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ABSTRACT Ascertaining themolecular and physiological basis of domestication and breeding is an active area of
research. Due to the current wide distribution of its wild ancestor, the wild boar, the pig (Sus scrofa) is an excellent
model to study these processes, which occurred independently in East Asia and Europe ca. 9000 yr ago. Analyzing
genome variability patterns in terms of metabolic pathways is attractive since it considers the impact of interrelated
functions of genes, in contrast to genome-wide scans that treat genes or genome windows in isolation. To that
end, we studied 40 wild boars and 123 domestic pig genomes from Asia and Europe when metabolic pathway
was the unit of analysis. We computed statistical significance for differentiation (Fst) and linkage disequilibrium
(nSL) statistics at the pathway level. In terms of Fst, we found 21 and 12 pathways significantly differentiated at a
q-value , 0.05 in Asia and Europe, respectively; five were shared across continents. In Asia, we found six
significant pathways related to behavior, which involved essential neurotransmitters like dopamine and serotonin.
Several significant pathways were interrelated and shared a variable percentage of genes. There were 12 genes
present in .10 significant pathways (in terms of Fst), comprising genes involved in the transduction of a large
number of signals, like phospholipase PCLB1, which is expressed in the brain, or ITPR3, which has an important
role in taste transduction. In terms of nSL, significant pathways were mainly related to reproductive performance
(ovarian steroidogenesis), a similarly important target trait during domestication and modern animal breeding.
Different levels of recombination cannot explain these results, since we found no correlation between Fst
and recombination rate. However, we did find an increased ratio of deleterious mutations in domestic vs.
wild populations, suggesting a relaxed functional constraint associated with the domestication and
breeding processes. Purifying selection was, nevertheless, stronger in significantly differentiated pathways
than in random pathways, mainly in Europe. We conclude that pathway analysis facilitates the biological
interpretation of genome-wide studies. Notably, in the case of pig, behavior played an important role, among
other physiological and developmental processes.
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Plant and animal domestication were cornerstone events in mankind’s
recent history (Diamond 2002). By ensuring a continuous and reliable
supply of food, domestication allowed a steady increase in human pop-
ulation size that eventually resulted in the first urban societies, thereby
facilitating the technological development that characterizes the human
species. Although domestication has received considerable interest for
many years from multiple disciplines, modern large-scale genomic tech-
nologies are shedding new light on a process where many unknowns still
remain. This endeavor is largely facilitated in species, such as the pig, where
a modern equivalent of the wild ancestor is available for comparison.
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There is some ambiguity in defining what is domestication (Zeder
2015), given that many concurrent processes have occurred in the
transition between wild specimens and the individuals bred by humans,
and that domestication likely involved gradual discontinuities in gene
flow between domestic and wild populations instead of a sudden stop
(Frantz et al. 2015). Nevertheless, in animals, there are some shared
characteristics among the major domestic species since they have been
selected to meet human preferences; domestic animals have modified
behavior, and distinctive growth and reproductive features compared
to their wild ancestors. The genetic bases of these traits are clearly
polygenic, as is evident for the numerous QTL that have been identified
(www.animalgenome.org/cgi-bin/QTLdb/SS/index). This complicates
the discovery of genes underlying their phenotypic variability because
small effect sizes are difficult to detect.

Traditionally, studies looking for selective signals have analyzed
individual SNPsor carriedout a genomic scan inwindowsof contiguous
SNPs of arbitrary size (e.g., Amaral et al. 2011; Burgos-Paz et al. 2013;
Rubin et al. 2012). Since genes do not act in isolation but in concerted
action with other genes, we argue, as other studies have done (Daub
et al. 2013), that analyzing genomic variability patterns from a meta-
bolic pathway point of view should facilitate the biological interpreta-
tion of the results. Compared to a genome window analysis, this
approach could improve power when individual gene signals are weak.
By adding up these individually weak signals in a pathway framework, a
global significant statistic can eventually be obtained. Note that a path-
way analysis differs from analyzing a posteriori a list of statistically
significant genes using, by instance, gene ontology tools, since here
we predefine a list of genes and we then study the collective behavior
of genes of the whole list. The criticism by Pavlidis et al. (2012) is then
less applicable when a prior hypothesis exists. For gene set approaches,
see review in, e.g., Mooney et al. (2014).

Previous studies do show that taking into account howgenes interact
alongmetabolic pathways is enlightening. For instance, using a pathway
approach, Daub et al. (2013) discovered that adaptation signals in
humans, measured by increased differentiation, are enriched for path-
ogen resistance pathways. However, none of the genes were statistically
outliers so this observation would probably have been overlooked had
genes been analyzed individually. In cattle, Ha et al. (2015) identified
several pathways associated with a number of key metabolites in dairy
cows and Buitenhuis et al. (2014) revealed pathways associated with
milk production. The main difference between those studies is the
criterion that they used to merge individual signals, as numerous var-
iants have been proposed [e.g., Wang et al. (2010)]. Here, we used
Fisher’s statistics to combine several independent Fst values for each
SNP into a gene P-value and, subsequently, those gene P-values were
combined into a pathway P-value. We argue that combining signals
frommultiple SNPs should be less prone to false discoveries than taking
the single most outlier signal for each gene.

Despite numerous studies in pig domestication [e.g., for a review see
Ramos-Onsins et al. (2014)] so far, to our knowledge, pathway analysis
has not been applied to improve our understanding of the domestica-
tion or breeding processes in this species. The fact that most phenotypic
characteristics have a polygenic basis makes pathway analysis an at-
tractive approach, provided that the pathway as a whole better explains
the genetic basis of the trait than do individual genes. Here, we have
used sequence data from 163 domestic and wild pigs to study how
potentially selective processes associated with domestication and ensu-
ing breeding have modeled the pig genome, when viewed from a path-
way point of view. By using sequence instead of chips, we further avoid
the issue of ascertainment bias, and provide a comprehensive, unbiased
portray of nucleotide diversity. Note that a comparison between

domestic and wild specimens necessarily confounds domestication
andmodern breeding signals, and truly disentangling genetic changes
due to domestication from those caused by ensuing breeding requires
ancient DNA studies at population scale, which is currently unreal-
istic despite some recent advances (Ramírez et al. 2014). Since we
were predominantly interested in the shared signal left by domesti-
cation and breeding across breeds, we tried to minimize the specific
breed effects. To this end, we combined genomes from several do-
mestic breeds, sampling evenly the number of specimens per breed.

