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temporal disaggregation of hourly 
precipitation under changing 
climate over the Southeast United 
States
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Climate change impacts on precipitation characteristics will alter the hydrologic characteristics, such 
as peak flows, time to peak, and erosion potential of watersheds. However, many of the currently 
available climate change datasets are provided at temporal and spatial resolutions that are inadequate 
to quantify projected changes in hydrologic characteristics of a watershed. therefore, it is critical to 
temporally disaggregate coarse-resolution precipitation data to finer resolutions for studies sensitive to 
precipitation characteristics. In this study, we generated novel 15-minute precipitation datasets from 
hourly precipitation datasets obtained from five NA-CORDEX downscaled climate models under RCP 
8.5 scenario for the historical (1970–1999) and projected (2030–2059) years over the Southeast United 
States using a modified version of the stochastic method. The results showed conservation of mass of 
the precipitation inputs. Furthermore, the probability of zero precipitation, variance of precipitation, 
and maximum precipitation in the disaggregated data matched well with the observed precipitation 
characteristics. The generated 15-minute precipitation data can be used in all scientific studies that 
require precipitation data at that resolution.

Background & Summary
Precipitation is a fundamental input in all practical scientific studies that deal with the hydrological cycle1,2. For 
instance, precipitation is the main driver in the Soil and Watershed Assessment Tool (SWAT)3–8. In addition, 
precipitation data is needed for the estimation of rainfall intensity-duration-frequency curves9–13, rainfall ero-
sivity14–19, and soil loss estimation using Universal Soil Loss Equation (USLE), Revised USLE, and Global Soil 
Erosion Modeling20–22.

In these previous studies, higher-temporal resolution precipitation performed better than aggregated (e.g., 
hourly, daily) precipitation data. For instance, Jeong et al.23. found that the SWAT model built using sub-hourly 
(15-minute) precipitation outperformed the model built using both coarser sub-daily and daily precipitation 
data. This is because, among many other reasons, high-temporal resolution precipitation is capable of better 
prediction of peak flows. While many researchers have estimated rainfall erosivity using aggregated precipitation 
data14,17,18,24, using aggregated rainfall data has resulted in underestimation of rainfall erosivity up to or exceed-
ing 30% as compared to the fixed-intensity precipitation or ‘breakpoint’ precipitation data25–27.The main reason 
for using fixed-interval precipitation data is the limited availability of high-resolution precipitation data28–30.

Climate projections play a significant role in understanding the future scenarios of scientific studies related 
to climate31. In the case of regional climate model (RCM)-based climate impact studies, it is recommended to 
use an ensemble approach for better performance in both model uncertainty and potential outcomes32. To-date, 
there are two coordinated RCM ensemble projects for North America, i.e., the North American Regional 
Climate Change Assessment Program (NARCCAP) and North American-Coordinated Regional Climate 

1Auburn University, Department of Biosystem Engineering, 350 Mell St, Auburn, AL, 36849, USA. 2University of 
Maryland, Agricultural Experiment Station, Symons Hall, 7998 Regents Drive, College Park, MD, 20742, USA. 
3Purdue University, Agricultural and Biological Engineering, 225 South University Street, West Lafayette, IN, 47907, 
USA. 4Auburn University, Department of Crop, Soil and Environmental Sciences, 201 Funchess Hall, Auburn, AL, 
36849, USA. ✉e-mail: tzs0075@auburn.edu

DATA DESCRIPTOR

OPEN

https://doi.org/10.1038/s41597-022-01304-7
http://orcid.org/0000-0003-2779-3242
http://orcid.org/0000-0002-4953-1369
http://orcid.org/0000-0002-0469-0569
mailto:tzs0075@auburn.edu
http://crossmark.crossref.org/dialog/?doi=10.1038/s41597-022-01304-7&domain=pdf


2Scientific Data |           (2022) 9:211  | https://doi.org/10.1038/s41597-022-01304-7

www.nature.com/scientificdatawww.nature.com/scientificdata/

Downscaling Experiment (NA-CORDEX)33–35. NARCCAP used four global climate models (GCM) from the 
third phase of the Coupled Model Inter-comparison Project (CMIP3) along with six RCMs. NA-CORDEX used 
GCMs from CMIP5 for downscaling with the RCMs. There have been various studies using NA-CORDEX for 
the assessment of climate impacts, which range from regional to continental in scale9,32.

