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Background: Impaired glucose tolerance (IGT) is an important prediabetic stage
characterized by elevated concentrations of glucose and insulin in the blood. The
pathological hyperglycemia and hyperinsulinemia in IGT may regulate the expression of
microRNA-21 (miR-21) and affect the downstream insulin signaling pathways, leading to
endothelial cell dysfunction and early renal damage.

Methods: The individual and combined effects of insulin and glucose were investigated
using human glomerular endothelial cells (HGECs). The expression levels of miR-21, and
PTEN/AKT/eNOS and MAPK/ET-1 pathway proteins in the treated cells were measured.
The levels of nitric oxide (NO) and endothelin-1 (ET-1) secreted by the cells were also
measured. The role of miR-21 in mediating the regulatory effects of insulin and glucose
was assessed by overexpression/inhibition of this miRNA using mimics/inhibitor.

Results: High (>16.7 mmol/L) concentration of glucose upregulated the expression of
miR-21, leading to the activation and inhibition of the PTEN/AKT/eNOS and MAPK/ET-1
pathways, and upregulation of NO and downregulation of ET-1 secretion, respectively.
High (>25 ng/mL) concentration of insulin downregulated the expression of miR-21, and
lead to the activation of the MAPK/ET-1 and inhibition of the PTEN/AKT/eNOS pathway,
thereby upregulating the expression of ET-1 and downregulating the secretion of NO.
MiR-21 was observed to play a key role by directly controlling the activation of the insulin
signaling pathways when the cells were cotreated with different concentrations of insulin
and glucose. The expression of miR-21 was found to be dependent on the relative
concentration of insulin and glucose. Under simulated conditions of the IGT stage (8.3
mmol/L glucose + 50 ng/mL insulin), the inhibitory effect of high insulin concentration on
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miR-21 expression in the cells attenuated the activation by high glucose concentration,
resulting in the downregulation of miR-21, upregulation of ET-1 and downregulation of NO
secretion.

Conclusion: Taken together, these results indicate that high insulin and glucose
concentrations regulate the secretory function of glomerular endothelial cells in opposite
ways by regulating the expression of miRNA-21. Pathological concentrations of insulin
and glucose in the IGT stage may lead to a decrease in miR-21 expression, thereby
disordering the secretion of vasoactive factors, resulting in renal tubule ischemia.
Keywords: endothelial dysfunction, hyperinsulinemia, hyperglycemia, impaired glucose tolerance, insulin
resistance, high glucose concentrations, miR-21
INTRODUCTION

Diabetic kidney disease (DKD) has become a leading cause of
end-stage renal disease (ESRD) with the increase in morbidity
associated with diabetes (1). The early prevention and treatment
for DKD is difficult owing to the lack of means for sensitive
and specific diagnosis. Microalbuminuria (MAU) is the main
clinical criterion for the detection of DKD. However, only a
few patients with MAU can recover to have normal MAU
levels or maintain the current level after treatment, and 30%–
40% of patients gradually develop macroalbuminuria, and
even ESRD (2). The main reason for this could be the
occurrence of pathophysiological changes associated with
DKD (including glomerular basement membrane thickening,
podocyte damage, and mesangial expansion) in the kidney
even before the onset of MAU (3). The cause of this early renal
damage and the mechanism responsible for it remain unclear.
Therefore, investigations on the early pathophysiological
changes in DKD are of great importance for its early prevention
and treatment.

The development of type 2 diabetes mellitus (T2DM) is a
gradual process starting from normal glucose tolerance (NGT),
through impaired glucose tolerance (IGT), to hyperglycemia.
The IGT stage represents an intermediate stage during which
plasma glucose levels are above normal but do not meet the
criteria for diabetes. As an important stage in the development of
prediabetes, IGT can also be an independent risk factor for
kidney diseases (4). It has been found that MAU already exists in
13.1% of patients with IGT (5), indicating that IGT might be
independently associated with the pathology of DKD. In a
previous study, we found that the indicators of urinary tubule
injury were significantly increased in patients with IGT, and
estimated glomerular filtration rate (EGFR) and glomerular
hyperfiltration were also obviously increased in these patients
(6). Therefore, it is important to further study the alteration of
kidney structure and function during the IGT stage. In our
previous research, the pathological mechanism of IGT
nephropathy were studied in OLETF rat, which manifested by
obesity, insulin resistance, spontaneous hyperglycemia, and
proteinuria, and is an ideal animal model of DKD in human.
OLETF rats were given a high-fat diet at 4 weeks age. At 32 weeks
age, the OLEFT rats had developed pathological characteristics of
n.org 2
IGT(peak level of blood glucose > 16.8 mmol/L or 120 min blood
glucose level > 11.1mmol/L, and hyperinsulinemia). The main
presentation of renal injury in the IGT stage in OLETF rats is
tubular injury, which includes the irregular array of tubular
epithelial cells, the shedding off of brush-border tubular
epithelial cells, and infiltration of inflammatory cells (7).
Therefore, we propose the renal tubular damage, which occurs
in the IGT stage, as “IGT nephropathy”. However, the
mechanism of IGT nephropathy is still unclear. The core
pathophysiological changes in the IGT stage are insulin
resistance and compensatory hyperinsulinemia (8). Although
the compensatory elevation in insulin concentration helps
control blood glucose levels, it may be harmful to the heart,
kidneys, and other tissues (9, 10). Endothelial cells are an
important part of renal microcirculation. Changes in
metabolism (such as hyperglycemia), immunity, and
hemodynamics can directly lead to the damage of the vascular
endothelium (11, 12). The injury and dysfunction of endothelial
cells is an initial step in DKD (13). Studies have shown that
insulin may affect the release of vasoactive substances by
endothelial cells through the PI3K/Akt/eNOS and RAS/MAPK/
ET-1 pathways, and then affects the blood flow through the
surrounding capillaries (14–16).