MATERIALS AND METHODS

Pig samples
Weanalyzeda sampleof 163wildanddomestic pig (Sus scrofa) genomes
(SupplementalMaterial, Figure S1 and Table S1 in File S1). The 163 pigs
were classified into Asian domestic pigs (ASDM, n = 60), Asian wild
boars (ASWB, n = 20), European domestics (EUDM, n = 63), and
European wild boar (EUWB, n = 20). ASDM represented 10 Chinese
breeds (Meishan, Bamaxiang, Hetao, Laiwu, Luchuan, Minzhu,
Sichuan, Tibetan, Wuzhishan, and Yunnan), which were chosen to
represent the different geographic locations in China, six samples from
each breed. ASWB comprised 10 boars from South China and 10 from
North Asia (North China, Korea, and East Russia). EUDM were all
from major breeds (Duroc, Landrace, Large White, and Pietrain), plus
the local breeds Iberian, Mangalica, and the American miniature pig
Yucatan, of Iberian descent (Burgos-Paz et al. 2013); 10 genomes per
breed were chosen except for Mangalica and Iberian, where only five
and eight were available, respectively. The 20 EUWBs were from Spain,
France, The Netherlands, Switzerland, Italy, Greece, Tunisia, and the
Near East. The domestic breeds used in this study are selected for a
diversity of traits. For European breeds, meat content and growth are
important targets, whereas Chinese breeds tend to be more prolific and
fatter than their European counterparts.

Most of the sample sequences were available in public databases
(Groenen et al. 2012; Rubin et al. 2012; Esteve-Codina et al. 2013;
Molnár et al. 2014; Ai et al. 2015; Bianco et al. 2015a; Pérez-Enciso
et al. 2016) and were downloaded from the short read archive (SRA,
http://www.ncbi.nlm.nih.gov/sra). Two additional samples (Iberian pig
IBGU1805 and a British Large White LWGB0348) were specifically
sequenced for this study and have been submitted to the SRA (https://
www.ncbi.nlm.nih.gov/sra; accessions SRX2787051 and SRX2788443
within study PRJNA255085). The VCF files containing both raw and
imputed SNPs are available at https://bioinformatics.cragenomica.es/
numgenomics (under the heading “data”).

NGS bioinformatics
We downloaded and mapped raw reads against the reference assembly
(Sscrofa10.2, Groenen et al. 2012) using the BWAmem option (Li and
Durbin 2009). We removed PCR duplicates using SAMtools rmdup
v0.1.19 (Li et al. 2009) and realigned around indels with the GATK
IndelRealigner tool (McKenna et al. 2010). We called genotypes with
SAMtools mpileup and bcftools call v1.3.0 (Li et al. 2009) for each
individual separately. To call a SNP, we set the minimum and maxi-
mum depths between 5 · and twice the average sample’s depth plus
one, the minimum SNP quality was 10 in each sample, with the further
requirements of minimummapping quality andminimum base quality
of 20. We also called the homozygous blocks, which are the parts of the
sequence that are equal to the reference. Since SAMtools does not filter
by default these homozygous blocks by depth, we filtered them fitting
the same depth and quality requirements as for the SNP calling pro-
cedure using the “samtools depth” utility, BEDtools (Quinlan 2014),
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and custom scripts. In this way, both SNPs and homozygous blocks
were filtered by the same criteria.

We then merged individual gVCF files into a multi-individual VCF
file, with all the SNPs from the 163 samples. For this purpose, we
followed a two-step approach, closely resembling that in Pérez-Enciso
et al. (2016). In summary, we first generated a fasta file from the gVCF
file for each individual and generated a multi-individual VCF file using
the individual fasta file to identify whether a position is equal to the
reference, polymorphic, or missing. An alternative approach would
have been to call SNPs using all samples simultaneously, but this strat-
egy has been shown to have less power (and similar type I errors) than
the one followed here, because joint SNP calling is less sensitive to rare
variants than individual calling (Nevado et al. 2014). Furthermore,
Asian and European samples are highly divergent and multi-sample
algorithms are optimized for single population analyses.

Once the multiple sample file was obtained, we discarded the
singletons, SNPs in sex chromosomes, and the SNPs with .30% of
missing data of the samples in each group (ASDM, ASWB, EUDM, and
EUWB). If a given SNPwas not called in at least$30% of samples in all
groups, it was discarded from further analyses. Finally, we imputed the
missing genotypes and inferred phases with Beagle 4.0 (Browning and
Browning 2013). We annotated SNPs with Ensembl’s Variant Effect
Predictor (McLaren et al. 2010). This tool also classifies nonsynony-
mous variants as tolerated or deleterious based on their SIFT scores
(Sim et al. 2012), which predicts whether an amino acid substitution
affects protein function. For each gene, we computed the ratio of del-
eterious vs. tolerated SNPs. These statistics were computed for each
population (ASDM, ASWB, EUDM, and EUWB) separately. R (R De-
velopment Core Team 2014) was used to obtain a “heatmap” to rep-
resent Euclidean distances between samples’ genotypes.