In the absence of breakpoint precipitation data, relatively high-resolution, fixed-interval data may serve as 
a viable alternative when it has been properly corrected for gaps, biases, and precision limitations29,30.There are 
different types of temporal rainfall disaggregation methods available. These methods can be broadly categorized 
into two broad methods, i.e., Poisson-cluster models (stochastic simulation) and random cascade models36. 
However, these methods require a large number of parameters8,36–40.

To overcome the requirement of a large number of parameters in rainfall disaggregation, Socolofsky et al.41 
presented a more computationally efficient stochastic method to disaggregate daily to hourly precipitation. This 
method relies on a single parameter, which is the smallest storm event value for each month/season. The method 
had been further evaluated for its performance and was found to be satisfactory in the replication of hourly 
observed precipitation using daily data36. The method was modified and found to be satisfactory for generating 
15-min precipitation over Alabama, USA using 3-hour precipitation12. Therefore, in this study, we used pre-
cipitation from NA-CORDEX with the highest temporal resolution available, i.e., hourly data from the RCP8.5 
scenario for five GCM-RCMs.

As a result, we have developed 15-min precipitation datasets for each of the five climate models of 
NA-CORDEX under the RCP 8.5 scenario over the Southeast US using a modified stochastic disaggregation 
method. We used the quantile delta mapping method for removing the bias associated with the precipitation 
data generated by the climate models. Bias-correction significantly improved the intensities as well as the annual 
precipitation frequencies for all the climate models. The bias-corrected hourly precipitation data were disaggre-
gated to generate 15-min precipitation for both historical (1970–1999) and projected (2030–2059) years. The 
quality assessment of the generated 15-minute precipitation over the Southeast US showed that all the climate 
models provided similar results. We can conclude that the resulting finer temporal resolution precipitation data 
can be used in scientific studies that deal with the hydrological cycle (requires precipitation) over the southeast-
ern US. However, given the limitations of the disaggregation method, some precipitation characteristics such as 
intensities may still differ from observed precipitation characteristics. Potential users should still evaluate these 
qualities before using this dataset in their respective studies. Therefore, while this dataset represents an improve-
ment in intensities over using hourly climate projections from climate models, it may still be of insufficient 
quality for those applications that are sensitive to precipitation intensity.

Methods
A summary of the methods used in this study is organized as follows: (1) study area and data (2) bias correction 
of the climate model data, (3) the modified stochastic disaggregation method, and (4) performance assessment 
and characterization.

Study area and data. The climate of the Southeast United States is distinct from the rest of the country 
due to its proximity to the Atlantic Ocean and Gulf of Mexico42,43. The region experiences frequent extreme 
weather due to its warm humid climate43–45. In the past 30 years (1990–2020), the region has received the highest 
number of daily extreme rainfalls of 76.2 mm or more46. The contiguous United States has also experienced an 
above-average number of extreme precipitation events during the period 1986–201544.

The study area covers 11 states of the Southeast United States - Alabama, Arkansas, Florida, Georgia, 
Kentucky, Louisiana, Mississippi, North Carolina, South Carolina, Tennessee, and Virginia - having an area of 
approximately 2 million km2. In this region, the annual precipitation received is in the range of 1000–1250 mm 
inland that rises to 1500 mm in the peripheral areas of the Gulf coast such as Alabama, Mississippi, and Florida 
Panhandle. The average precipitation over the entire country is 856 mm43,47. Up to 40 years (1971–2010) of 
15-minute precipitation (herein denoted as O15) data for 575 land-based stations (Fig. 1) were obtained from 
the National Oceanic and Atmospheric Administration (NOAA)48, which were quality-checked by McGehee 
et al.49. Out of these 575 stations, 388 were found to have datasets of less than 20 years and were excluded 
from further analysis, leaving 187 stations for this study. The historical and future projected precipitation for 
the period 1970–1999 (30 years) and 2030–2059 (30 years), respectively, were obtained from NA-CORDEX33 
herein denoted as H60 and P60, respectively. NA-CORDEX contains various outputs from RCM that cover 
North America using GCM simulation in CMIP5 archive33,35. These data have a temporal scale of 1 hour and 
spatial resolution of 0.44°, which is approximately 50 km x 50 km. It should be noted that analysis of point meas-
ured precipitation data with areal (grid) averaged data has certain limitations50,51. For instance, areal averaged 
show a higher frequencies of lower intensities than the point measurement precipitation. However, Ganguli & 
Coulibaly9 used a similar approach of using point observed precipitation and 0.5° lat/long NA-CORDEX. This 
study focuses on improving the availability temporal scale, i.e., from 1-hr to 15-min, climate datasets at the same 
spatial resolution at which precipitation datasets are available.