Therefore, we speculate that the pathogenic factors of the IGT
stage (hyperinsulinemia and hyperglycemia) can affect the
function of capillary endothelial cells through the PI3K/Akt/
eNOS and MAPK/ET-1 pathways, and participate in the
progress of renal tubular ischemia and hypoxia, leading to
IGT nephropathy.

MicroRNAs are endogenously produced short noncoding
RNAs (17). MiR-21 plays an important role in the pathological
process of diabetic nephropathy. The expression of miR-21 in
the renal tissue was found to change in the early stage of
diabetes, and it was shown to be involved in the development
of DKD (18–20). However, whether miR-21 is involved in IGT
nephropathy remains to be studied.

In this study, to investigate the role of miR-21 in IGT
nephropathy and to explore the possible mechanism, we
simulated the characteristics of blood glucose and insulin in
the IGT stage in vitro using the glomerular endothelial cells and
observed the changes in the expression of miR-21 and proteins in
the downstream pathways and endothelial cell function.
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MATERIALS AND METHODS

Cell Culture and Intervention
Primary human glomerular endothelial cells (HGECs, ScienCell
Company, Beijing Yuhengfeng Agency, China) were cultured
in Endothelial Cell Medium containing 10% fetal bovine
serum (Endothelial Cell Medium and serum were from
ScienCell Company, Beijing Yuhengfeng Agency, China). The
cells were used within six passages. Cells in the high insulin
concentration group were treated with medium containing
different concentrations of insulin: 7.14 ul, 14.28ul, 35.7ul,
71.4ul of Novolin insulin solution (Novo Nordisk,
Copenhagen, Denmark) was added to 2 ml ECM medium
separately(The ECM medium did not contain any insulin) to
form 5 ng/ml, 10ng/ml, 25ng/ml, 50ng/ml high concentration
insulin medium. Cells in the high glucose concentration
group were treated with medium containing anhydrous
glucose (Solarbio, Beijing, China) at 8.3, 11.1, 16.7, or 33.3
mmol/L. D-Mannitol (Solarbio, Beijing, China) was used as a
control for osmolarity. HGECs were transfected with miR-21
mimics or miR-21 inhibitor (GenePharma, Shanghai, China)
using the Lipofectamine 2000 reagent (Invitrogen, Carlsbad, CA,
USA). The transfection was performed under strictly aseptic
conditions according to the manufacturer’s instructions. The
effectiveness of miR-21 mimics and inhibitor was verified by
PCR after transfection (Figures 4A, E).

Quantitative Real-time Polymerase Chain
Reaction
Total RNA was extracted from HGECs using miRNeasy Mini Kit
(Qiagen, Hilden, Germany). The first-strand cDNA was
constructed using a Taqman MicroRNA Reverse Transcription
Kit (ABI, Carlsbad, CA, USA). The primers used in this study
were obtained from Genscript Corp (Sangon, Shanghai, China),
and their sequences are listed in Table 1. U6 was used as an
endogenous control for the miRNAs. The relative gene expression
was calculated using the DDCt method. (The Ct value of U6 in each
group is stable as listed in the Supplemental Materials).

Western Blot Analysis
The cells were lysed in rapid cell lysis buffer (Solarbio, Beijing,
China). The supernatant obtained after centrifugation of the cell
homogenate was collected. Samples were resolved by SDS-PAGE
and the proteins were transferred onto PVDF membranes
(Thermo, CA, USA). The membrane was blocked with nonfat
Frontiers in Endocrinology | www.frontiersin.org 3
milk and incubated overnight at 4°C with the primary antibodies
against phosphatase and tensin homologue on chromosometen
(PTEN; diluted to 1:1000, Cell Signaling), AKT (diluted to
1:1000, Cell Signaling), phospho-AKT (P-AKT; diluted to
1:1000, Cell Signaling), p38 mitogen-activated protein kinase
(P38-MAPK; diluted to 1:1000, Abclonal), phospho-p38
mitogen-activated protein kinase (P-P38 MAPK; diluted
to 1:1000, Abclonal), endothelial nitric oxide synthase (eNOS;
diluted to 1:1000, Abcam), phospho-endothelial nitric
oxide synthase (P-eNOS; diluted to 1:1000, Abcam), and
endothelin-1 (ET-1; diluted to 1:500, Abcam). Thereafter, the
membranes were washed with TBST buffer and incubated
with the respective mouse or rabbit peroxidase-conjugated
secondary antibody (Sungene Biotech, Tianjin, China).
The protein bands were visualized using electrochemil
minescence (ECL) blotting detection reagent (Advansta, Menlo
Park, CA, USA) and quantified by densitometry using the Image
J software.