Differentiation and disequilibrium metrics
Selection increases differentiation at positively selected loci between a
control population and a population where the loci are beneficial, also
causing an increase in linkage disequilibrium (LD) around selected
haplotypes. These two well-known phenomena (e.g., Sabeti et al. 2006)
can be captured by either Fst (allele frequency differentiation) or
haplotype-based tests, such as nSL (Ferrer-Admetlla et al. 2014). Since
the pig was independently domesticated in Asia and in Europe (Larson
et al. 2005), we computed Fst (Weir–Cockerham estimate, Weir and
Cockerham 1984) between wild and domestic populations in each
continent, Asia and Europe, separately using VCFtools (Danecek
et al. 2011). The nSLmetrics are designed to detect the positive selection
signal due to an increase in haplotype homozygosity; for this purpose,
nSL measures the length of a segment of haplotype homozygosity in
terms of number of mutations. We calculated the statistics with the
program nSL (http://cteg.berkeley.edu/software.html) within the four
different populations of interest (ASDM, ASWB, EUDM, and EUWB);
the statistics were normalized according to derived allele frequency in
10 bins of size 0.10. The ancestral allele is needed for the nSL statistic
and was inferred from a consensus outgroup allele, as explained in
Bianco et al. (2015b). The consensus was obtained from several species:
S. barbatus, S. cebifrons, S. verrucosus, S. celebensis, andAfrican warthog
(Phacochoerus africanus). The divergence between the different Sus
species is �4.2 MYA, whereas that of Sus with warthog is ca.
10 MYA (Frantz et al. 2016). We removed those SNPs for which the
ancestral allele could not be reliably identified or with less than two
alleles. For each gene, we assessed the average recombination rate based
in the linkage map by Tortereau et al. (2012). This map was based on
four different F2 crosses between European and Chinese breeds; total

autosomal length was�20M.We obtained a smoothed recombination
rate using the loess R package, to minimize the effect of gaps in the
recombination map.

Pathway analysis
Wedownloaded the complete datasetwith pig pathways andgenes from
NCBI Biosystems v.20160202 (Geer et al. 2010). The downloaded file
contained 1789 pathways and 7157 genes. Themedian number of genes
per pathway was 47 and ranged from 1 to 1519. The NCBI biosystems
database contains records from different source databases, such as KEGG
(http://www.genome.jp/kegg/, Kanehisa et al. 2008), REACTOME
(http://www.reactome.org/, Matthews et al. 2009), or WikiPathways
(http://www.wikipathways.org/, Pico et al. 2008), which are often re-
dundant. For this reason, we filtered the pathways according to their
size and redundancy in two steps. First, we removed pathways
with ,10 and .150 genes (150 corresponds to two SD in the distri-
bution of number of genes per pathway); this was aimed at discarding
pathways that were either not informative or too generic and complex.
For instance, among the pathways with over 150 genes we find: met-
abolic pathways, gene expression, metabolism, hemostasis, immune
system, and neuronal system. Second, for pathways sharing .50% of
their genes, we selected the largest one.

We obtained an empirical P-value for Fst and nSL for each pathway
following Dall’Olio et al. (2012). First, an empirical P-value for each
SNP was obtained by ranking the statistics (Fst or nSL). Thus, a SNP
with Fst (or nSL) ranked as the i-largest out of N SNPs, was assigned a
P-value of i/N. Next, we obtained a gene P-value with Fisher’s statistics,
which combines several independent P-values:

x ¼ 2 2
XS

j¼1

log
�
Pj
�
;

where S is the number of SNPs for the gene analyzed (i.e., those within the
gene boundaries in the Ensembl database) and Pj each associated P-value;
since x is distributed as a x2 test with 2N d.f., we can obtain a combined
P-value for the gene. In a second step, we repeated the same procedure by
combining the P-values of each gene in the pathway to obtain a pathway
P-value. The actual significance of this P-value is difficult to interpret since
the null hypothesis is not clearly defined; therefore, we carried out per-
mutations to determine significance. Since each pathway differs in num-
ber of genes, we carried out 1000 permutations for random gene sets of
sizes 10–150 genes and differing by increments of 10 genes. In these
permutations, dummy pathways were assembled using the P-values of
randomly sampled genes, and the actual pathway P-value was compared
with the null distribution obtained by permutation. To account for mul-
tiple testing, we used the q-value (Benjamini and Hochberg 1995), com-
puted with R-package qvalue (Storey et al. 2015), to determine significant
pathways using the P-values obtained by permutation.

Critically, Fisher’s statistics are based on the premise of indepen-
dence between P-values, and this is not guaranteed with sequence data
given the extreme disequilibrium between nearby SNPs. To avoid this,
we pruned the SNP dataset by selecting those positions that minimized
LD using the PLINK v.1.9 program (Chang et al. 2015), setting the
variant inflation factor equal to two. With this approach, the P-value
obtained from Fisher’s statistics was independent of the number of
SNPs for each gene (Figure S2 in File S1). It should be mentioned that
the nSL statistics were computed using all SNPs for which the ancestral
allele could be determined, since nSL measures LD in the number of
SNP units, but only the values for SNPs in equilibrium were retained to
obtain the gene P-value, as for Fst metrics.
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To investigate whether significance could be partly explained by
Asian introgression in EUDM, we carried out a semisupervised
ADMIXTURE (Alexander et al. 2009) analysis. We extracted SNPs
from all genes pertaining to the given pathway and we ran ADMIXTURE
with K = 2. We run a semisupervised analysis where all EUWB were
assigned K = 1 and all Asian pigs were assigned K = 2, and we let the
program compute the fraction of the EUDM genomes due to Asian
origin. We did this for each significant pathway and for a random set
of pathways with a similar number of genes.