The details of the climate models used in this study are given in Table 1. In the following sections, these mod-
els are denoted as CANESM, HadGEM, GFDL, MPI-RegCM, and MPI-WRF.

Bias correction. The impact assessment of climate change on hydrological related studies using GCMs (espe-
cially precipitation) comes with limited representation at the regional scale52,53. This is primarily due to simplified 
physical laws, representation of large scale or incomplete representation of climate system and its feedbacks54,55. 
Thus, the bias correction of GCM-RCMs precipitation may be necessary for a more realistic representation of 
projected climate models by relating both observations and climate models rather than choosing the best guess 
of the climate models12,56.
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Quantile mapping has been used for bias correction of precipitation, particularly at daily or monthly 
scales57,58. Whereas, at the sub-daily scale, it has been used for at least at a 3-hour scale59. One of the drawbacks 
for quantile mapping is the assumption of stationarity of the precipitation dataset, i.e., relationship between 
the historical model and observed precipitation applied to the projected simulated precipitation58. However, 
according to Intergovernmental Panel on Climate Change (IPCC) 2007, the projected precipitation may not 
necessarily follow stationarity assumption60. Therefore, the quantile delta mapping method of bias correction 
was used in this study which allows to incorporating the distribution associated with the projected precipitation 
scenarios52,61. It is given by Eq. (1)
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Where F denotes the cumulative probability distribution function (CDF) of observed (0) or climate model (m) 
for both historical (h) and projected (p) scenarios. In addition, the frequency of low-intensity precipitation of 

Fig. 1 Locations of 187 observed precipitation (O15) stations over the southeastern US.

Acronym Regional climate model Contributing institution

CANESM2_CANRCM435 Canadian Regional Climate Model 
version 4 Canadian Earth System Model

HadGEM2-ES.WRF74 Weather Research and Forecasting Hadley Centre Global Environment Model version 2 Earth system model

GFDL-ESM2M.WRF74 Weather Research and Forecasting Earth System Model – Geophysical Fluid Dynamics Laboratory

MPI-ESM-LR. RegCM475 Regional Climate Model version 4 Max Planck Institute for Meteorology Earth System Model LR

MPI-ESM-LR.WRF74 Weather Research and Forecasting Max Planck Institute for Meteorology Earth System Model LR

Table 1. Description of climate models from NA-CORDEX.
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GCM-RCMs has led to the over simulation of wet days50,51. This is corrected by replacing precipitation smaller 
than a specific threshold value with zero in such a way that the observed wet-hour frequency matches with the 
historical model precipitation62–64.

The bias correction was executed on a monthly basis for each station and climate model in order to capture 
the intermittency of the rainfall as well as to preserve the rainfall characteristics. The advantage of using this 
method is that it enables the incorporation of distributions of future climate models as the observed or historical 
model may not always be stationary.

temporal disaggregation. To disaggregate the hourly to 15-minute precipitation data, we adopted a mod-
ified stochastic storm selection approach initiated by Socolofsky et al.41. In this method, the O15 for a given 
location is grouped into precipitaion events, where an event is defined as a continuous sequence of precipitation 
separated by at least a 1-hour interval of the dry period. These precipitaion events are further grouped by months 
for each station. Further, the precipitaion events were sorted based on accumulated precipitaion depth for each 
monthly database. This is followed by the creation of the CDF for 15-minute precipitation depth for each precipi-
taion event. Each point on the CDF will provide the O15 precipitation data with an associated probability.

