id: 3G21), which is more than one-third of the 15 mutable residues for that

design problem.

Surface redesign

Similar to boundary design problems, energy cutoffs returned a sparse GMEC which was iden-

tical to the full GMEC in more cases than distance cutoffs did. The sparse GMEC is identical

to the full GMEC in 10 out of the 12 surface design problems for energy cutoff α = 0.1 kcal/

mol, and only for 1 out of 12 for distance cutoff δ = 7 Å (Fig 4(a)). Sequence differences

between the full and the sparse GMEC occur even though the energy differences between

these GMECs are small. Unlike boundary designs, where in a few cases the energy cutoffs

introduced more sequence differences between the full and the sparse GMEC, the energy cut-

off of α = 0.1 kcal/mol has a smaller or equal number of sequence differences than distance cut-

offs in all 12 surface design problems, as shown in Fig 4(c). Overall, distance cutoffs
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introduced sequence differences in a total of 25 residues, as compared to 9 residues for energy

cutoffs (S2 Table).

Since distances between residues on the surface of the protein are larger as compared to

boundary or core regions, Sparse A� was run for the 12 surface designs problems again with a

Fig 3. Sparse residue interaction graphs introduce differences in energy, conformation, and sequence of the GMEC. Data shown

for 21 boundary design problems, for each of which Sparse A* was run with the following cutoffs: distance cutoff δ = 8 Å, δ = 7 Å, energy

cutoff α = 0.1 kcal/mol and α = 0.2 kcal/mol. Number of mutable residues in each design problem ranged from 10-20. (a) Number of design

problems where full GMEC and sparse GMEC are identical (purple), and where the sequences of the full GMEC and sparse GMEC are

identical (cyan). The total number of boundary design problems (21) is indicated by the horizontal red line. (b) Percentage of edges deleted

from the residue interaction graph vs. the full energy difference between full GMEC and sparse GMEC. (c) Number of residues with different

amino acids between the full GMEC and the sparse GMEC. y-axis value of 0 indicates that the sequences of the full GMEC and the sparse

GMEC are identical.

https://doi.org/10.1371/journal.pcbi.1005346.g003
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distance cutoff δ = 10 Å. This resulted in the sparse GMEC being identical to the full GMEC

for 5 out of 12 design problems, as compared to 3 out of the 12 design problems for δ = 8 Å.

For one additional case (bacterial oxidized ferredoxin protein, PDB id: 1IQZ), the number of

amino acid sequence differences was reduced. However, this still only increases the number of

design problems for which the full GMEC and the sparse GMEC are identical to half of the 10

when using the energy cutoff of α = 0.1 kcal/mol. Overall, increasing the distance cutoff from 8

Å to 10 Å decreased amino acid differences in only 3 out of the 9 design problems. In human

CD59 glycoprotein (PDB id: 2J8B), the number of amino acid sequence differences is 5 with

distance cutoffs of 7 Å, 8 Å, and 10 Å, and increasing the distance cutoff led to no change in

the sequence difference between the full and the sparse GMEC whatsoever.

Large long-range interactions neglected by distance cutoffs

The above results suggest that using distance cutoffs can neglect long range interactions

between residue pairs, and cause significant sequence differences between the GMECs

Fig 4. Sparse residue interaction graphs introduce differences in energy, conformation, and sequence of the GMEC. Data shown

for 12 surface design problems, for each of which Sparse A* was run with the following cutoffs: distance cutoff δ = 8 Å, δ = 7 Å, energy cutoff

α = 0.1 kcal/mol and α = 0.2 kcal/mol. Number of mutable residues in each design problem ranged from 11-19. (a) Number of design

problems where full GMEC and sparse GMEC are identical (purple), and where the sequences of the full GMEC and sparse GMEC are

identical (cyan). The total number of boundary design problems (12) is indicated by the horizontal red line. (b) Percentage of edges deleted

from the residue interaction graph vs. the full energy difference between full GMEC and sparse GMEC. (c) Number of residues with different

amino acids between the full GMEC and the sparse GMEC. y-axis value of 0 indicates that the sequences of the full GMEC and the sparse

GMEC are identical.

https://doi.org/10.1371/journal.pcbi.1005346.g004
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returned (S2 Fig, S1 and S2 Tables). Using a larger distance cutoff (10 Å) did little to improve

the results. Neglecting these long range interactions tends to have a larger effect on boundary

and surface designs than on core designs. To investigate this further, the maximum energy (in

absolute value) contributed over all rotamer pairs by each of the edges deleted using distance

and energy cutoffs were analyzed. To eliminate any uncertainties, the results of core, bound-

ary, and surface designs on the same protein structure were used for this analysis. Fig 5 shows

the distribution of omitted pairwise energies of sparse graphs generated with either distance or

energy cutoffs for 36 different protein design problems over 6 different structures. For the 6

protein structures shown in Fig 5, using distance cutoffs in boundary and surface designs can

delete edges from the residue interaction graph with larger interaction energies, as compared

to using energy cutoffs. The opposite occurs for core designs. This is consistent with the fact

that both the distance cutoff δ = 7 Å and energy cutoff α = 0.2 kcal/mol had similar results for

core designs, but for boundary and surface designs, the number of residues with different

amino acids between the full and the sparse GMEC is larger for the distance cutoff than for the

energy cutoff, except for bacterial cytochrome C-553 protein (PDB id: 1C75). By definition,

energy cutoffs only delete an edge when its maximum absolute energy contribution is smaller

than the specified limit. By contrast, distance cutoffs delete edges whose energy contributions

can vary arbitrarily from being very small (0.05 kcal/mol) to being very large (almost 0.9 kcal/

mol). As such, our results foreground a key difference between distance cutoffs and energy cut-

offs: in terms of the energy contributed by each edge, precomputed energy cutoffs are more

precise. While distance cutoffs omit any sufficiently distant pairwise interaction, providing

limited control over the energy contributions of the omitted edges, energy cutoffs will never

omit any pairwise interaction that can exceed the specified energy cutoff. Therefore energy

cutoffs allow greater precision in selection of low-energy pairwise interactions.

One reason distance cutoffs are widely used is the assumption that sufficiently distant

interactions do not affect local interactions. Our results indicate that this is not always true.