Further, we built a coassociation network to visualize pathway
relationships. Significant pathway-to-pathway connections were iden-
tified using the PCIT network inference algorithm (Reverter and Chan
2008). The PCIT algorithm is a soft-thresholding method that exploits
the twin concepts of Partial Correlation and Mutual Information. In
brief, it explores relationships between all possible triplets of nodes (i.e.,
pathways in our context), in an attempt to determine truly informative
correlations between node pairs once the numerical influence of other
nodes in the system has been accounted for. Clustering was based on
10 variables per pathway: the six pathway P-values for Fst (one value
per continent) and nSL (one value per population) metrics, and nucle-
otide diversity in each of the four populations (ASWB, ASDM, EUWB,
and EUDM), averaged for each gene in the pathway. We estimated
Tajima’s nucleotide diversity (Tajima 1983, 1989) per gene per popu-
lation with the methods developed by Ferretti et al. (2012), which
account for missing data, using mstatspop software (S. Ramos-Onsins,
unpublished data, available at http://bioinformatics.cragenomica.es/
numgenomics/people/sebas/). We visualized the resulting network us-
ing Cytoscape (www.cytoscape.org, Shannon et al. 2003). In the visu-
alization scheme, we mapped the pathways (nodes) to a series of
attributes to help identify emerging properties. These included number
of genes in the pathway, pathway source (KEGG or REACTOME),
population with lowest Fst P-value (Asia or Europe), and pathway
nucleotide variability.

Data availability
The authors state that all data necessary for confirming the conclusions
presented in the article are represented fully within the article.

RESULTS AND DISCUSSION

Genetics mirrors geography, to an extent
Out of the 163 genomes, we initially identified 71,458,035 autosomal
SNPs. After quality filtering, removing the positions with .30% of
missing data, and discarding singletons, these were reduced to
48,008,185 SNPs. Of those, 31,363,201 (65%) were annotated in dbSNP
(https://www.ncbi.nlm.nih.gov/SNP), and the ancestral allele could be
determined in 44,417,146 sites. By continent, Asia had a much larger
number of private SNPs than Europe, 25,258,008 vs. 5,726,610, as
expected from the fact that the species is of Asian origin and that
European populations suffered a strong bottleneck, as has been ob-
served in previous studies (Bianco et al. 2015b).

A heatmap of genetic distances between all samples and SNPs
showed the well-known split between Asia and Europe (Figure S3 in
File S1). The European heatmap (Figure 1A) shows that the main di-
vision is between wild boar and local breeds Iberian, Mangalica, and
Yucatan vs. international pig breeds Pietrain, Landrace, Large White,
and Duroc. Further, all EUWBs were clustered together except the two
Near East wild boars, which were grouped in a separate branch. The
Yucatan, a miniature pig developed in the USA starting with local
Mexican pigs and that still retains an important percentage of ancestry
from Iberian pigs (Burgos-Paz et al. 2013), formed a separate group but

was closer to local pigs than to international breeds. Among those,
Duroc was genetically more separate from the rest of the international
pig breeds.

The picture was somewhat more complex in Asia (Figure 1B),
although pigs were also grouped by breed. In contrast to Europe, we
observed a genetic split between North and South wild boars, in agree-
ment with previous results (Ai et al. 2015). Nevertheless, this geo-
graphic pattern was not so evident among the domestic pigs, e.g.,
North Asian breeds (Laiwu, Hetao, and Minzhu), which are less sepa-
rated from those from the South, compared to wild populations.

Pathway statistics
We retrieved 1789 pathways comprising 7157 genes from the NCBI
database, which were reduced to a final set of 442 pathways with
5713 genes after filtering (Table S2 in File S1) by size (e.g., number of
genes) and redundancy. Note that only 25% of pathways but 80% of
genes were retained, showing the large redundancy in terms of genes
across pathways. Most discarded pathways (676) were very small and
contained,10 genes. The distribution of genes per pathway was highly
leptokurtic (Figure S4 in File S1).

Differentiation metrics (Fst)
Differentiation (Fst) analysis indicates that allele frequency changes
occurred in pathways associated with some important biological
processes (Table 1). We found more significant pathways in Asia than
in Europe; there were 21 pathways significantly differentiated at a
q-value , 0.05 in Asia and 12 in Europe, involving a total of 1065 and
576 genes, respectively. Pathways were predominantly continent-specific,
but five pathways were differentiated in both continents: integrin
cell surface interactions, insulin secretion, pancreatic secretion, ABC
transporters, and glutamatergic synapse. Our results are unlikely to be
an artifact caused by differential recombination rate, as we found no
correlation between Fst and recombination rate (Figure S5 in File S1).
This contrasts with what has been observed in humans (Keinan and
Reich 2010).

In Asia, we found six significant pathways related to behavior
(serotonergic synapse, dopaminergic synapse, glutamatergic synapse,
opioid signaling, long-term depression, and adrenergic signaling in
cardiomyocytes). This is remarkable since it has long been recognized
that domestication has affected behavior, yet the genetic basis for these
changeshasnot been convincingly identified.The six pathways included
a total of 264 genes, which codify for proteins involved in the metab-
olism of important neurotransmitters like serotonin, dopamine, and
L-glutamate. Serotonin and dopamine are involved in aggression
(serotonin) and reinforcement and reward (dopamine), whereas
L-glutamate is the major excitatory neurotransmitter in the central
nervous system. Clearly, aggression and rewardmust have played a role
at leastduring theearly stagesofdomesticationandthegenetic causesare
likely shared between all domestic breeds. Pathway “adrenergic signal-
ing in cardiomyocytes” involves several adrenaline receptors and cal-
cium channels such as ryanodine receptor 2 (RYR2). While RYR2 is
primarily expressed in cardiomyocytes, its isoform RYR1 is expressed
in skeletal muscle and is well-known in pig genetics for being respon-
sible for the pale, soft, and exudative syndrome (Fujii et al. 1991).