The modified version of stochastic disaggregation of hourly precipitation starts with the selection of various 
precipitaion events from the monthly CDFs. As described in Fig. 2 (for more detail, see Mirhosseini et al.12), sup-
pose Dt is the hourly-precipitaion depth. At first, the algorithm searches the monthly CDF for observed precipi-
tation and selects an ordinate “a” for the given precipitation depth (Dt). Therefore, the probability of occurrence 
of precipitation depth (Dt) from the given CDF is “a”. This is followed by the selection of a uniformly distributed 
random number between 0 and “a” which is denoted by “u1”where it is the probability of selecting a random his-
torical precipitaion event. The corresponding observed event depth, “D1” is obtained from the CDF. Using this 
precipitation depth, its distribution is extracted from the precipitaion database that was created earlier.

Likewise, the subsequent precipitation depth will be given by D D Dt t 1= −  as the same procedure is 
repeated. This process stops when ε<Dt , where ε is the threshold precipitaion event depth. Precipitation depth 
below the threshold depth is randomly added.

Evaluations of disaggregation performance. To assess the performance of the stochastic method 
employed, the statistical performances for both O15 and temporally downscaled 15-min precipitation herein 
signifies as DS15, were compared to evaluate accuracy in the replication of precipitation events. At first, the O15 
data were aggregated to hourly data (denoted as O60) for each station. The aggregated precipitation data (O60) 
were used to test the ability to generate the DS15 data. The performance of the DS15 data was evaluated against 
O15 as suggested by Socolofsky et al.41 Four measures are considered important in the assessment of precipitation 
disaggregation, viz., probability of zero precipitation, variance, lag-1 autocorrelation coefficient, and conserva-
tion of mass of precipitation on monthly basis to overcome the uncertainty associated with the start of storms in 
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Find limit “a”, from historic CDF,  
such that D (a) <  DT 

T=DT - Di 

Check for 

DT < Ɛ 
NO 

YES 

END 
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Obtained,  Di  from historic CDF 

 

Fig. 2 The flowchart for the disaggregation of rainfall.
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the modeled precipitation65. Out of these measures, the probability of zero precipitation is considered the most 
important parameter since it summarizes the precipitation intermittency. As suggested by the previous stud-
ies36,41,66–68, the quantification of disaggregation performance used several measures for both model errors as well 
as model bias. Therefore, the magnitude of model error is defined by mean absolute error (MAE) and root relative 
square error (RRSE), which are given in Eqs. (2) and (3) respectively.
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Where, f0 = observed data, fm = model data, and f0
 = averaged of observed data.

Whereas, the magnitude of the model bias is evaluated by developing a linear regression model between the 
O15 and DS15 data, the coefficient of determination, r2, of the linear regression model can provide the degree of 
spread of precipitation dataset from its mean value.

The validation of disaggregation was performed by running 30 iterations for disaggregation of precipitation, 
as the method is stochastic and reports the average statistical measures for each location.

Data Records
The generated 15-min precipitation (DS15) data for both historical (1970–1999) and projected (2030–59) sce-
narios of five climate models are made available in comma-separated files (CSV).The unit of precipitation is in 
millimeters (mm). In addition, the details of 187 stations covering the whole southeastern, US were provided 
in a separate CSV file (station.csv) that includes the station number, name of station, latitude, longitude, and 
elevation (m). The precipitation dataset generated in this study is available through Figshare69 (https://figshare.
com/s/d6b129110dc47fa2671d). More detail of the datasets can be found from the readme file provided at the 
above link.

technical Validation
Bias correction. The performance of bias correction was assessed using the annual average precipitation, 
precipitation intensity, as well as annual wet-hour precipitation frequency for each station (Figs. 3–4 show 
the result for a randomly selected station). Figure 3 shows that the annual wet-hour precipitation frequency is 
greatly improved after bias correction with zero being the best performance (see Supplementary Fig. S1 for all 
the stations). It is further observed among the models that annual wet-hour frequencies are close to zero (a good 
matched with the O60). We found that the main reason for the higher frequency of wet-hour precipitation in the 
H60 is due to the low-intensity precipitations associated with them. Also, the ratio of average annual precipita-
tion between the H60 and O60 shows close to one (a good match with the O60). From the boxplots, it follows 
that there is not much difference between the bias-corrected and H60 precipitation. However, from the visual 
interpretation, it can be concluded that the H60, as well as bias-corrected annual average precipitation, are close 
to the range of O60. We found the precipitation threshold value for each month and stations were in the range of 
0.217-2.626 mm/h.