Fig 5. Distance cutoffs can delete edges with large (almost 0.9 kcal/mol per edge) interaction energy. The maximum (in absolute

value) value of interaction energy for 18 test cases: each deleted edge with distance cutoff δ = 7 Å (blue) and energy cutoff α = 0.2 kcal/mol

(red), for core (C), boundary (B), and surface (S) designs for 6 protein structures.

https://doi.org/10.1371/journal.pcbi.1005346.g005
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Figs 6 and 7 show the sequence differences between the full GMEC and the sparse GMEC with

distance cutoff δ = 8 Å in two such examples from bacterial cytochrome C-553 protein (PDB

id: 1C75) and a domain of pneumococcal histidine triad A protein (PDB id: 2CS7). In both

cases, neglecting the interaction between the distal residues (red) and the two proximal resi-

dues (cyan) leads to a missing hydrogen bond. In Fig 6, the amino acids of the full GMEC are

replaced with entirely different amino acids. In the sparse GMEC, residue 17 is an arginine

Fig 6. Sequence differences with full vs. sparse residue interaction graphs: hydrogen bond is disrupted when long-range

interactions are omitted. Comparison between the sequences of the full and sparse GMEC for the surface design of domain of

pneumococcal histidine triad A protein (PDB id: 2CS7) are shown. (a) Mutable residues of the sparse GMEC. Protein backbone is shown in

black. Residues 17 and 32 are shown in cyan. With distance cutoff δ = 8 Å, the interactions between red and cyan residues are eliminated in

the sparse residue interaction graph. (b) Solid brown lines indicate residues interacting with the cyan residues in the sparse residue

interaction graph. Amino acids at residues 17 and 32 from the sparse GMEC are shown in cyan. (c) Residues 17 and 32 of the sparse

GMEC. (d) Residues 17 and 32 of the full GMEC. Note that the hydrogen bond between residues 17 and 32 (Lys:Glu) in the full GMEC (d) is

lost in the sparse GMEC (c), where the side chain of residue 17 (Arg) forms hydrogen bonds with nearby backbone atoms. Hydrogen bonds

are shown as green dotted-pillows that indicate the overlap between the vdW spheres of the hydrogen and the acceptor atom, generated

using Probe [69].

https://doi.org/10.1371/journal.pcbi.1005346.g006
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instead of a lysine, and residue 32 is a histidine instead of a glutamic acid. While residue 17

and residue 32 of the full GMEC form a hydrogen bond, in the sparse GMEC the arginine at

residue 17 forms hydrogen bonds with the backbone instead. In Fig 7, the amino acids at resi-

dues 56 and 59 are swapped between the full and the sparse GMEC. These examples illustrate

two cases in which neglecting long-range interactions can disrupt favorable local interactions.

In general, for the design problems analyzed in this paper, the disruption of local interactions

is more common in surface designs. For 4 surface design problems, the interaction between

Fig 7. Sequence differences with full vs. sparse residue interaction graphs: hydrogen bond is disrupted when long-range

interactions are omitted. Comparison between the sequences of the full and sparse GMEC for the surface design of bacterial cytochrome

C-553 protein (PDB id: 1C75) are shown. (a) Mutable residues of the sparse GMEC. Protein backbone is shown in black. Residues 56 and

59 are shown in cyan. With distance cutoff δ = 8 Å, the interactions between red and cyan residues are eliminated in the sparse residue

interaction graph. (b) Solid brown lines indicate residues interacting with the cyan residues in the sparse residue interaction graph. Amino

acids at residues 56 and 59 from the sparse GMEC are shown in cyan. (c) Residues 56 and 59 of the sparse GMEC, where the hydrogen

bond is lost. (d) Residues 56 and 59 of the full GMEC, that form the hydrogen bond. Hydrogen bonds are shown as green dotted-pillows that

indicate the overlap between the vdW spheres of the hydrogen and the acceptor atom, generated using Probe [69]. This hydrogen bond is

lost in the sparse GMEC (c).

https://doi.org/10.1371/journal.pcbi.1005346.g007
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two mutable residues is different in the full and the sparse GMEC. In 3 of these cases a favor-

able local interaction is lost by using distance cutoff 7 Å.

Retrospective validation against experimental data

To study how well the sequence differences between the full and the sparse GMEC correlate

with experimental measurements, we conducted retrospective design experiments. As

described in the methods section (entitled “Computational experiments”), we took examples

of wild-type proteins from the literature which were computationally redesigned to improve

thermostability (the designed protein had higher Tm than the wild-type protein) [64–67], and

redesigned a subset of each protein, allowing mutable residues to either retain their wild-type

identity or mutate to the corresponding amino acid identity of the more stable designed

mutant. We computed the full and the sparse GMEC for all 6 design problems and then com-

pared the GMECs to identify differences in sequence, energy, and conformation. We corre-

lated the difference in sequence with experimentally measured melting temperature data.

Amino acid identities were restricted in the redesign procedure to ensure that any difference

in sequence between the full and the sparse GMEC would correspond to either the less or the

more stable protein sequence, and hence could be directly validated against the melting tem-

perature data. The designed search space ranged from 6.65 × 1015 to 6.13 × 1025 conformations

(see the section entitled “Rank of full GMEC in practice”).

For 5 of the 6 protein design problems, amino acid differences between the full and sparse

GMEC were found. In the sixth design problem, the sparse GMEC and full GMEC predicted

the same sequence, but have different side-chain conformations. Table 1 lists the residue num-

bers for the 5 problems in which the full and sparse GMEC differed in sequence. For the two

residues that have different amino-acid identity between the full and the sparse GMEC for the

B1 domain of protein L (PDB id: 1HZ5), the full GMEC predicts the amino acid identities in

the more stable designed protein for both Lys 4 and Glu 26. In contrast, for the U1 nuclear

ribonucleoprotein A (PDB id: 1URN) the sparse GMEC predicts the amino acid identity in the

more stable protein for both Gln 93 and Asp 97. For the designed engrailed homeodomain

Table 1. Sequence correlation between designed mutant and wild type. The table shows mutable residues at which the sparse and full GMEC predict dif-

ferent amino acid identities: one predicted the amino acid identity of the more stable designed mutant, and the other predicted the amino acid identity of the

less stable wild type. The amino acid identity of the designed mutant is in bold. The wild-type amino acid identity is not in bold.

Protein Structure PDB id Residue Number Full GMECa Sparse GMECb

Protein L [65] 1HZ5 4 Lys Val

26 Glu Phe

U1A [65] 1URN 93 Ile Gln

97 Met Asp

Engrailed Homeodomain of D. melanogaster [64] 1ENH 47 Ile Gln

55 Arg Lys

Symmetric protein homodimer [66] 2MG4 52 Asn Arg

54 Arg Glu

Acylphosphatase [65] 2ACY 8 Gln Ser

10 Lys Asp

14 Lys Phe

16 Asp Lys

76 Lys Asp

aFull GMEC amino acid identity
bSparse GMEC amino acid identity.

https://doi.org/10.1371/journal.pcbi.1005346.t001
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dimer (PDB id: 2MG4), the sparse GMEC predicts the amino acid identity of the more stable

protein for both Arg 52 and Glu 54. For the remaining two protein design problems, at some

residues the full GMEC predicts the amino acid identity of the more stable designed protein,

and for other residues the sparse GMEC predicts the amino acid at the more stable designed

protein instead. Comparison of the complete sequences of the sparse and full GMEC can be

found in the S3 Table. In summary, for the 5 design problems, there are 13 residues where the

sparse and full GMEC predicted different amino acids. For these 13 residues, the amino acid

identity of the more stable designed protein is predicted by the full GMEC for 6 residues, and

by the sparse GMEC for the other 7 residues. These results suggest that when using a rigid

backbone, rigid rotamer, GMEC-only input model and sparse or full pairwise energy function,

it is unclear which of the two GMECs (sparse or full) will correspond to the desired protein

function (in this case, improved thermostability).