For the six behavior pathways, Figure 2 shows the P-values of all
genes that were significant at the 1% nominal level either in Europe,
Asia, or both. Although behavior pathways weremainly significant only
in Asia (except glutamatergic synapse, Table 1), several individual genes
were significant in both continents, foremost phospholipase C b

1 (PLCB1), which was significant in both continents and was present
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Figure 1 (A) Heatmap of the European individuals
using the molecular relationship matrix, computed
using all available autosomal single nucleotide
polymorphisms (SNPs). (B) Heatmap of the Asian
pigs. In Europe, breed codes are DU, Duroc; IB,
Iberian; LR, Landrace; LW, Large White; MG,
Mangalitza; PI, Pietrain; and YU, Yucatan minipig.
In Asia, breed codes are BX, Bamaxiang; HT,
Hetao; LA, Laiwu; LU, Luchuan; MI, Minzhu; MS,
Meishan; ST, Sichuan; TT, Tibet; WU, Wuzhishan;
and YT, Yunnan. Colors are used to differentiate
among the populations: ASDM (Asian domestic,
blue), ASWB (Asian wild boar, purple), EUDM
(European domestic, green), and EUWB (European
wild boar, dark red).
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in all six behavior pathways. It can be suspected that these pathways
were significant only because they contained the PLCB1 gene; however,
PLCB1 was involved in a total of 35 pathways, and only 14 were sig-
nificant (q-value, 0.05). Furthermore, we also computed the pathway
P-value excluding PLCB1 and found only a modest decrease in signif-
icance (Table S3 in File S1).With our approach, it is unlikely then that a
single gene is responsible for significance at the pathway level. Note that
this is reasonable under a multi-cause mechanism but may prevent the
researcher from identifying pathways where a single gene has main
responsibility for the rate limiting effect on the whole pathway. In all,
PLCB1 plays an important role in the intracellular transduction of
many extracellular signals mediated by calcium. It cleaves the PIP2
molecule into IP3 and DAG. DAG, together with Ca2+ (its secretion
is activated by ITPR3, also significant in Europe), activates PKC, which

plays a central role in activating numerous functions such as transcrip-
tion, the immune response, growth, learning, and smooth muscle con-
traction. This explains its presence in so many different pathways.
Importantly, PLCB1 is expressed in select areas of the brain, including
the cerebral cortex, hippocampus, amygdala, lateral septum, and olfac-
tory bulb (Koh et al. 2007). In humans, deficiencies in this gene are
associated with some kinds of epilepsy (Ngoh et al. 2014). Another
interesting and significant gene in both continents was GSK3B (Glyco-
gen synthase kinase-3), which is involved in energy metabolism, neu-
ronal cell development, and body pattern formation.

The rest of the significantly differentiated pathways comprises those
related to glucose metabolism (insulin and pancreatic secretion) and
development (Wnt signaling, Hippo signaling, and axon guidance) in
Asia, and recombination or muscle contraction in Europe. Hippo and

Figure 2 Gene P-values (2log10) of significant genes at the 1% nominal level in Europe (red bars), in Asia (blue bars,) or both continents (black
bars) from the significant differentiated (Fst) pathways involved in behavior. When a gene was significant in both continents, the smallest P-value is
plotted. Gene symbols are provided when available; otherwise numbers indicate ensembl ENSSSCG id.
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Wnt signaling pathways are intimately related, and half of all significant
genes were shared (Figure S6 in File S1). In contrast, vascular smooth
muscle contraction and muscle contraction share only 16 significant
genes out of 85 and 117 genes, respectively. Significant genes in the
insulin pathway include PLCB1 and RYR2, as well as potassium and
calcium channels that act on insulin granules and insulin transcription
(KCNN1, KCNN2, and KCNMB1). The Hippo signaling pathway con-
trols organ size, a fundamental target during domestication and mod-
ern breeding. Wnt signaling, in turn, is one of the most relevant and
highly conserved signal transduction pathways, and it has a fundamen-
tal role in embryonic development. Hippo and Wnt are tightly inter-
connected signaling cascades, although their mechanisms differ; Hippo
is mainly sensitive to cell density, whereas Wnt responds to concentra-
tions of specific proteins (Irvine 2012). Interestingly, there is also a
direct relationship between the Wnt and insulin pathways, as Wnt
signaling increases cells’ insulin sensitivity. The three most significant
genes in the Wnt pathway were PLCB1 (shared with other pathways,
see Figure 2 and Figure S5 in File S1), inversin, which contains calmod-
ulin domains and is involved in renal development, and GSK3B, also
involved in body pattern formation. GSK3B is also a negative regulator
of glucose hormone control.

It is finally worth mentioning two significant pathways involved in
recombination, “DNA double strand break repair” and “nonhomolo-
gous end-joining” (Figure S7 in File S1, which also shows the rest of the
significant Fst pathways). The issue of the effect of recombination on
domestication has been debated for a long time in the literature. The-
oretical models have predicted that domestication should increase
recombination, as rapid selection indirectly favors an increased recom-
bination rate such that the Hill–Robertson effect is less limiting for
response, and this prediction has been confirmed using chiasma data
from the literature (Ross-Ibarra 2004). In a classic paper, Ollivier (1995)
also showed that the wild boar linkage map was �33% shorter than
domestic pig maps. Nevertheless, other recent studies in sheep, goat,
and dogs have ruled out changes in recombination rates compared to
their wild ancestors (Munoz-Fuentes et al. 2015). Therefore, the signif-
icant differentiation found here in this pathway may not be paralleled
with changes in recombination rate caused by domestication.

LD metrics
We repeated the same statistical procedure as for Fst with the nSL
statistics, which measures LD instead of differentiation, and that is
especially powerful for identifying soft sweeps (Ferrer-Admetlla et al.
2014). Each of the four populations, ASDM, ASWB, EUDM, and
EUWB, were analyzed separately. Overall, there were fewer significant
pathways at a q-value, 0.05 with nSL than with Fst (Table 1 vs. Table
2). In particular, we did not find a significant value in either EUWBs
nor in ASWBs, perhaps because there were fewer wild than domestic
pigs. In comparison to Fst, concordance between continents with nSL
was very high in domestic pigs, as we found the same six out of seven
significant pathways in both Asia and Europe. The only exception was
pathway “Inflammatory mediator regulation of TRP channels” in-
volved in the immune response, which was significant only in Asia.
A potential matter of concern with pathway analysis is its definition. As
an example, we found that arachidonic acid metabolism pathways
annotated by KEGG (NCBI id 84417) and REACTOME (NCBI id
1336691) contained 24 shared genes out of a total of 47 and 39, re-
spectively. Nevertheless, the significant genes (P-value, 0.01) of both
pathways were the same. As noted by Mooney et al. (2014), different
databases may contain different genes to represent the same biological
process; this is a warning of the fact that pathway definition is not an n
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unambiguous concept, and different criteria can legitimately be used to
define a given biological process.