Lastly, Fig. 4a shows the quantile-quantile plot between the O60, H60, and bias-corrected precipitation data. 
It shows that bias-correction improved the H60 precipitation data for all the climate models as all the points 
are near to the perfect line (represented by the black line). It is further confirmed from the Taylor diagram 
(Fig. 4b) that the bias-correction satisfactorily improved the H60 precipitation for all the climate models (see 
Supplementary Figs. S2-4 for all the stations). Further, the Taylor diagram shows a higher coefficient of correla-
tion with smaller centred RMS error. All the models had a correlation coefficient of more than 95%. Whereas, 
the centered RMS error was less than 0.5, which is smaller than the H60. In addition, the normalized standard 
deviation also shows a nearly same spread of precipitation around the mean. Overall, the results for all models 
confirm a better performance after bias correction as all of them are near to the reference or O6061,70.

Performance of rainfall disaggregation. The performance assessment using the statistical measures in 
estimating the probability of zero rainfall between the O15 and DS15 precipitation for the intermittency of rain-
fall are shown in Figs. 5–6 and Table 2. Figure 5a shows the boxplot of the probability of zero rainfall for each 
month of all stations. The mean, as well as the distribution of all the probability of zero rainfall for DS15 precipi-
tation, is nearly equal to that of the O15 precipitation with more than 95% coefficient of correlation. In addition, 
the outliers show a lower probability of zero rainfall (i.e., higher probabilities of rainfall) than the mean with 
minimum a value of 75% in both August and December. The large whiskers indicate that there are wide ranges of 
the probability of zero rainfall with a similar pattern between both the 015 and DS15. Figure 5b and 6 show the 
barplot and scatterplot for the probability of zero rainfall between the O15 and DS15, respectively.

All the values of probabilities of zero rainfall (P0) have a coefficient of determination (R2) value of more than 
0.9 with the minimum value of 0.9 in November (Table 2). It indicates that more than 90% of P0 for O15 can 
be described by the DS15 representing closely simulated intermittency of the observed precipitation process. 
Furthermore, the performance of generating the probability of zero rainfall is shown by the model error indices 
that are estimated using mean absolute error (MAE).

https://doi.org/10.1038/s41597-022-01304-7
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It was found that MAE is less than half the standard deviation (represented by 0.5*SD), indicating a satisfac-
torily low-error in replicating the observed precipitation events66,71. Additionally, the relative root square error 
(RRSE) shows a satisfactory performance of disaggregated rainfall36.

Moreover, we anticipate that P0 for DS15 are always less than or equal to O15. This occurs when there are 
precipitation events with similar magnitudes. In this case, the stochastic method randomly choose an event 
leading to smaller P0

12,36,41. For instance, let’s say there is an observed precipitation event of 10.16 mm for a given 
duration (say 1 h) that was recorded at 15-min intervals, e.g.,0,0,0,10.16. This is can be recorded as 1) 0,0,0,10.16 
or 2) 0,0,2.54,7.62 or 3) 0,2.54,5.08,2.54 or 4) 0,0,5.08,5.08 or many more. In such a case, the stochastic method 
randomly chooses a precipitation database from the given different types of precipitation events that leads to 
lower both P0 and intensities in the DS15 when it chose any event except option-1.This lower precipitation inten-
sities of DS15 (red dashed line) than O15 (solid blue line) can also be seen from Fig. 10. In addition, the higher 
number of similar magnitudes of precipitation were because of the fact that the O15 were originally measured 
to the nearest inch (multiple of 0.1 in) and then converted to mm and majority of data was found with lower 
intensities29.

Overall, the process of representing the most important parameter in rainfall disaggregation (i.e., precipi-
tation intermittency) using the probability of zero rainfall was found to be satisfactory36,41. From these results, 
it can be concluded that the stochastic disaggregation of precipitation closely imitates the intermittency of 
observed precipitation. Figure 6 (Po– February, August) also show the comparison of both O15 and DS15 value 
of the probability of zero rainfall for typical months of summer and winter.