We then analyzed the sparse residue interaction graph to determine the significance of the

omitted edges. In particular, we identified pairwise interactions whose omission would change

the sequence of the computed GMEC. Table 2 lists these omitted pairwise interactions, the

minimum distance (closest Euclidean inter-residue distance between any two atoms when all

rotamer combinations for the two residues are considered, see the Section entitled “Sparse res-

idue interaction graphs and protein design”) between the interacting residue pair, the total dif-

ference in energy between the full and sparse GMEC, and the difference in energy contributed

by these omitted edges to the sparse and full GMEC. The omission of the pairwise interactions

listed in Table 2 alone was large enough to change the sequence of the computed GMEC, and

even lead to changes in experimental measurements. For example, in the case of acyl phospha-

tase (PDB id: 2ACY), Fig 8 shows the sequence differences and key high-energy long-range

interactions omitted in the sparse residue interaction graph. In the full GMEC the minimum

distance between residues Glu 12 and Lys 76 is 7.6 Å, and its high-energy long-range interac-

tion of -0.34 kcal/mol is omitted in the sparse residue interaction graph. The minimum dis-

tance between residues Asp 10 and Arg 77 is 8.6 Å, and its high-energy long-range interaction

of -0.26 kcal/mol is omitted in the sparse residue interaction graph. The corresponding pair-

wise energy between residues Glu 12 and Asp 76 in the sparse GMEC is 0.318 kcal/mol, and

the corresponding pairwise energy between residues Glu 12 and Asp 76 in the sparse GMEC is

0.314 kcal/mol. This amounts to a total difference of 1.24 kcal/mol. The energies of the sparse

and full GMEC differ by only 0.75 kcal/mol. As can be seen in panel (c) of Fig 8, the sparse

GMEC neglects the energetically unfavorable interactions between both the negatively charged

Table 2. Omitting key high-energy long-range interactions changes the sequence of the GMEC. The table shows the one or two highest energy interac-

tions omitted by a distance cutoff of 7 Å. The omission of these edges alone is sufficient to change the sequence of the GMEC computed using a sparse resi-

due interaction graph.

PDB id High-energy Pairsa Distanceb(Å) Full Energy Differencec (kcal/mol) Omitted Energy Differenced (kcal/mol)

1HZ5 (23, 26) 7.1 0.16 0.393

1URN (90, 97) 7.4 0.175 0.462

1ENH (43, 52), (44, 52) 10.7, 7.86 0.181 0.231

2MG4 (8, 54) 14.3 0.201 0.356

2ACY (10, 77), (12, 76) 8.6, 7.6 0.75 1.24

1VJQ (12, 22), (18, 24) 9.92, 8.57 0.121 0.214

aResidue numbers of the two mutable residues in the omitted pairwise interaction
bMinimum distance dmin(i, j) (see S2 Text) of the corresponding residue pair
cEnergy difference between the sparse GMEC and full GMEC using the full energy function (Eq. 1 in S2 Text)
dCumulative energy difference between the sparse and full GMEC for only the pairwise interactions in column (a)

https://doi.org/10.1371/journal.pcbi.1005346.t002
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glutamic acid at residue 12 and aspartic acid at residue 76, and the positively charged lysine at

residue 10 and arginine at residue 77. These unfavorable long-range electrostatics are not

found in the full GMEC, as seen in panel (d). Omitting these two pairwise interactions alone

would change the sequence of the corresponding GMEC. Note that in this design problem,

large, favorable electrostatic pairwise interactions in the full GMEC are replaced with large,

Fig 8. Sequence differences between full vs. sparse residue interaction graphs: biophysically significant long-range interactions

are omitted and change the sequence of the GMEC. Comparison between the sequences of the full and sparse GMEC for the

restrospective design of acyl phosphatase (PDB id: 2ACY) are shown. Protein backbone is shown as a green ribbon. (a) and (b) show the

residues where the sparse and full GMEC have different amino acid identities: (a) shows the sparse GMEC, and (b) shows the full GMEC.

Residues for which the amino acid identity is that of the thermostabilized mutant are shown in blue. Residues for which the amino acid

identity is that of the wild-type are shown in orange. (c) and (d) show the omitted pairwise interactions in the sparse GMEC and their

corresponding interactions in the full GMEC. Residues whose sequence and conformation are that of the full GMEC are shown in green. Arg

77 has a different side-chain conformation in the sparse GMEC, and is highlighted in cyan. Oxygen and nitrogen atoms are colored to show

favorable and unfavorable interactions. (c) With distance cutoff δ = 7 Å, the unfavorable interactions between Glu 12 and Asp 76 and Lys 10

and Arg 77 are omitted in the sparse residue interaction graph, and not considered when computing the sparse GMEC. (d) In the full GMEC

these interactions are replaced with favorable interactions instead.

https://doi.org/10.1371/journal.pcbi.1005346.g008
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unfavorable electrostatic interactions in the sparse GMEC. The cumulative difference is greater

than 1.2 kcal/mol, which is large enough to be biophysically relevant.

Even when the sparse energy function predicts amino acid identities of the more thermosta-

ble designed mutant, the difference in energy between the sparse GMEC and full GMEC can

manifest as a difference in backbone coordinates and side-chain conformations. We analyzed

an example of this, where the full GMEC predicts a rotamer that closely resembles the wild

type while the sparse GMEC predicts a rotamer which has a χ1 angle difference of 90.6˚. For

human procarboxypeptidase A2 (PDB id: 1AYE), the sequences of the full and sparse GMECs

were identical, but the residue conformations differed. To test if sparse residue interaction

graphs could be a source of conformational difference between the predicted and experimen-

tally observed residue conformations, we performed side-chain placement using OSPREY on the

designed mutant of human procarboxypeptidase A2 (PDB id: 1VJQ). The structure of the

designed mutant was used as input to rule out backbone changes as an additional source of

error. We analyzed the conformations of the sparse GMEC, the full GMEC, and the crystal

structure, and found the predicted conformations of sparse and full GMEC differed at two res-

idues. At residue Glu 18, the rotamer of the full GMEC coincides closely with the crystal struc-

ture, whereas the rotamer of the sparse GMEC had a 90.6˚ difference in its χ1 angle, differing

significantly from crystal structure. At residue Lys 22, both the sparse and the full GMEC pre-

serve the overall direction of the charged amine group, but their χ-angles differ from the crys-

tal structure.