Enzyme-Linked Immunosorbent Assay
HGECs were seeded in a 24-well culture plate (BIOFIL,
Guangzhou, China) at a density of 1 × 105 cells per well and
treated as described above. The cell medium was aspirated and
centrifuged. The concentration of ET-1 was detected using ET-1
enzyme-linked immunosorbent assay (ELISA) kit (Fermentas,
USA) following the manufacturer’s protocol. The absorbance
was determined at 450mm as the reference wavelength by a
multiscan Spectrum spectrophotometer (Synergy LX, Biotek,
Germany); A ET-1 reference curve was established for each
assay and ET-1 concentrations were calculated using the
reference curve.

Nitric Oxide Assay
HGECs were seeded in a 96-well culture plate (BIOFIL,
Guangzhou, China) and treated as described above. The cell
medium was collected and centrifuged. The concentration of NO
was detected using Nitric oxide Assay Kit (Jiancheng Company,
Nanjing, China) following the manufacturer’s protocol. The
absorbance was determined at 550mm as the reference
wavelength by multiscan Spectrum and the NO concentration
was calculated according to the following formula:

NO concentration (mmol=L)

=
test group OD − blank group OD

standard group OD − blank group OD
� 100 mmol=L

� sample dilution factor

Statistical Analysis
The SPSS19.0 statistical software was used for data analysis. All
the values were expressed as means ± Standard Deviation (SD).
Independent sample t test was used for comparisons between the
two groups, and one-way ANOVA was used for multigroup
normal distribution data. The significance level was set at
alpha=0.05, and there were significant differences between the
two sides at P < 0.05.
TABLE 1 | Primers sequences used in qRT-PCR.

Gene* Primer

has-miR-21-5p
stemloop

5’-GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGA
TACGACCTACGC-3’

hsa miR-21-5p Forward 5’-GGTCCTTATTGCTTAAGAATACGCG-3’
Reverse 5’-CCAGTGCAGGGTCCGAGGT-3’

hsa U6 Forward 5’-TGCGGGTGCTCGCTTCGGCAGC-3’
Reverse 5’-CCAGTGCAGGGTCCGAGGT-3’
*hsa, human.
April 2021 | Volume 12 | Article 644159

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Liu et al. Endothelial Dysfunction in IGT
RESULTS

High Insulin and Glucose Concentrations
Have Opposite Effects on the Expression
of miR-21, and the PTEN/AKT/eNOS and
MAPK/ET-1 Pathways in HGECs
First, we assessed the effects of different concentrations of glucose
and insulin on the expression of miR-21 in HGECs. The
expression of miR-21 increased 1.5-fold in 16.7 mmol/L
concentration of glucose and 2-fold in 33.3 mmol/L
concentration of glucose. Whereas the expression of miR-21
decreased 0.5-fold in 25ng/ml and 0.4-fold in 50ng/ml
concentration of insulin (Figures 1A–D). Next, we investigated
the effects of high concentrations of glucose and insulin on the
expression of proteins in the PTEN/AKT/eNOS and P38-
MAPK/ET-1 pathways. High concentration of glucose (>16.7
mmol/L) activated the PTEN/AKT/eNOS pathway and inhibited
Frontiers in Endocrinology | www.frontiersin.org 4
the P38-MAPK/ET-1 pathway, increasing the expression of P-
AKT, eNOS (1.5-fold in 16.7 mmol/L and 1.6-fold in 33.3 mmol/
L glucose) and P-eNOS (1.5-fold in 16.7 mmol/L and 1.7-fold in
33.3 mmol/L glucose) and decreasing the expression of PTEN
(0.6-fold in 16.7 mmol/L and 0.4-fold in 33.3 mmol/L glucose),
P38-MAPK (0.7-fold in 16.7 mmol/L glucose and 0.4-fold in 33.3
mmol/L glucose) and ET-1 (0.6-fold in 16.7 mmol/L glucose and
0.3-fold in 33.3 mmol/L glucose) (Figures 2A–C). In contrast,
high concentration of insulin (>25 ng/mL) activated the P38-
MAPK/ET-1 pathway and inhibited the PTEN/AKT/eNOS
pathway, decreasing the expression of P-AKT, eNOS (0.6-fold
in 25ng/ml insulin and 0.3-fold in 50ng/ml insulin) and P-eNOS
(0.5-fold in 25ng/ml insulin and 0.3-fold in 50ng/ml insulin) and
increasing the expression of PTEN(2.4-fold in 25ng/ml insulin
and 2.5-fold in 50ng/ml insulin), P38-MAPK (2.1-fold in 25ng/ml
insulin and 2.4-fold in 50ng/ml insulin) and ET-1 (2.2-fold in
25ng/ml insulin and 2.3-fold in 50ng/ml insulin) (Figures 2D–F).
A B