Likewise, the comparison of the spread between O15 and DS15 about the mean is reported in Fig. 7 and 
Table 2. Figure 7a shows the boxplot of variance of all stations for each month. It shows the mean of all variances 
for DS15 is nearly equal to that of O15 with a minimum value of 0.1 mm2.However, there are outliers that nearly 
matched between both O15 and DS15 and that go up to 6.3 mm2 in O15 (5 mm2 in DS15) in June. The large 
whiskers also show the wide ranges of spread with a similar pattern among both O15 and DS15. Figure 7 and 
Table 2 show that all values of coefficient of determination are approximately 0.9 with a minimum value of 0.89 
in September. Similarly, as mentioned above, the MAE values are less than half that of the respective standard 
deviations. Also, the model error indicated by RRSE is insignificantly different36. The spread of variance in the 
scatter plots (Fig. 6 σ2- February, August) for the typical months of summer and winter show better performance 
for lower values and under-prediction for higher values.

In both typical months (Fig. 6 σ2- February, August), the spread has low values at the beginning indicating 
a slight under-prediction of observed variance in both the months and this tendency seems clearer in the case 
of August. Such variation in both months may mainly be due to differences in seasons, which have different 
mechanisms of precipitation such as convective and frontal precipitation in summer and winter, respectively.

Lastly, the performance of lag-1 autocorrelation (ρ1) between the DS15 and O15 are reported in Fig. 8 and 
Table 2. Figure 8a shows the boxplot of ρ1 for each month for all stations. In this figure also, the mean of all 
the ρ1 for DS15 is nearly equal to that of O15 that ranges from 0.2 (January) to 0.35 (July). However, there 
are outliers with nearly matching values between both O15 and DS15 with minimum values found in both 
August and December. The maximum ρ1has value of 0.95 for O15 (0.81 in DS15) in February. Moreover, larger 
whiskers with similar pattern indicate a wide ranges of ρ1, i.e., large scatter in both O15 and DS15.Table 2 and 

Fig. 3 Comparison of the H60 and O60 for NCDC station 16980300 (located at 38.96° N, 92.66° W) for annual 
wet-hour frequency and annual average precipitation (Note: BC-bias-corrected).
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Fig. 8b report a low value of the coefficient of determination and high model error. Also, the scatter plot in Fig. 6  
(ρ1- February, August) show, for both the typical months of summer and winter. It over-predicted the O15 for 
lower values and vice versa. Such large scatter in ρ1 can’t be significantly improved as it provides the best result36.

Results were further compared with Mirhosseini et al.12 for the typical months of summer and winter 
(Table 3). The coefficient of determination for the probability of zero rainfall and variance in both the months 
outperformed those of Mirhosseini et al.12. In the case of model error, Mirhosseini et al.12 showed lower MAE 
values but higher values in RRSE. The relative differences in both MAE and RRSE values may have been due 
to the fact that both the studies used different temporal scale for rainfall, i.e., 3-hour by Mirhosseini et al.12. 
However, in both cases, the model error is satisfactory as discussed above. Our study was expected to meet or 
exceed their performance since we used a 1-hour precipitation dataset as opposed to the 3-hour precipitation 
dataset used by Mirhosseini et al.12.

Fig. 4 (a) Quantile-quantile plot and (b) Taylor diagram showing the performance of the H60 and bias-
corrected precipitation for hourly precipitation intensity under different climate models for the NCDC station 
16980300 located at 38.96° N, 92.66° W.

https://doi.org/10.1038/s41597-022-01304-7
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A limitation in this study is that it used observed dataset from the same location for each station due to the 
limited availability of observed precipitation. It might be wise to check for other climatologically similar dataset. 
Another caveat of the methodology is the assumption of the same precipitation characteristics between the his-
torical as well as the projected period while creating the precipitation database.

Validation of the stochastic disaggregation method. Here, we randomly selected a station for the 
validation of the stochastic disaggregation of precipitation. As mentioned earlier, validation of the disaggrega-
tion method was performed by using 30 iterations due to its stochastic nature. Figure 9 shows the statistical 
performance of station 16980300 located at 30.25° N, 83.26° W that was randomly selected. The probability of 
zero rainfall and variance for DS15 is nearly equal to that of O15. In addition, values for May-July were generally 
under-predicted for both the variance as well as intermittency of precipitation. In the case of lag-1 correlation, 
there are over-predicted values in June and under-predicted values in the remaining months except in March 
and October. However, all of the three parameters of DS15 are within the range of ±1 standard deviation of O15 
indicating satisfactory performance of the stochastic method of precipitation generation41.