In the side-chain placement problem for the designed mutant of human procarboxypepti-

dase A2 (PDB id: 1VJQ), two pairwise interactions contributed the most to the energy differ-

ence between the sparse and full GMEC: the pairwise interactions between residues Glu 12

and Lys 22, and residues Glu 18 and Asp 24. The minimum distance between residues Glu 12

and Lys 22 is 9.9 Å, and in the full GMEC their long-range interaction of -0.42 kcal/mol is

omitted in the sparse residue interaction graph. The corresponding pairwise energy between

residues 12 and 22 in the sparse GMEC is -0.32 kcal/mol. The minimum distance between resi-

dues Glu 18 and Asp 24 is 8.6 Å, and in the full GMEC its long-range interaction of 0.21 kcal/

mol is omitted in the sparse residue interaction graph. The corresponding pairwise energy

between residues Glu 18 and Asp 24 in the sparse GMEC is 0.32 kcal/mol. The energy differ-

ence from these two edges account for a cumulative difference of 0.21 kcal/mol. The energies

of the sparse and full GMEC differ by 0.16 kcal/mol. Omitting these two pairwise interactions

alone would change the conformation of the computed GMEC.

Discussion

Our results not only show how omitted pairwise interactions can change the computed

sequence of the GMEC in computational protein design, but also that these differences in

sequence can correlate with experimental measurements. In the examples where the full

GMEC predicts mutations that correlate with the thermostable mutant but the sparse GMEC

does not, key high-energy, long-range pairwise interactions are consistently omitted from the

sparse residue interaction graph and this failure to account for long-range interactions changes

the sequence of the sparse GMEC. Even in cases where the sparse GMEC better correlates with

the designed mutant, the energy contribution of pairwise interactions that are omitted by dis-

tance cutoffs is significant.

In this study, we imposed many modeling assumptions: the backbone is rigid, side-chain

flexibility is confined to rigid rotamers, and a single conformation, namely the GMEC, is

assumed to be representative of the thermodynamic ensemble. Since the GMEC (sparse or

full) is the provably optimal sequence and structure predicted by the input model, and since
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this model is commonly used as a subroutine in many empirical designs [1, 24, 39, 45–60], our

results represent a bound on how well any algorithm can do, using either the sparse or full

input models. Our results show that commonly used distance cutoffs, especially when com-

puted without bounding the difference in energy between the sparse and full GMEC, do in fact

introduce error into any computational structure-based protein design protocol. Although

this error does not always negatively impact downstream experiments, the computational

expedience derived from applying distance cutoffs can come with a cost: measurable loss in

accuracy. To overcome this cost, algorithms that merely compute a low-energy locally optimal

solution or even the GMEC of the sparse residue interaction graph are inadequate. Therefore,

it will be highly beneficial if we can compute both the full and the sparse GMEC efficiently,

while still harnessing the computational advantages of the reduced search space provided by

sparse residue interaction graphs. In this section we describe how to efficiently compute both

the full and the sparse GMEC, by a novel approach that combines sparse residue interaction

graphs with ensemble-based design algorithms. The new approach, called Energy-bounding
enumeration, is comparable in speed to sparse GMEC search on the sparse residue interaction

graph.

Full GMEC with Sparse A*
As described in the Section entitled “Definitions related to sparse residue interaction graphs”,

sparse residue interaction graphs are generated by omitting distant or low-energy pairwise

interactions from the energy function. These sparse graphs correspond to modified energy

functions. Naturally, modifying the energy function can change the GMEC. The conformation

and sequence of the GMEC of the full graph may be different from the GMEC of the sparse

graph. However, for any pair of mutable residues, the maximum and minimum contributions

of their pairwise interactions bound their total contribution to any conformation. Further-

more, their maximum and minimum contributions are efficient to compute. Thus, the contri-

bution of any pairwise interaction can be efficiently bounded, and the cumulative maximal

and minimal contribution of all omitted pairwise interactions can be efficiently bounded as

well. These cumulative maxima and minima can be mathematically combined to bound the

energy difference between the sparse and full GMEC (Lemma 1, S1 Text). Although the

bounds given by Lemma 1 are often loose, it is important to know that the energy difference

between the full and the sparse GMEC can always be bounded. This energy bound guarantees

that a gap-free list (enumerated by a provable algorithm such as Sparse A�), that contains the

sparse GMEC and all conformations within that energy bound of the sparse GMEC, will con-

tain both the sparse and full GMEC. If we simply compute the full energies of all conforma-

tions in this list, then the conformation with the lowest full energy is guaranteed to be the full

GMEC. Furthermore, computing the full energies for all conformations in the list is efficient

(Lemma 2, S1 Text).

The fact that Sparse A� can enumerate both the sparse and the full GMEC means that we

no longer have to worry about which of the two sequences (the full or the sparse GMEC) will

predict the desired functional mutations. One can generate the sparse residue interaction

graph, calculate the upper bound on the energy difference, and run Sparse A� to return a gap-

free list of conformations that is guaranteed to return the full GMEC. The list of conformations

returned by Sparse A� can then be re-ranked based on the full energy to get the full GMEC.

Once both the full and the sparse GMEC are found, they can be evaluated based on more

sophisticated methods for energy calculation [68, 70], or any other method that seems perti-

nent to the designer. Note that both the full and the sparse GMEC are guaranteed to be found

only when using provable ensemble-based algorithms that are guaranteed not to miss any
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conformation within the specified energy window. The re-ranking can be done relatively

quickly (Lemma 2 in S1 Text), when the number of conformations that need to be generated

by Sparse A� to find the full GMEC is not large. Both the full and the sparse GMEC were

found for most of the design problems used in this study, and this is discussed in the Section

entitled “Rank of full GMEC in practice”.

In this section, we have provided high-level intuition showing how Sparse A� can be used

to compute both the sparse and full GMEC. These statements are supported by mathematical

guarantees, which show that the full GMEC is contained in the gap-free list enumerated by

Sparse A�, and that it is efficient to compute the full GMEC from that list. In S1 Text we pro-

vide two Lemmas and their proofs. Lemma 1 proves an upper bound on the absolute difference

in sparse energy between the sparse and full GMEC, and Lemma 2 gives the time complexity

to compute the full GMEC from a gap-free list guaranteed to contain the full GMEC. We then

describe how these two proofs are sufficient to compute both the sparse and full GMEC using

Sparse A�. Finally, we briefly describe a recent provable algorithm [59], which uses concepts

from dynamic programming to exploit the optimal substructure induced by sparse graphs,

and achieve asymptotic time complexity significantly better than the worst-case time complex-

ity of any algorithm using the full graph.