Two of the significant pathways are directly linked to repro-
ductive performance (“Ovarian steroidogenesis” and “Steroid
hormone biosynthesis”). Importantly, we also identified ovarian
steroidogenesis in our previous work (Pérez-Enciso et al. 2016) in
a much smaller study on domestication merging ASDM and
EUDM vs. ASWB and EUWBs, and where a completely different
analytical approach was employed. The remaining significant
pathways were related to lipid metabolism, in particular to linoleic
and arachidonic metabolism. Importantly, some of the final prod-
ucts of linoleic metabolism are THF-diols, which are converted

into prostaglandins and are involved in the sexual behavior of
males and the ovarian cycle in females. Therefore, most pathways
identified with nSL are interrelated and linked to reproduction.

Among the most significant genes in ovarian steroidogenesis, there
appears the uncharacterized gene ENSSSCG00000003824. This gene
seems to be orthologous toUGT2B (UDP glycosyltransferase), a cluster
of genes involved in the glucuronidationof estrogens. Figure 3 shows the
significant gene P-values for the significant nSL pathways. It is inter-
esting to note that a more coherent signal across continents emerged
with nSL than with Fst metrics, since the most significant genes
with nSL are shared between continents (e.g., compare Figure 2 and
Figure 3).

Figure 3 Significant genes at the 1% nominal level either in Europe, Asia or both, present in the significant pathways obtained from the nSL
(linkage disequilibrium) analysis. Gene symbols are provided when available; otherwise numbers indicate ensembl ENSSSCG id.
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Pathways are interrelated
Much as genes donot act in isolation, neither do pathways. To represent
this, a coassociation network was built with all 35 significant pathways,
either with Fst or nSL analysis (Table 1 and Table 2 merged). The
metrics used for the clustering contained the pathway Fst and nSL
P-values together with nucleotide variabilities (seeMaterials andMeth-
ods). The entire network of pathways contained 83 negative and
129 positive connections. Note that the interpretation of a “positive”
or “negative” connection is not straightforward, as is often the case in
multivariate methods. The sign would indicate that domestication
and/or breeding has exerted similar or opposite effects on the
variables used to build the network, conditional on the fact that
pathways are significant in at least one analysis. The three most
connected pathways, each with 19 connections, were arachidonic
acid metabolism (NCBI id 1336691) with 45 genes, glutamatergic
synapse with 122 genes, and dopaminergic synapse with 119 genes.
When the minimum correlation was set to 0.80 in absolute value
(Figure 4), four pathways were not sufficiently connected (nuclear
signaling by ERBB4, Chagas disease, serotonergic synapse, and ABC
transporters). In turn, three clusters of highly interconnected path-
ways are immediately apparently in the network visualization of
Figure 4. Cluster A contains nine pathways with higher than average
nucleotide diversity that show strong positive connections between
them. Prominent in this cluster is the axon guidance pathway with
119 genes. Its connections with cell–cell communication, G a sig-
naling events, and assembly of the primary cilium via the insulin
secretion pathways suggest that this cluster mainly involves extra-
cellular guidance such as growth and hormonal regulation, helping
axons reach their targets (Dickson 2003).

Most of the corresponding pathways of the other two clusters are
negatively related between them. Cluster C is composed of processes

related with the sympathetic nervous system, which is activated in
response to stress by neurotransmitters such as dopamine (dopa-
minergic synapse) and glucocorticoids, which induce glutamate
release (glutamatergic synapse, Popoli et al. 2011). Several other
processes in cluster C are activated in response to the activation
of the sympathetic nervous system, for instance increased heart
contraction (adrenergic signaling in cardiomyocytes), blood vessels
constriction in some parts of the body (vascular smooth muscle
contraction and renin secretion), blood vessel dilatation in muscle
and muscle contraction (muscle contraction), and energy obtain-
ment by lipids and carbohydrate degradation (pancreatic secretion).
These processes are negatively connected with pathways in cluster
B, which contains hormone-controlled processes related to repro-
duction (steroid hormone biosynthesis, ovarian steroidogenesis,
linoleic acid metabolism, and arachidonic acid metabolism), and
that are inhibited in stress events, like the pathway “Inflammatory
mediator regulation of TRP channels.”

Finally, somegenes also appeared repeatedly across pathways, which
may indicate a central role in some biochemical routes. The list of genes
present in at least 10 of the significant pathways is in Table 3. Most of
these genes are enzymes involved in general processes, such as phos-
pholipases PLCB1 and PLCB3 involved in the transduction of many
signals; PLA2G4A and PLA2G4B, which release arachidonic acid; ki-
nases (PRKCA, PRKCG, PRKACA, and MAPK1) involved in devel-
opment; and adenylate cyclases (ADCY2, ADCY3, and ADCY4),
which are part of the signal transduction of G proteins, e.g., affecting
dopamine. In addition, we also found the receptor ITPR3, which has an
important role in taste transduction and is involved in the activation
process of PKC that, as explained above, acts on several processes. Some
taste receptors have been shown to be affected by domestication (da
Silva et al. 2014).