Fig. 5 (a) Box-and-whisker plot and (b) comparison of statistical measures in estimating the probability of zero 
rainfall for both O15 and DS15 for all stations.

Fig. 6 Scatter plot of statistical measures for the estimation of the probability of zero rainfall. for both O15 and 
DS15 in typical months of Winter (February) [top-row] and Summer (August) [bottom-row] months. The solid 
line represents the linear regression model.

https://doi.org/10.1038/s41597-022-01304-7
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The method was further checked for generation of the precipitation intensities. Figure 10 shows the pre-
cipitation intensity along with the percentage of precipitation meeting or exceeding a given value for both O15 
and DS15 precipitation having a coefficient of determination approximately 0.75. This result shows that the 
stochastic disaggregation method was able to reproduce high as well as low intensities. Moreover, the DS15 has 
better intensities than the 060 dataset. However, this study’s approach resulted in consistent under-prediction 
of moderate intensities.

The main reason was due to the stochastic selection and starting of the rainfall event. As suggested by Choi 
et al.36, the starting of the event cannot be significantly improved. Therefore, it may not be possible to make 
improvements given the assumptions and limitations of the disaggregation method. Moreover, the comparison 
among the intensities of O60 and DS15 show that there is higher intensities in the DS15. One of the main reason 
is that precipitation gets peaked in less than 15-minute, which results in averaging intensity for fixed-interval 
rainfall (e.g. 1-hour)29.

Generation of projected precipitation. Subsequently, the modified version of stochastic disaggregation 
method was used to disaggregate P60 from bias-corrected GCM-RCM outputs. Every station used their respec-
tive CDF and was disaggregated to 15-minute precipitation for the period of 2030–2059. The quality of these data 
was checked, which is discussed below.

Probability of zero rainfall Variance Lag-1 autocorrelation

R2 MAE RRSE 0.5*SD R2 MAE RRSE 0.5*SD R2 MAE RRSE 0.5*SD

Jan 0.94 0.08 0.26 0.43 0.92 0.02 0.3 0.06 0.54 0.08 0.7 0.09

Feb 0.92 0.1 0.29 0.47 0.92 0.02 0.31 0.06 0.53 0.09 0.71 0.09

Mar 0.91 0.11 0.32 0.48 0.9 0.03 0.37 0.08 0.5 0.09 0.73 0.09

Apr 0.93 0.1 0.32 0.39 0.91 0.03 0.37 0.1 0.47 0.1 0.78 0.09

May 0.92 0.12 0.35 0.38 0.92 0.04 0.4 0.11 0.42 0.11 0.83 0.09

Jun 0.95 0.13 0.33 0.34 0.93 0.06 0.39 0.14 0.37 0.11 0.87 0.08

Jul 0.95 0.14 0.35 0.31 0.92 0.07 0.42 0.13 0.34 0.11 0.89 0.08

Aug 0.96 0.12 0.27 0.37 0.93 0.06 0.41 0.13 0.35 0.12 0.88 0.09

Sep 0.94 0.11 0.3 0.39 0.89 0.04 0.41 0.11 0.47 0.11 0.78 0.09

Oct 0.93 0.08 0.3 0.41 0.93 0.02 0.33 0.09 0.53 0.1 0.71 0.1

Nov 0.9 0.1 0.35 0.44 0.97 0.03 0.56 0.43 0.52 0.1 0.72 0.09

Dec 0.93 0.09 0.29 0.49 0.92 0.02 0.31 0.06 0.54 0.09 0.69 0.09

Table 2. Statistical performance measures of rainfall disaggregation using the modified version of the stochastic 
method over the southeastern US.

Fig. 7 (a) Box-and-whisker plot for both O15 and DS15 and (b) comparison of statistical measures in 
estimating the variance over the entire stations.
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As suggested by Einfalt & Michaelides72, the disaggregated 15-minute precipitation data should be assessed 
by its quality. First, precipitation was analysed for the detection of gaps, physically impossible values, improbable 
zero values, unusually low values, and high values of precipitation.