Rank of full GMEC in practice

Fig 9 plots the calculated upper bounds vs. the actual full energy difference between the full

and the sparse GMEC for the core, boundary, and surface designs. It is evident from the differ-

ence in the scale of the two axes that the actual energy difference between the full and the

sparse GMEC (ranges from 0.05 kcal/mol to 1.6 kcal/mol) is an order of magnitude smaller

than the computed upper bound, which can be as high as 40 kcal/mol. As a result, Sparse A�

returned the full GMEC relatively early, well before all conformations within the energy

bound (calculated using Lemma 1 in S1 Text) of the sparse GMEC were enumerated.

The full GMEC was found within the first 20 conformations of the sparse GMEC for all 21

boundary design problems with energy cutoffs, and for 19 design problems with distance cut-

offs. For the two remaining problems, ClpS protease adaptor protein (PDB id: 3DNJ) and bac-

terial ferredoxin protein (PDB id: 1IQZ), the full GMEC was the 168th and 5062nd

conformation returned by Sparse A� respectively with distance cutoff δ = 7 Å. The rank of the

full GMEC in the gap-free list of conformations enumerated by Sparse A� for all 21 boundary

design problems are given in Table 3. For the 12 surface design problems, the full GMEC is

within the first 30 conformations of the sparse GMEC for energy cutoffs, but for distance cut-

offs, this number is on the order of a few hundred for some of the design problems. The rank

of the full GMEC in the gap-free list of conformations enumerated by Sparse A� for all 12 sur-

face design problems are given in Table 4.

Table 5 shows the rank of the full GMEC in the gap-free, in-order list enumerated after

applying a distance cutoff δ = 7 Å for the six retrospective design problems discussed in the

Section entitled “Retrospective validation against experimental data” (Table 1 and Fig 8), along

with the search space of each design problem. Note that even after constraining the mutable

residues to only two allowed amino acids, the search space size for these designs can be large.

The search space of the largest retrospective design problem, a 19-residue design of the

engrailed homeodomain dimer (PDB id: 2mg4), was 6.13 × 1025 conformations. Even in this

case the rank of the full GMEC was merely 19 in the gap-free, in-order list, and our provable

enumeration algorithm efficiently computes both. (For these experiments, computing 20 addi-

tional conformations after computing the sparse GMEC took less than 7.5 minutes.) The

search space of the design problem that required the most enumeration, an 18-residue design
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of acyl phosphatase, was 6.64 × 1024, and enumerating 240 conformations to recover the full

GMEC took less than 48 minutes. Across the six design problems, the median time to compute

the sparse GMEC was 8.81 minutes, and the median time to compute the top 1000 conforma-

tions was 46.2 minutes. These times show how computing the top 1000 conformations is far

less costly than computing 1000 GMECs. Therefore, using a provable algorithm to enumerate

the 1000 lowest-energy conformations is in most cases very practical.

Overall, the energy difference between sparse and full GMEC was small, and therefore the

rank of the full GMEC in the gap-free list enumerated by Sparse A� was low. For all but one

design problem (including the core, boundary, surface, and retrospective designs), the full

Fig 9. Actual sparse energy difference between the full and sparse GMEC is much smaller than the theoretical energy bound.

Bounds on the sparse energy difference (as calculated by Lemma 1 in S1 Text) vs. the actual full energy difference between the full GMEC

and sparse GMEC for distance cutoff δ = 7 Å (blue) and energy cutoff α = 0.2 kcal/mol (red). (a) 62 core protein design problems, (b) 21

boundary protein design problems, (c) 12 surface protein design problems.

https://doi.org/10.1371/journal.pcbi.1005346.g009
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GMEC was found by enumerating only the first 1000 conformations returned by Sparse A�

(with both distance and energy cutoffs). This shows that even when limited time and memory

prevent Sparse A� from provably enumerating the full GMEC (because of loose energy

bounds), in practice the number of conformations that must be enumerated before Sparse A�

Table 3. The full GMEC is usually within 30 conformations of the sparse GMEC for boundary designs.

Rank of the full GMEC in the gap-free list of conformations generated by Sparse A* for 21 boundary protein

design problems, with distance cutoffs δ = 7 Å and δ = 8 Å, and energy cutoffs α = 0.1 kcal/mol and α = 0.2

kcal/mol. Rank 1 indicates that the full and the sparse GMEC were identical.

PDB id δ = 7 Å δ = 8 Å α = 0.1 kcal/mol α = 0.2 kcal/mol

1G6X 1 1 1 1

1I27 1 1 1 1

1IQZ 5062 1448 1 17

1OAI 1 1 1 1

1OK0 2 2 1 2

1PSR 8 8 1 1

1TUK 1 1 1 1

1UCS 8 7 1 1

1VBW 7 5 1 4

2B97 6 1 1 3

2BWF 1 1 1 1

2CS7 11 11 1 8

2DSX 4 1 1 1

2HIN 1 1 1 1

2IC6 1 1 1 1

2ZXY 3 3 1 1

3DNJ 168 15 1 2

3FIL 2 2 1 1

3HFO 1 1 1 2

3G21 6 1 3 1

1C75 1 1 4 3

https://doi.org/10.1371/journal.pcbi.1005346.t003

Table 4. The full GMEC is usually within 1000 conformations of the sparse GMEC for surface designs.

Rank of the full GMEC in the gap-free list of conformations generated by Sparse A* for 12 surface protein

design problems, with distance cutoffs δ = 7 Å and δ = 8 Å, and energy cutoffs α = 0.1 kcal/mol and α = 0.2

kcal/mol. Rank 1 indicates that the full and the sparse GMEC were identical.

PDB id δ = 7 Å δ = 8 Å α = 0.1 kcal/mol α = 0.2 kcal/mol

1C75 50 97 1 1

1G6X 1 1 1 1

1UCS 3 1 1 16

2CS7 37 64 1 4

2FMA 18 2 1 1

2HLR 6 6 1 1

2J8B 286 286 1 1

2O9S 840 943 1 2

2RH2 46 6 1 2

3FIL 57 1 1 1

1IQZ 2231 213 2 26

1V6P 14 12 5 22

https://doi.org/10.1371/journal.pcbi.1005346.t004
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returns the full GMEC can be small. This provides useful information that can be used to com-

pute the full GMEC using Sparse A� for design problems where A� fails. This is highlighted by

the three boundary and one surface design problem for which Sparse A� with distance cutoff

δ = 7 Å (the cutoff which deleted the most of edges) returned the sparse GMEC, whereas A�

ran out of 30 GB of memory before returning the full GMEC (orange points in Fig 2). Sparse

A� returned the sparse GMEC along with a gap-free list of conformations for three boundary

designs (heterogeneous nuclear ribonucleoprotein K (PDB id: 1ZZK), Beta-elicitin cinnamo-

min (PDB id: 2AIB), Dihydrofolate reductase type 2 (PDB id: 2RH2), and for one surface

design of scorpion toxin protein (PDB id: 1AHO)). The number of conformations enumerated

by Sparse A� was 47 for 1ZZK, 3029 for 2AIB, 46 for 2RH2, and 10,000 for 1AHO. Given the

results that with distance cutoff δ = 7 Å the full GMEC can be found almost always within the

first 30 conformations for boundary designs, and within 1000 conformations for surface

designs, the gap-free list computed by Sparse A� for the above four protein design problems

almost certainly contains the full GMEC. Because the number of conformations that must be

enumerated by Sparse A� to find the full GMEC is usually small, the GMECs of both the full

and the sparse residue interaction graphs can be computed by enumerating a gap-free, in-

order list of conformations.