C D

FIGURE 1 | High insulin and glucose concentrations have opposite effects on the expression of miR-21. (A): qRT-PCR analysis of miR-21 in HGECs after treatment
with different concentrations of glucose for 48 h. (B): qRT-PCR analysis of miR-21 in HGECs treated with 33.3 mmol/L glucose for different periods of time.
(C): qRT-PCR analysis of miR-21 in HGECs after treatment with different concentrations of insulin for 48 h. (D): qRT-PCR analysis of miR-21 in HGECs treated with
50 ng/mL insulin for different periods of time. Data are presented as means ± SD, *P < 0.05. All data are representative of three independent experiments. OC,
osmotic control. qRT-PCR, quantitative real-time polymerase chain reaction.
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A D

B E

C F

FIGURE 2 | High insulin and glucose concentrations regulate the activity of PTEN/AKT/eNOS MAPK/ET-1 pathways. (A): Westernblot analysis of PTEN, AKT, P-
AKT, eNOS, P38 MAPK, P-P38 MAPK and ET-1 expression in HGECs treatment with different concentrations of glucose and 0ng/ml concentration of insulin for 48h.
(B, C): Quantification of result in (A). (D): Westernblot analysis of PTEN, AKT, P-AKT, eNOS, P38, P-P38 and ET-1 expression in HGECs treatment with different
concentrations of insulin and 5.5mmol/L concentration of glucose for 48h. (E, F): Quantification of result in (D). Data are reported as mean ± SD *P < 0.05. All data
are representative of three independent experiments. OC, osmotic control group; Glu, glucose; Ins, insulin; PTEN, phosphatase and tensin homologue on
chromosometen; P-AKT, phospho-AKT; P38-MAPK, p38 mitogen-activated protein kinase; P-P38 MAPK, phospho-p38 mitogen-activated protein kinase; eNOS,
endothelial nitric oxide synthase; P-eNOS, phospho-endothelial nitric oxide synthase; ET-1, endothelin-1.
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Effects of Combined Treatment of HGECs
With High Concentrations of Glucose and
Insulin on the Expression of MiR-21,
PTEN/AKT/eNOS, and MAPK/ET-1
Pathway
Because both hyperglycemia and hyperinsulinemia exist in
patients in the IGT stage, we investigated the change in the
expression of miR-21 in HGECs exposed to high concentrations
of glucose and insulin in combination. To simulate the
physiological environment in the IGT stage in vitro, we treated
HGECs with 8.3 and 33.3 mmol/L of glucose together with
different concentrations of insulin. We observed that the
expression of miR-21 was downregulated with the increase in
insulin concentration in cells treated with 8.3 mmol/L glucose
(decreased 0.7-fold in 8.3 mmol/L glucose +25ng/ml insulin and
0.5-fold in 8.3 mmol/L glucose +50ng/ml insulin group) (Figure
3A). The inhibition of PTEN/AKT/eNOS and activation of P38-
MAPK/ET-1 pathways enhanced with the increase in insulin
concentration (Figures 3B–D), the expression of eNOS and P-
eNOS decreased (0.7-fold in 8.3 mmol/L glucose +25ng/ml
insulin group and 0.3-fold in 8.3 mmol/L glucose +50ng/ml
insulin group) and the expression of ET-1 increased (2.8 fold in
8.3 mmol/L glucose +25ng/ml insulin group and 3.3-fold in 8.3
mmol/L glucose +50ng/ml insulin group). In cells treated with
33.3 mmol/L of glucose, the expression of miR-21 in HGECs was
upregulated 3.4-fold in 5ng/mL insulin, 2.4-fold in 25ng/mL
insulin, and 1.7-fold in 50ng/mL insulin compared to 5.5 mmol/
L glucose +0ng/ml insulin group (Figure 3E). The activation of
PTEN/AKT/eNOS and inhibition of P38-MAPK/ET-1 pathways
were found in 33.3 mmol/L glucose +5 ng/ml insulin group (the
expression of eNOS and P-eNOS increased 1.4-fold and 2.4-fold
separately, the expression of ET-1 decreased 0.3-fold) and 25 ng/
mL insulin group (the expression of P-eNOS increased 1.7-fold)
compared to 33.3 mmol/L glucose +0ng/ml insulin group, but
significant change in the activation of downstream pathways was
not found in 33.3 mmol/L glucose +50 ng/mL group insulin
compared to 33.3 mmol/L glucose +0ng/ml insulin group.
(Figures 3F–H).
The Expression of miR-21 Directly
Regulates the Activity of PTEN/AKT/eNOS
and MAPK/ET-1 Pathways
To decipher the role of miR-21 in mediating the regulatory
effects of insulin and glucose on the insulin pathway, we used
miR-21 inhibitor/mimics for generating cells with loss of
function and overexpression of miR-21, respectively. The
results of western blot showed that miR-21 inhibitor blocked
the activation of the PTEN/AKT/eNOS pathway and the
inhibition of the MAPK/ET-1 pathway by glucose (Figures
4A–D), but miR-21 mimics enhanced the activation of the
PTEN/AKT/eNOS pathway and the inhibition of the MAPK/
ET-1 pathway by glucose (Figures 5A–C). In contrast, miR-21
mimics blocked the activation of the P38-MAPK/ET-1 pathway
and inhibition of the PTEN/AKT/eNOS pathway by insulin
(Figures 4E–H), but miR-21 inhibitor enhanced the activation
Frontiers in Endocrinology | www.frontiersin.org 6
of the P38-MAPK/ET-1 pathway and inhibition of the PTEN/
AKT/eNOS pathway by insulin (Figures 5D–F).