Figure 4 Coassociation network among the 31 interconnected significant pathways. Each node represents a pathway that is connected by an
edge if partial correlation with another pathway is significant and .0.8 (in absolute value). Node size is proportional to number of genes in the
pathways. Node shapes represent pathway source: triangles for REACTOME and circles for KEGG. Colors indicate the population with lowest Fst
(statistical significance for differentiation) P-value: pink for Asia, blue for Europe, and green for equal significance. Node line width to pathway
variability: thin and thick lines for pathways with variability below and above average, respectively. Black and red edges represent positive and
negative correlations between pathways, respectively. The three main pathway clusters are identified with letters A–C.
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Impact of deleterious mutations rate
We found 123,571 synonymous and 138,121 nonsynonymous SNPs, of
which 75,486were predicted by theVEP tool (McLaren et al. 2010) to be
tolerated and 62,635 to be deleterious. In order to investigate whether
the significant pathways and their genes have a larger proportion of
deleterious vs. tolerated variants than the rest of pathways, we classified
the SNPs in three groups: (i) SNPs in nonsignificant genes of non-
significant pathways; (ii) SNPs in nonsignificant genes (P-value .
0.01) from significant pathways; and (iii) SNPs in significant genes
(P-value , 0.01) of significant pathways. Table 4 shows the count of
predicted deleterious and tolerated SNPs by group according to conti-
nent and domestic/wild status populations. In all four populations,
there was a systematic trend of decreasing deleterious/tolerated rate
with SNPs in significant genes of significant pathways compared to
SNPs from non-significant pathways. The x2 test was significant in
Europe and when all populations were jointly considered (P , 0.01)
but not in Asia. These results can be interpreted as an increased func-
tional constraint (lower ratio of deleterious mutations) in significant
genes from significant pathways rather than in genes from nonsignif-
icant pathways.

Previous studies suggest that domestication has resulted in an in-
creased accumulation of deleteriousmutations (Cruz et al. 2008; Renaut
and Rieseberg 2015; Pérez-Enciso et al. 2016). In agreement with this,
we observed larger ratio of deleterious vs. tolerated mutations in do-
mestics than in wild boars (lASDM/lASWB and lEUDM/lEUWB in Table
4). Interestingly, these ratios are higher in significant genes than in
random gene SNPs, and also higher in Europe than in Asia. Therefore,
these data suggest that potential purifying selection is weaker/less ef-
fective in Europe than in Asia, likely because of the well-known low
effective population size of old world pigs (Groenen et al. 2012). Be-
sides, even if within-population purifying selection was stronger in
significant genes, it was comparatively weaker in domestic than in wild
populations.

General discussion
We report a functional analysis of pig domestication and breeding using
a large complete sequence dataset that consisted of 40 wild boars and
123domesticpiggenomes fromAsia(mainlyChina)andEurope.Rather
than a standard exploratory genome-wide analysis, we focused on an
analysis where the unit of studywas the pathway. Genes do not function
in isolation but coordinately, and thus metabolic pathways provide a

reasonable scaffold to accommodate this fact (e.g., Daub et al. 2013). In a
previous study, we observed that the “heritability” of domestic status
varied according to pathway and that differences were not due to the
number of genes in the pathway, suggesting that pathway can be a
meaningful analysis unit (Pérez-Enciso et al. 2016). In fact, one of
the main advantages of this approach is that it provides a direct bi-
ological interpretation of the analyses, although an independent source
of information may be required to conclude which tissue and develop-
mental stage the perturbed pathway may act in. In contrast, standard
window-based genome-wide scans may pinpoint regions devoid of
annotations or where the functional relation between significant win-
dows is unknown. We assessed two metrics, differentiation (Fst) and
disequilibrium (nSL), and although some of the pathways were con-
nected (Figure 4), we found little concordance between the two anal-
yses. Lack of agreement between differentiation and disequilibrium
statistics have been reported previously (e.g., Chen et al. 2016;
Dall’Olio et al. 2012), and this is likely because of the different timing
and persistence of effects caused by selection (Sabeti et al. 2006). In
particular, since disequilibrium erodes rapidly, our analysis suggests
that reproductive changes (Table 2) are among the most recent ones,
whereas others such as development and behavior (Table 1) were ear-
lier targets of domestication and/or breeding. This is coherent with
current knowledge, as behavioral changesmust have occurred in earlier
stages of domestication, as exemplified by the important experiment for
tameness in foxes (Kukekova et al. 2012), whereas an emphasis on
increasing reproductive performance is a more recent target of modern
breeding.

Our approach has limitations as well. Foremost, many genes are not
assigned to any pathway. In the NCBI Biosystems database v.160202
used here, 7157 genes out of a total of 21,691 annotated genes (Ensembl
genes v. 83) were assigned to at least one pathway. After filtering, we
further restricted the analysis to 442 pathways containing 5713 genes;
these correspond to a total of 220 Mb or �8.5% of the whole genome.
Another issue is redundancy and the definition of a pathway itself, since
there are several databases (KEGG, REACTOME, and Interactome,
etc.) that contain lists of functionally related genes. Definitions of the
same pathways can actually be quite different between databases
(Mooney et al. 2014), as we observed here with the arachidonic me-
tabolism pathways (Table 2). Here, as in Daub et al. (2013), we decided
to initially consider all available pathways from the NCBI biosystems
database, although we set a maximum redundancy between pathways

n Table 3 Genes present in 10 or more significant pathways (Fst)

Gene Symbol Ensembl Gene ID Pathways
Significant
Pathways

P-Value
(Fst Asia)