Note that this study relies critically on provable algorithms that are guaranteed to enumer-

ate the GMEC followed by a gap-free list of conformations in order of increasing energy. With-

out these algorithms it would be difficult and perhaps even unsound to compare the results of

computational protein design with and without sparse residue interaction graphs, since differ-

ences induced by the sparse model can not be deconvolved from differences stemming from

undersampling or inadequate stochastic optimization. Moreover, the provable guarantees of

Lemma 2 (S1 Text) would not be possible if the enumeration algorithm missed any low-energy

conformations within the calculated energy window of the sparse GMEC.

It has been previously argued that crucial improvements to the energy function and input

model (e.g. side-chain flexibility, backbone flexibility, and entropy) should, for reasons of

computational complexity, be accompanied by novel algorithmic enhancements [39]. Hence,

it is also important to distinguish design algorithms that only apply distance cutoffs to the

energy function [24, 45–52] vs. algorithms that exploit the optimal substructure induced by

sparse residue interaction graphs (via techniques such as dynamic programming) [53–60].

Table 5. The rank of the full GMEC is small for retrospective design problems, and the 1000 lowest-energy conformations can be enumerated

quickly.

PDB

id

Number of

Residues

Number of

Mutable

Residues

Full GMEC

Ranka
Search Space Sizeb

(conformations)

Sparse GMEC

Timec (minutes)

Full GMEC

Timed (minutes)

Time to 1000

Conformationse

(minutes)

1hz5 61 15 10 2.07 × 1019 21.0 25.1 60.7

1urn 64 16 2 1.87 × 1020 50.6 52.4 191

1enh 66 12 2 6.65 × 1015 0.230 0.254 20.3

2mg4 66 19 19 6.13 × 1025 1.01 1.52 19.2

2acy 98 18 240 6.64 × 1024 16.6 48.0 119

1vjq 73 26 3 4.10 × 1018 0.251 0.346 31.8

aRank of the full GMEC in the gap-free list enumerated by A* when applying the distance cutoff δ = 7 Å
bTotal number of possible conformations
cTime to compute the sparse GMEC
dTime to compute a gap-free list containing the full GMEC
eTime to compute a gap-free list of the 1000 lowest-energy conformations

https://doi.org/10.1371/journal.pcbi.1005346.t005
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While algorithms that only modify the energy function and algorithms that effectively exploit

the optimal substructure both benefit from the reduced effective search space of sparse residue

interaction graphs, significant large-scale gains in computational efficiency (including reduced

asymptotic time complexity) are not achieved by the former, whereas they are guaranteed by

the latter. By developing new, efficient methodologies and algorithms (such as Energy-bound-

ing enumeration, used in the Section entitled “Discussion”), larger, harder problems built on

more sophisticated biophysical input models become tractable without any increase in hard-

ware capability. So even though physical hardware power may not improve quickly enough to

relieve the computational costs of protein design, algorithmic improvements can reduce previ-

ously difficult or even intractable tasks in protein design to well-understood problems for

which a wealth of efficient algorithms already exist. One example is a recent paper [70], which

reduces the problem of protein design with continuous side-chain flexibility to the well-under-

stood problem of protein design with discrete rotamers, enabling designers to perform designs

with continuous side-chain flexibility as efficiently as they could previously perform discrete

rigid rotamer designs.

Conclusion

In this paper, we implemented a variant of the A� search algorithm in our lab’s open source

protein design package OSPREY, for protein design with sparse residue interaction graphs. We

ran A� and Sparse A� on 136 different protein design problems involving core, boundary, and

surface residues and analyzed the effects of using various distance and energy cutoffs. We com-

pared the energies and sequences of the full GMEC returned by A� vs. the sparse GMEC

returned by Sparse A�, and found that distance cutoffs, especially in surface and boundary

designs, can lead to significant sequence differences between the full and the sparse GMEC.

Our analysis indicates that the effects of distance cutoffs range from introducing no sequence

differences in core designs, to sequence differences in almost all surface designs. By compari-

son, the effects of energy cutoffs are similar across core, boundary, and surface designs. In

addition, we show examples of protein design problems in which neglecting long-range inter-

actions alters local interactions. Furthermore, we performed retrospective designs for proteins

with experimentally measured data, and our analysis of sequence differences between the full

and the sparse GMEC indicates that it is not readily apparent if the sparse or full GMEC pre-

dicts mutations that perform better in vitro.

The sequence differences between the full and the sparse GMEC occur even though the

energy differences between these GMECs are small. While these errors are severe, we provided

a way to overcome these discrepancies. We used a provable, ensemble-based algorithm and

showed that the full GMEC was found within the first 1000 conformations returned for all but

one of our design problems. Because the number of conformations that must be enumerated

to find the full GMEC is usually small, we can take advantage of the reduced search space pro-

vided by sparse residue interaction graphs and still efficiently compute both the full and the

sparse GMEC. To do this, we compute a gap-free, in-order list of conformations. The gap-free

list of low-energy conformations returned by Sparse A� is guaranteed to contain the full

GMEC, and we show it takes only polynomial additional time to find the full GMEC (Lemma

2 in S1 Text). For 3 boundary and 1 surface design problem where A� failed to return even a

single conformation, Sparse A� not only computed the sparse GMEC, but also enumerated a

gap-free list of conformations that almost certainly contains the full GMEC. This provides a

novel way for provable, ensemble-based algorithms and sparse residue interaction graphs to

compute not only the sparse GMEC, but also the full GMEC for previously intractable design

problems.
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Previous studies have found that computational structure-based protein design protocols

are often susceptible to forcefield inaccuracies (particularly hydrogen bonding and electrostat-

ics) [71]. Distance cutoffs are widely used because interaction energy decreases with distance,

which is relatively inexpensive (compared with energy cutoffs) to calculate. The underlying

assumption is that beyond a certain distance, the interaction energy is negligible. Our results

show that this is, in fact, not always true: these seemingly negligible interaction energies can

add up, leading to significant sequence differences and changes in local residue interactions

that can alter not only the structure, but also the function of the predicted protein. Therefore

by using distance cutoffs, protein designers have been neglecting significant pairwise interac-