High Concentrations of Glucose and
Insulin Have Opposite Effects on NO and
ET-1 Secretion in HGECs
To assess the effects of high concentrations of glucose and insulin
on the secretory function of endothelial cells, we measured the
secretion of NO and ET-1 in HGECs treated with glucose and
insulin. High concentration of glucose was found to stimulate the
secretion of NO and inhibit the secretion of ET-1 in HGECs in a
dose-dependent manner, the secretion of NO increased 1.5-fold
in 16.7 mmol/L glucose and 2-fold in 33.3mmol/L glucose and
the secretion of ET-1 decreased 0.8-fold in 16.7 mmol/L glucose
and 0.5-fold in 33.3mmol/L glucose (Figures 6A–D). High
concentration of insulin had an opposite effect on the secretion
of NO and ET-1, the secretion of NO decreased 0.8-fold in 25ng/
ml insulin and 0.5-fold in 50ng/ml insulin and the secretion of
ET-1 increased 1.4-fold in 25ng/ml insulin and 1.6-fold in 50ng/
ml insulin (Figures 6E–H).
DISCUSSION

The results presented here show that at high concentrations,
glucose and insulin have opposite regulatory effects in HGECs,
and these effects constitute a dynamic equilibrium. Glucose
increased the expression of miR-21 in a concentration-
dependent manner, activated the PTEN/AKT/eNOS pathway,
and inhibited the MAPK/ET-1 pathway, increased the secretion
of NO, and decreased the secretion of ET-1. In contrast, insulin
inhibited the PTEN/AKT/eNOS pathway and activated the
MAPK/ET-1 pathway, decreased the secretion of NO and
increased the secretion of ET-1. Using 8.3 mmol/L glucose and
25 ng/mL insulin to imitate the pathological state of IGT, we
found that the effect of high insulin concentration on the
endothelial cells was more dominant than that of glucose,
resulting in the decrease in the synthesis of NO and increase in
the synthesis of ET-1. This might lead to the dysfunction of
microcirculatory endothelial cells around renal tubules.

The capillaries around renal tubules are important for renal
microcirculation. They are responsible for blood flow and
participate in the reabsorption of renal tubules. Observations
using electron microscopy have revealed that peritubular
capillaries mainly consist of endothelial cells lined by the
basement membrane, parietal cells, and a thin stroma (21, 22).
In addition to acting as a barrier, endothelial cells are also the
source and target of cytokines. These cells can interact with the
plasma factors through specific receptors on their membrane, and
express vasoactive factors (such as ET-1 and NO) to regulate the
blood circulation through peritubular capillaries (23). ET-1 is a
potent vasoconstrictor whereas NO is an important vasodilator
(24, 25). These two factors ensure a balance between
vasoconstriction and vasodilation to regulate the blood flow.
The normal functioning of endothelial cells is crucial for
maintaining normal microcirculation in the renal tubules. The
April 2021 | Volume 12 | Article 644159
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FIGURE 3 | Effects of combined treatment of HGECs with high concentrations of glucose and insulin on the expression of miR-21, PTEN/AKT/eNOS, and MAPK/ET-1
pathways. (A): qRT-PCR analysis of miR-21 in HGECs treated with 8.3 mmol/L of glucose together with different concentrations of insulin. (B): Protein expression of
the PTEN/AKT/eNOS and MAPK/ET-1 pathways in groups in (A). (C, D): Quantification of result in (B). (E): qRT-PCR analysis of miR-21 in HGECs treated with
33.3 mmol/L of glucose together with different concentrations of insulin. (F): Protein expression of the PTEN/AKT/eNOS and MAPK/ET-1 pathways in groups in (E).
(G, H): Quantification of result in (F). Data are reported as mean ± SD, *P < 0.05. All data are representative of three independent experiments. Glu, glucose; Ins, insulin.
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A E

B F

C G

D H

FIGURE 4 | MiR-21 inhibitor/mimics blocked the impact that high concentration glucose/insulin had on downstream pathways. (A): qRT-PCR analysis of miR-21 in
HGECs transfected with miR-21 inhibitor or inhibitor NC and treated with different concentrations of glucose. (B): Westernblot analysis of PTEN/AKT/eNOS and
MAPK/ET-1 pathways in groups in (A). (C, D): Quantification of result in (B). (E): MiR-21 levels in HGECs transfected with miR-21 mimics or mimics NC and treated
with different concentrations of insulin. (F): Westernblot analysis of PTEN/AKT/eNOS and MAPK/ET-1 pathways in groups in (E). (G, H): Quantification of result in (F)
Data are reported as mean ± SD, *P < 0.05. All data are representative of three independent experiments. Glu, glucose; Ins, insulin; NC, normal control.
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insulin-signaling pathway within endothelial cells is responsible
for the regulation of ET-1 and NO. Upon binding of insulin
receptors with insulin, insulin receptor substrate-1 phosphorylates
and activates the PI3K/AKT and MAPK pathways, thereby
regulating the expression and secretion of ET-1 and NO (26, 27).
There are also interactive regulatory networks between the PI3K/
AKT and MAPK pathways, which regulate their relative activities
and adjust the balance between ET-1 and NO levels (28, 29).
Therefore, when endothelial cells are affected by the pathological
Frontiers in Endocrinology | www.frontiersin.org 9
factors in the IGT stage, they are very likely to dysfunctional in
secretion of vasoactive factors, which may lead to a disorder in the
renal tubular microcirculation.