Fig. 8 (a) Box-and-whisker plot for both O15 and DS15 and (b) comparison of statistical measures in 
estimating the ρ1 autocorrelation over the entire stations.

Month Statistic

MAE RRSE R2

This study Mirhosseini et.al.12
This 
study Mirhosseini et.al.12 This study Mirhosseini et.al.12

February
p0 0.1 0.01 0.29 0.31 0.92 0.91

σ2 0.02 0.0003 0.31 0.62 0.92 0.82

August
p0 0.12 0.005 0.28 0.69 0.96 0.82

σ2 0.06 0.002 0.41 0.81 0.93 0.78

Table 3. Comparison of statistical performance measures between DS15 with Mirhosseini et al.12. (Note: 
Temporal scale of precipitation in our study and Mirhosseini et al. are 1-hour and 3-hour respectively).

Fig. 9 Statistical comparison for the performance of disaggregation of precipitation for the NCDC station 
44915900 located at 38.179° N, 79.58° W. The symbols and error bars denote O15 with ±1 standard deviation. 
The dotted line indicate DS15.
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Secondly, similarly to Feng et al.73, precipitation for all stations during the period of 2030–59 was analysed 
for its mean, median, SD, coefficient of skewness (Cs), coefficient of kurtosis (Ck), and coefficient of variation 
(CV) on the yearly and monthly basis. Figure 11a shows the annual average precipitation (asterisk symbols) in 
the range of 799–4015 mm. Table 4 shows the spread of precipitation around the mean, indicated by the stand-
ard deviation in the range of  321-331 mm. Coefficient of variation, i.e., the relative spread of the precipitation 
from its mean is in the range of 18–27%. Moreover, three of the climate models were right-skewed (Cs > 1) with 
mesokurtic kurtosis (Ck > 1).

Similarly, Fig. 11b shows the monthly average precipitation (asterisk symbols) ranging from 28 to 630 mm 
for all the climate models for the 12 months. Most of the precipitation occurred in the months of July-August. 
Table 4 also shows the spread of precipitation around the mean indicated by the standard deviation in the range 
of 22 to 106 mm. In terms of coefficient of variation, i.e., the relative spread of the precipitation around its mean, 
is in the range of 16 to 56%. Moreover, the skewness for each month’s data is different for different models. In all 
of the models, October and November have more precipitation events as coefficient of kurtosis and coefficient 
of skewness are greater than one.

Usage Notes
We developed a 15-min precipitation data over the southeastern US for both historical (1970–1999) and pro-
jected (2030–2059) periods for five climate models of NA-CORDEX using a modified version of a stochastic 
disaggregation method. There are 187 stations that cover the whole southeastern US. We also provide station 
metadata such as latitude, longitude and elevation.

Fig. 11 Boxplot for (a) annual average precipitation and (b) monthly average precipitation of 15-minute data 
under RCP8.5 scenarios using different climate model for the period of 2030–59. Asterisk symbols represent the 
mean value of precipitation.

Fig. 10 Performance comparison of precipitation intensities under O15,O60, and the DS15 for the NCDC 
station 44915900 located at 38.179° N, 79.58° W.
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The dataset provides an improvement over O60 for intensity-sensitive applications such as IDF curves, 
rainfall erosivity, USLE and RUSLE. Precipitation intensity showed satisfactory results in the reproduction of 
observed precipitation of high and low intensities. However, moderate intensities were found to be generally 
under-predicted as the precipitation event start times were generated using uniform probability distribution and 
are less likely to have same start times as the observed precipitation events. The generated precipitation data can 
be used in most scientific studies that deal with hydrological cycle (i.e., require precipitation). The limitation of 
this disaggregation method is that the generated precipitation characteristics might not sufficiently represent as 
same with the observed characteristics. This is an area of ongoing research, and addressing issues of precipitation 
characteristics in projected climate data is a major research priority.

Code availability
Codes used in this study were done using R-Studio with R version 4.0.4. The codes are available through the 
Github link https://github.com/bijoychandraAU/Temporal-disaggregation-of-precipitation.
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