tions, which may compromise the accuracy of their predictions. Our paper is the first large

scale study of the magnitude and consequences of distance cutoffs and their effects. On the pos-

itive side, we showed that by combining sparse residue interaction graphs with provable,

ensemble-based algorithms, we provide a way to overcome this inaccuracy. Therefore, by using

provable algorithms in the manner we described, protein designers can continue to reap the

benefits of distance cutoffs without worrying about loss in accuracy. The gap-free list of confor-

mations generated will include the sequence of both the sparse and full GMEC, allowing both

sequences to be inspected and tested. We believe this is a notable improvement over traditional

protocols, which require designers to commit beforehand to either the sparse or full interaction

model. Our work simultaneously exposes potentially significant experimental inaccuracies in

the input model and provides novel methodology to address these inaccuracies directly.
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S1 Fig. Distance cutoffs prune a larger percentage of edges than energy cutoffs in boundary

and surface design problems. Number of unpruned conformations left after DEE vs. the per-

centage of edges deleted from the residue interaction graph. Two data points are plotted for

each design problem: with distance cutoff δ = 7 Å (blue), and energy cutoff α = 0.2 kcal/mol

(red). (a) 62 core design problems, (b) 46 boundary design problems, and (c) 28 surface design

problems.

(TIF)

S2 Fig. Distance cutoffs introduce amino acid changes in more residues than energy cutoffs.

Amino acid identities of residues in the full GMEC which were mutated in the sparse GMEC,

for boundary and surface protein design problems with distance cutoff δ = 7 Å and energy cut-

off α = 0.2 kcal/mol. The number in parenthesis indicates the cumulative number of residues

across all design problems for which that amino acid was different in the sparse GMEC.

(TIF)

S1 Table. Sequence differences between GMECs for boundary designs. Sequence differences

between the full and the sparse GMEC for boundary design problems, for distance cutoff δ = 7

Å and energy cutoff α = 0.2 kcal/mol. A dash (“−”) indicates that the amino acid identity was

the same in the full and the sparse GMEC.
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and energy cutoff α = 0.2 kcal/mol. A dash (“−”) indicates that the amino acid identity was the

same in the full and the sparse GMEC.
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S3 Table. Sequence correlation between designed mutant and wild type. The table shows

the sequences of the sparse and full GMEC. Residues at which the sparse or full GMEC has the

same amino acid identity as the thermostabilized mutant are in bold. Residues at which the

sparse or full GMEC has the same amino acid identity as the less stable wild-type are not in

bold.

(PDF)

Acknowledgments

The authors thank all members of the Donald lab, and Prof. Jane S. Richardson and Prof.

David. C. Richardson for helpful discussion and comments.

Author Contributions

Conceptualization: SJ JDJ ISG BRD.

Data curation: SJ JDJ ISG BRD.

Formal analysis: SJ JDJ ISG BRD.

Funding acquisition: BRD.

Investigation: SJ JDJ ISG BRD.

Methodology: SJ JDJ ISG BRD.

Project administration: BRD.

Resources: SJ JDJ ISG BRD.

Software: SJ JDJ ISG BRD.

Supervision: BRD.

Validation: SJ JDJ ISG BRD.

Visualization: SJ JDJ ISG BRD.

Writing – original draft: SJ JDJ ISG BRD.

Writing – review & editing: SJ JDJ ISG BRD.

References
1. Donald BR. Algorithms in Structural Molecular Biology. The MIT Press (Cambridge); 2011.

2. Offredi F, Dubail F, Kischel P, Sarinski K, Stern AS, Van de Weerdt C, et al. De novo backbone and

sequence design of an idealized alpha/beta-barrel protein: evidence of stable tertiary structure. Journal

of molecular biology. 2003 Jan; 325(1):163–174. https://doi.org/10.1016/S0022-2836(02)01206-8

PMID: 12473459

3. Keating AE, Malashkevich VN, Tidor B, Kim PS. Side-chain repacking calculations for predicting struc-

tures and stabilities of heterodimeric coiled coils. Proceedings of the National Academy of Sciences of

the United States of America. 2001 Dec; 98(26):14825–14830. https://doi.org/10.1073/pnas.

261563398 PMID: 11752430

Protein design and sparse residue interaction graphs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005346 March 30, 2017 26 / 30

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005346.s007
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005346.s008
https://doi.org/10.1016/S0022-2836(02)01206-8
http://www.ncbi.nlm.nih.gov/pubmed/12473459
https://doi.org/10.1073/pnas.261563398
https://doi.org/10.1073/pnas.261563398
http://www.ncbi.nlm.nih.gov/pubmed/11752430
https://doi.org/10.1371/journal.pcbi.1005346


4. Dahiyat BI, Sarisky CA, Mayo SL. De Novo protein design: towards fully automated sequence selection.

Journal of molecular biology. 1997 Nov; 273(4):789–796. https://doi.org/10.1006/jmbi.1997.1341

PMID: 9367772

5. Kuhlman B, Dantas G, Ireton GC, Varani G, Stoddard BL, Baker D. Design of a novel globular protein

fold with atomic-level accuracy. Science. 2003 Nov; 302(5649):1364–1368. https://doi.org/10.1126/

science.1089427 PMID: 14631033

6. Hellinga HW, Richards FM. Construction of new ligand binding sites in proteins of known structure. I.

Computer-aided modeling of sites with pre-defined geometry. Journal of molecular biology. 1991 Dec;

222(3):763–785. https://doi.org/10.1016/0022-2836(91)90510-D PMID: 1749000

7. Marvin JS, Hellinga HW. Conversion of a maltose receptor into a zinc biosensor by computational

design. Proceedings of the National Academy of Sciences of the United States of America. 2001 Apr;

98(9):4955–4960. https://doi.org/10.1073/pnas.091083898 PMID: 11320244

8. Lippow SM, Tidor B. Progress in computational protein design. Current opinion in biotechnology. 2007

Aug; 18(4):305–311. https://doi.org/10.1016/j.copbio.2007.04.009 PMID: 17644370

9. Shifman JM, Mayo SL. Modulating calmodulin binding specificity through computational protein design.

Journal of molecular biology. 2002 Oct; 323(3):417–423. https://doi.org/10.1016/S0022-2836(02)

00881-1 PMID: 12381298

10. Looger LL, Dwyer MA, Smith JJ, Hellinga HW. Computational design of receptor and sensor proteins

with novel functions. Nature. 2003 May; 423(6936):185–190. https://doi.org/10.1038/nature01556

PMID: 12736688

11. Chen CY, Georgiev I, Anderson AC, Donald BR. Computational structure-based redesign of enzyme

activity. Proceedings of the National Academy of Sciences. 2009 Mar; 106(10):3764–3769. https://doi.

org/10.1073/pnas.0900266106

12. Bolon DN, Mayo SL. Enzyme-like proteins by computational design. Proceedings of the National Acad-

emy of Sciences of the United States of America. 2001 Dec; 98(25):14274–14279. https://doi.org/10.