Insulin was initially believed to be a vasodilator because of its
activation on NO secretion (30, 31). However, in recent studies,
insulin-induced vasodilation was confirmed to be impaired in
insulin-resistant patients, and patients with obesity or insulin
resistance have elevated ET-1 concentrations in the blood (32,
33). The mechanism underlying the direct vascular effect of
A D

B E

C F

FIGURE 5 | MiR-21 mimics/inhibitor enhanced the impact that high concentration glucose/insulin had on downstream pathways. (A): qRT-PCR analysis of miR-21
in HGECs transfected with miR-21 mimics or mimics NC and treated with different concentrations of glucose. (B): Westernblot analysis of PTEN/AKT/eNOS and
MAPK/ET-1 pathways in groups in (A). (C): Quantification of result in (B). (D) MiR-21 levels in HGECs transfected with miR-21 inhibitor or inhibitor NC and treated
with different concentrations of insulin. (E): Westernblot analysis of PTEN/AKT/eNOS and MAPK/ET-1 pathways in groups in (D). (F) Quantification of result in (E)
Data are reported as mean ± SD, *P < 0.05. All data are representative of three independent experiments. Glu, glucose; Ins, insulin; NC, normal control.
April 2021 | Volume 12 | Article 644159

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Liu et al. Endothelial Dysfunction in IGT
A B

C D

E F

G H

FIGURE 6 | High concentrations of glucose and insulin regulate NO and ET-1 secretion in HGECs. (A): NO seretion of HGECs treated with different concentrations
of glucose and 0ng/ml concentration of insulin for 48h. (B): NO seretion of HGECs transfected with miR-21 inhibitor or inhibitor NC and treated with different
concentrations of glucose and 0ng/ml concentration of insulin for 48h. (C): ET-1 secretion of HGECs in groups in (A). (D): ET-1 secretion of HGECs in groups in (B).
(E) NO seretion of HGECs treated with different concentrations of insulin and 8.3mmol/L concentration of glucose for 48h. (F): NO seretion of HGECs transfected
with miR-21 mimics or mimics NC and treated with different concentrations of insulin and 8.3mmol/L concentration of glucose for 48h. (G): ET-1 secretion of HGECs
in groups in (E). (H) ET-1 secretion of HGECs in groups in (F). Data are reported as mean ± SD, *P < 0.05. All data are representative of three independent
experiments. OC,osmotic control; NC, normal control; NO, nitric oxide; ET-1, endothelin-1; inhibitor, miR-21 inhibitor; mimics, miR-21 mimics.
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insulin on endothelial cells remains controversial. In contrast to
the findings in previous studies, Ferri C et al. found that insulin
stimulates the expression and synthesis of ET-1 and directly
enhances the biological effect of ET-1 in endothelial cells in vitro
(34). In another study, it was shown that insulin can activate the
expression of both NO and ET-1 (35). Moreover, a study on rat
mesenteric vessels showed that the ratio of the expression of NO
and ET-1 changes with the dose of insulin (36). To unravel the
vascular effect of insulin, we used different concentrations of
insulin to interfere with the glomerular endothelial cells. We
observed that a high concentration (>25 ng/mL) of insulin
independently stimulated the synthesis and secretion of ET-1,
attenuated the synthesis of eNOS and secretion of NO, and that this
effect was concentration- and time-dependent (within 48 h). We
believe that there are two main reasons for the above controversy: 1.
The effect of insulin on NO secretion is determined by insulin
concentration and incubation time. Derek A, et al. has confirmed
through experiments that the increase in NO secretion caused by
insulin was due to short-term ETB receptor activation, but the
increase in NO secretion caused by ETB receptor activation will be
weakened by the increase of insulin concentration and incubation
time (10min), eventually, lead to a decrease in NO secretion and an
increase in ET-1 secretion (37). In our experiments, the endothelial
cells in the high-concentration insulin group were cultured in high
insulin concentrations (>25ng/ml) for a long time (48 hours),
resulting in the decrease of NO secretion. 2. The sources and
types of endothelial cells used in these studies are different. In
most literature, aortic endothelial cells and umbilical vein
endothelial cells were used for experiments, while in our
experiments we use glomerular endothelial cells. Endothelial cells
of different sources and types are different in morphology, structure,
and function (38). Therefore, when stimulated by insulin, the
secretion function of glomerular endothelial cells may be different
from other types of cells. Our results suggest that insulin exerts
independent vasoconstriction effects by regulating the secretory
function of glomerular endothelial cells, and that the
vasoconstriction effect is concentration- and time- dependent.

The damage of endothelial cells caused by high glucose
concentrations has been widely studied. High concentration of
glucose can lead to the activation of PKC and COX-2, resulting
in the overproduction of angiotensin (AngII), overexpression of
TGF-b, endothelial cell apoptosis, abnormal NO activity, and
increase in the generation of ROS, which increases the
permeability of glomerular filtration barrier, leading to
glomerular hyperfiltration (39–43). At the same time, the
glomerulus would expand itself to adapt to the hyperfiltration
while pulling the mesangial cells, so that the mesangial cells
increase collagen IV, V, I, II, fibronectin and laminin synthesis. A
large amount of ECM accumulates causing progressive damage
to the glomerulus, which eventually develops into irreversible
glomerulosclerosis (44). However, the studies cited above
focused on the effect of high concentration of glucose (>25
mmol/L in most of the studies) on endothelial cells. It is still
not clear whether a mild increase in the concentration of glucose
in the IGT stage has the same effect. In this study, we observed
the effect of different concentrations of glucose on endothelial
Frontiers in Endocrinology | www.frontiersin.org 11
cells. There was no significant change in the expression of ET-1
and NO proteins in glomerular endothelial cells treated with
glucose at concentrations lower than 11.1 mmol/L. However, the
synthesis of eNOS and secretion of NO were upregulated, and
the synthesis and secretion of ET-1 were downregulated
in glomerular endothelial cells treated with glucose at
concentrations higher than 16.7 mmol/L, suggesting that the
effect of glucose on endothelial cells is concentration dependent.
At glucose concentrations lower than 16.7 mmol/L, the function
of endothelial cells was not significantly affected.

IGT represents an intermediate stage in the progression from
NGT to diabetes, in which plasma glucose levels are above
normal but do not meet the criteria for diabetes (45, 46).
According to the diagnostic criteria set by the World Health
Organization, IGT is defined by fasting plasma glucose
concentrations lower than 7 mmol/L and OGTT plasma
glucose concentrations higher than 7.8 mmol/L but lower than
11.1 mmol/L. To respond to elevated plasma glucose
concentration and insulin resistance, b-cells secrete large
amounts of insulin, which results in hyperinsulinemia (44).
Therefore, hyperinsulinemia and hyperglycemia are two
independent pathological factors existing in the IGT stage that
could affect the functioning of glomerular endothelial cells. In
this study, we observed the effect of insulin and glucose on the
function of endothelial cells to be opposite. Thus, it is difficult to
predict the effect of the two in combination. To investigate this,
we treated HGECs with glucose at three different concentrations:
5.5 mmol/L (representing the normal glucose concentration), 8.3
mmol/L (slightly increased glucose concentration, representing
the IGT stage), and 33.3 mmol/L (representing significantly
increased glucose concentration). Subsequently, we examined
the expression of miR-21 when these cells were cotreated with
different concentrations of insulin (0 ng/mL, representing no
insulin; 5 ng/mL, representing normal insulin concentration; 25
and 50 ng/mL, representing for high insulin concentrations). The
results showed that in cells treated with 5.5 and 8.3 mmol/L
glucose, 25 or 50 ng/mL of insulin strongly decreased the
expression of miR-21 compared with 0 and 5 ng/mL insulin.
We speculate that this was because, at 5.5 and 8.3 mmol/L
concentrations, glucose had a less stimulatory effect on the
expression of miR-21, but 25 or 50 ng/mL of insulin strongly
inhibited the expression of miR-21. Thus, the stimulatory effect
of glucose is much weaker than the inhibitory effect of insulin,
leading to an inhibition in the expression of miR-21. At a
concentration of 33.3 mmol/L, the stimulatory effect of glucose
was enhanced compared with 8.3 mmol/L of glucose, thereby
alleviating the inhibitory effect of insulin, increasing the
expression of miR-21 in cells treated with 25 and 50 ng/mL
insulin. Hence, the combined effect of glucose and insulin on
endothelial cells depends on their relative concentrations.
Overall, we can conclude that the effect of insulin and glucose
on endothelial cells depends on a multilevel, dynamic balance
involving gene expression, protein synthesis, and cytokine
secretion. The relative balance of insulin and glucose regulates
the balance of the PI3K/AKT/eNOS and MAPK/ET-1 pathways
and protein expression by affecting the expression of miR-21,
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which in turn affects the balance between the secretion of ET-1
and NO. In this complex multilevel regulation, once the balance
between insulin and glucose is broken, there is a cascading effect
on the balance of expression of downstream proteins and
secretion of cytokines, which ultimately leads to the
unbalanced secretion of ET-1 and NO, resulting in ischemia
and hypoxia in renal tubules (Figure 7).