1073/pnas.251555398 PMID: 11724958

13. Stevens BW, Lilien RH, Georgiev I, Donald BR, Anderson AC. Redesigning the PheA domain of grami-

cidin synthetase leads to a new understanding of the enzyme’s mechanism and selectivity. Biochemis-

try. 2006 Dec; 45(51):15495–15504. https://doi.org/10.1021/bi061788m PMID: 17176071

14. Gorczynski MJ, Grembecka J, Zhou Y, Kong Y, Roudaia L, Douvas MG, et al. Allosteric inhibition of the

protein-protein interaction between the leukemia-associated proteins Runx1 and CBFbeta. Chemistry &

Biology. 2007 Oct; 14(10):1186–1197. https://doi.org/10.1016/j.chembiol.2007.09.006

15. Rudicell RS, Kwon YD, Ko SY, Pegu A, Louder MK, Georgiev IS, et al. Enhanced Potency of a Broadly

Neutralizing HIV-1 Antibody In Vitro Improves Protection against Lentiviral Infection In Vivo. Journal of

Virology. 2014 Nov; 88(21):12669–12682. https://doi.org/10.1128/JVI.02213-14 PMID: 25142607

16. Georgiev IS, Rudicell RS, Saunders KO, Shi W, Kirys T, McKee K, et al. Antibodies VRC01 and 10E8

neutralize HIV-1 with high breadth and potency even with Ig-framework regions substantially reverted to

germline. Journal of Immunology. 2014 Feb; 192(3):1100–1106. https://doi.org/10.4049/jimmunol.

1302515

17. Georgiev I, Acharya P, Schmidt SD, Li Y, Wycuff D, Ofek G, et al. Design of epitope-specific probes for

sera analysis and antibody isolation. Retrovirology. 2012; 9(Suppl 2):P50. https://doi.org/10.1186/1742-

4690-9-S2-P50

18. Roberts KE, Cushing PR, Boisguerin P, Madden DR, Donald BR. Computational design of a PDZ

domain peptide inhibitor that rescues CFTR activity. PLoS computational biology. 2012; 8(4):e1002477.

https://doi.org/10.1371/journal.pcbi.1002477 PMID: 22532795

19. King C, Garza EN, Mazor R, Linehan JL, Pastan I, Pepper M, et al. Removing T-cell epitopes with

computational protein design. Proceedings of the National Academy of Sciences. 2014 Jun; 111

(23):8577–8582. https://doi.org/10.1073/pnas.1321126111

20. Frey KM, Georgiev I, Donald BR, Anderson AC. Predicting resistance mutations using protein design

algorithms. Proceedings of the National Academy of Sciences. 2010 Aug; 107(31):13707–13712.

https://doi.org/10.1073/pnas.1002162107

21. Reeve SM, Gainza P, Frey KM, Georgiev I, Donald BR, Anderson AC. Protein design algorithms predict

viable resistance to an experimental antifolate. Proceedings of the National Academy of Sciences. 2015

Jan; 112(3):749–754. https://doi.org/10.1073/pnas.1411548112

22. Lovell SC, Word JM, Richardson JS, Richardson DC. The penultimate rotamer library. Proteins: Struc-

ture, Function, and Bioinformatics. 2000; 40(3):389–408. https://doi.org/10.1002/1097-0134(20000815)

40:3%3C389::AID-PROT50%3E3.0.CO;2-2

23. Pierce NA, Winfree E. Protein design is NP-hard. Protein Engineering. 2002 Oct; 15(10):779–782.

https://doi.org/10.1093/protein/15.10.779 PMID: 12468711

Protein design and sparse residue interaction graphs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005346 March 30, 2017 27 / 30

https://doi.org/10.1006/jmbi.1997.1341
http://www.ncbi.nlm.nih.gov/pubmed/9367772
https://doi.org/10.1126/science.1089427
https://doi.org/10.1126/science.1089427
http://www.ncbi.nlm.nih.gov/pubmed/14631033
https://doi.org/10.1016/0022-2836(91)90510-D
http://www.ncbi.nlm.nih.gov/pubmed/1749000
https://doi.org/10.1073/pnas.091083898
http://www.ncbi.nlm.nih.gov/pubmed/11320244
https://doi.org/10.1016/j.copbio.2007.04.009
http://www.ncbi.nlm.nih.gov/pubmed/17644370
https://doi.org/10.1016/S0022-2836(02)00881-1
https://doi.org/10.1016/S0022-2836(02)00881-1
http://www.ncbi.nlm.nih.gov/pubmed/12381298
https://doi.org/10.1038/nature01556
http://www.ncbi.nlm.nih.gov/pubmed/12736688
https://doi.org/10.1073/pnas.0900266106
https://doi.org/10.1073/pnas.0900266106
https://doi.org/10.1073/pnas.251555398
https://doi.org/10.1073/pnas.251555398
http://www.ncbi.nlm.nih.gov/pubmed/11724958
https://doi.org/10.1021/bi061788m
http://www.ncbi.nlm.nih.gov/pubmed/17176071
https://doi.org/10.1016/j.chembiol.2007.09.006
https://doi.org/10.1128/JVI.02213-14
http://www.ncbi.nlm.nih.gov/pubmed/25142607
https://doi.org/10.4049/jimmunol.1302515
https://doi.org/10.4049/jimmunol.1302515
https://doi.org/10.1186/1742-4690-9-S2-P50
https://doi.org/10.1186/1742-4690-9-S2-P50
https://doi.org/10.1371/journal.pcbi.1002477
http://www.ncbi.nlm.nih.gov/pubmed/22532795
https://doi.org/10.1073/pnas.1321126111
https://doi.org/10.1073/pnas.1002162107
https://doi.org/10.1073/pnas.1411548112
https://doi.org/10.1002/1097-0134(20000815)40:3%3C389::AID-PROT50%3E3.0.CO;2-2
https://doi.org/10.1002/1097-0134(20000815)40:3%3C389::AID-PROT50%3E3.0.CO;2-2
https://doi.org/10.1093/protein/15.10.779
http://www.ncbi.nlm.nih.gov/pubmed/12468711
https://doi.org/10.1371/journal.pcbi.1005346


24. Kingsford CL, Chazelle B, Singh M. Solving and analyzing side-chain positioning problems using linear

and integer programming. Bioinformatics. 2005 Apr; 21(7):1028–1039. https://doi.org/10.1093/

bioinformatics/bti144 PMID: 15546935

25. Street AG, Mayo SL. Computational protein design. Structure. 1999 May; 7(5):R105–9. https://doi.org/

10.1016/S0969-2126(99)80062-8 PMID: 10378265
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