Our experiment also simulated the pathophysiological
elements in different periods in vitro: in the IGT stage, blood
glucose concentration did not increase significantly (8.3mmol/
L), but insulin concentration increased significantly (as shown in
Figure 3A, 8.3mmol/L glucose + 25ng/ml insulin group and 8.3
Frontiers in Endocrinology | www.frontiersin.org 12
mmol/L glucose+50ng/ml insulin group), glucose had little
impact on the expression of miR-21, while high concentration
insulin had an obvious inhibitory effect on the expression of
miR-21. In diabetes, blood glucose significantly increased, but
the function of islets was impaired, and insulin secretion was
decreased (as shown in Figure 3G, the 33.3mmol/L glucose +
0ng/ml insulin and 33.3mmol/L glucose + 5ng/ml insulin
groups), at this time, the effect of insulin on the expression of
miR-21 was weakened, but high concentration of glucose up-
regulated the expression of miR-21 significantly. Through the
above results, we can conclude that hyperinsulinemia is the main
pathological factor leading to abnormal expression of miR-21 in
FIGURE 7 | The relative balance of of insulin and glucose regulates the function of HGECs and peritubular capillaries. The relative balance of insulin and glucose
regulates the balance of the PTEN/AKT/eNOS and P38-MAPK/ET-1 pathways protein expression by affecting the expression of miR-21, which in turn affects the
balance between the secretion of ET-1 and NO and regulate the blood flow through peritubular capillaries. The unbalance of insulin and glucose would have
cascading effect on the expression of downstream proteins and lead to unbalanced secretion of ET-1 and NO, resulting in ischemia and hypoxia in renal tubules.
GLUT, glucose transporter.
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endothelial cells in the IGT stage. Therefore, it is necessary to
take measures to reduce the blood insulin concentration in the
IGT stage to prevent IGT nephropathy.

Besides, in the 33.3 mmol/L glucose group, we found that
normal concentration of insulin (0-5ng/ml) can further enhance
the expression of miR-21, while a higher (> 25ng/ml)
concentration of insulin can inhibit the expression of miR-21.
In the existing literature, it has been confirmed that normal
concentration of insulin can improve the uptake of glucose by
promoting the translocation of GLUT4, but in the insulin
resistance animal models, the promoting effect of insulin on
GLUT4 disappeared (47). Some literature suggested that this was
related to the decreased synthesis of insulin receptors and the
abnormal insulin binding (48). So the cooperative mode of
insulin and glucose depends on the concentration of insulin. A
normal concentration of insulin can enhance the effect of high
concentration of glucose by promoting glucose uptake, while a
higher concentration of insulin (>25ng/ml) in the IGT stage
counteracts the effects of glucose by inhibiting miR-21 expression.

MicroRNAs are non-coding single-stranded RNA molecules
encoded by endogenous genes. Mature microRNAs can have
complementary base pairing with the 3′-noncoding regions of
target genes, and inhibit the translation of target proteins (49,
50). MiR-21 is an important miRNA located on chromosome
17q23.2, which was initially found to be highly expressed in
cancers (47). Subsequent research has shown that miR-21 also
participates in the pathological progress of diabetic nephropathy,
such as in interstitial fibrosis, endothelial cell apoptosis, and
overexpression of inflammatory factors (51–54). In this study, we
found that in glomerular endothelial cells, the expression of miR-
21 was increased in the presence of a high concentration of
glucose and was decreased when the cells were treated with
insulin at a high concentration. The expression of miR-21
determines the activity of the downstream insulin pathways
and the expression of cytokines, indicating that it is the key
regulator in mediating the effects of glucose and insulin on
downstream proteins and the secretory functions of endothelial
cells. Under conditions of hyperglycemia and hyperinsulinemia,
the expression of miR-21 in glomerular endothelial cells depends
on the relative concentrations of glucose and insulin.

Our results also indicate that the change in the expression of
miR-21 may reflect the early dysfunction of endothelial cells, and
could serve as a target molecule for early diagnosis and treatment
of IGT nephropathy. In recent studies, researchers took blood
and urine samples of diabetes patients and determined the
amount of NO by measuring the ratio of nitrite/nitrate (55) or
used ELISA kits to determine the amount of ET-1 secretion (56),
but the above methods to assess endothelial function are very
complicated and the results are unstable. Some new techniques,
such as brachial artery flow-meditated dilatation (FMD), have
been developed to assess the function of endothelial cells, but
their value is still debated (57). In our study, we can see that the
expression of miR-21 can reflect the balance between NO and
ET-1: the more mir-21 expressed, the more NO and less ET-1 is
secreted. Therefore, we speculate that the expression of miR-21
in urine can reflect the function of renal endothelial cells.
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Besides, in our previous study, we have already performed
Agilent miRNA microarray analysis to detect some miRNA
expression in urine in IGT patients, the result showed some
particular miRNA had significantly up-regulated (58). In
subsequent experiments, we will collect urine samples from
IGT patients and try to verify the above hypothesis.

In conclusion, changes in glucose and insulin concentrations
in the IGT stage affect the secretory function of renal endothelial
cells, which impairs the regulation of blood flow through
peritubular capillaries, and finally leads to ischemia and
hypoxia in renal tubules. To prevent DKD, it is necessary to
prevent the dysfunctioning of renal endothelial cells in the IGT
stage. Besides, the expression of miR-21 changes significantly in
the IGT stage and is involved in the pathological mechanism of
IGT nephropathy. Therefore, miR-21 could be a sensitive index
to predict renal damage and could be a potential target for the
prevention of renal damage in the IGT stage.
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