P-Value
(Fst Europe) Genomic Position

PLCB3 ENSSSCG00000013034 35 15 0.128 0.741 2: 6911684–6927124
PLCB1 ENSSSCG00000007056 35 15 1e216 5e204 17: 19691509–19860912
PRKCA ENSSSCG00000017268 46 13 0.248 0.887 12: 13502757–13602445
PRKACA ENSSSCG00000013771 47 13 0.830 0.583 2: 65350514–65371241
PLA2G4A ENSSSCG00000023351 21 11 0.388 2e204 9: 140460880–140623439
PRKCG ENSSSCG00000003256 36 11 0.985 0.157 6: 52982004–53001741
ITPR3 ENSSSCG00000001518 27 11 0.938 9e204 7: 34443056–34510838
ENSSSCG00000000175 ENSSSCG00000000175 35 11 0.579 0.385 5: 15129052–15145294
ENSSSCG00000023437 ENSSSCG00000023437 25 10 0.435 0.003 13: 67554829–67604679
ADCY2 ENSSSCG00000017101 32 10 0.024 0.249 16: 80358753–80624210
MAPK1 ENSSSCG00000010081 74 10 0.696 0.633 14: 53590167–53614842
ADCY3 ENSSSCG00000008578 32 10 0.999 0.994 3: 121107128–121201171
ENSSSCG00000007833 ENSSSCG00000007833 39 10 7e206 0.003 3: 23052200–23174810
ADCY4 ENSSSCG00000001988 32 10 0.999 0.463 7: 80227590–80243075

ID, identifier; Fst, statistical significance for differentiation.
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of 50%. However, in contrast to Daub et al. (2013) who considered
the most significant SNP from each gene and removed all gene re-
dundancy between pathways, here we combined all SNPs (after
pruning for LD) from a given gene into a single statistics using
Fisher’s method, and we allowed a 50% gene redundancy. It is not
evident which method is best, but it seems that our approach is more
conservative since outlier Fst will be smoothed out unless a general
trend across SNPs in the whole gene is maintained. In turn, allowing
for gene redundancy allows us to keep the original gene set instead
of pathway pruning.

The history of domestication and domestic breeds is quite
complex. In addition tomultiple independent domestication events,
as occurred inAsia and in Europe in the case of the pig, local adaptive
processes have occurred since different breeds have been selected for
different traits. Therefore, it is not surprising that previous works
(e.g., Amaral et al. 2011) reported that most of selective signals were
breed-specific, although our work demonstrates that shared do-
mestication and breeding signals across breeds can still be detected.
These signals are numerous and none of them are strong enough to
explain the whole process. Once more, the polygenic model pre-
vails. We further show that Asian and European domestication/
breeding processes have both distinctive and shared pathways,
and that multiple processes have been involved, such as an increase
in disequilibrium and in differentiation. Differentiation metrics
(Fst) revealed a larger number of signals than disequilibrium (Table
1 vs. Table 2), but this may be due to the experimental design: we
analyzed several breeds jointly and disequilibrium is more rapidly
eroded by demographic processes than differentiation (Sabeti et al.
2006). Nevertheless, we often found genes that were significant
in both continents, such as several genes involved in behavior
(PLCB1, GSK3B, and HTR4, Figure 2), while the pathways they
belong to were significant in only one continent. Given that most
European breeds have been admixed with Asian pigs (Groenen
2016), it is possible that these shared signals may actually be
due to introgression. To verify this, we ran a semisupervised

ADMIXTURE analysis on all significant (Table 1 and Table 2)
and a set of random pathways (Figure S8 in File S1). The average
Asian component in EUDM pigs across significant pathways was
q = 0.11 (SD = 0.03), which is nearly identical to that observed in a
random set of pathways (0.11, SD = 0.02). Similarly, we did not find
differences in Asian component between shared significant path-
ways across continents (q = 0.105) and those that were continent-
specific (q = 0.102). This suggests that Asian introgression is
unlikely to have caused a shared signal between continents, which
can be explained because the Asian signature in European breeds
seems to be quite heterogeneous, i.e., due to different Asian origins
(Bosse et al. 2014; Bianco et al. 2015a).

In contrast to previous works in humans, which reported an
enrichment of pathways related to pathogen response in adaptation
(Daub et al. 2013), we did not find a strong overrepresentation of
immune system-related pathways. Only three related pathways were
detected with Fst (complement cascade, Chagas disease, and FCGR
phagocytosis, Table 1). This could be due to the fact that domesti-
cation was accompanied by stronger selection for traits other than
disease resistance such as behavior, reproduction, or development.
Another explanation is that these disease resistance signals were
breed-specific and therefore remained undetected in this experi-
mental design.

As in other studies (Cruz et al. 2008; Renaut and Rieseberg 2015;
Pérez-Enciso et al. 2016), we found an increased accumulation of
deleterious mutations in domestic animals. We systematically ob-
served a higher proportion of deleterious variants in domestic
groups compared to wild boars. This was observed for all genes,
regardless of whether they were significant or not. On the other
hand, a decreased accumulation of deleterious mutations was ob-
served in significant genes from significant pathways, suggesting, as
shown in Table 3, that these genes perform essential and central
tasks in the physiology and development of the pig. Therefore, these
genes seem to be under stronger functional constraint than ran-
domly sampled genes.

n Table 4 Deleterious and tolerated SNPs grouped according to Europe (EU)/Asia (AS) continent and domestic (DM)/wild (WB) status

Continent Population SNP Typea

Nonsignificant Genes
of Nonsignificant

Pathways

Significant Genes
of Nonsignificant

Pathways

Nonsignificant Genes
of Significant
Pathways

Significant Genes
of Significant
Pathways P-Valueb

Asia ASDM Tolerated 8534 1,195 2,625 1,176 0.756
Deleterious 6,825 954 2,144 927
lASDM 0.800 0.798 0.817 0.788

ASWB
Tolerated

6,245 843 2,029 636 0.033

Deleterious 4,432 587 1,320 391
lASWB 0.710 0.696 0.651 0.615

ASDM/ASWB lASDM/lASWB 1.127 1.147 1.255 1.282
Europe EUDM Tolerated 5,191 716 1,675 620 0.023

Deleterious 3,429 483 1,200 349
lEUDM 0.661 0.675 0.716 0.563

EUWB Tolerated 2,654 416 893 346 0.001
Deleterious 1,153 198 382 103
lEUWB 0.434 0.476 0.428 0.298

EUDM/EUWB lEUDM/lEUWB 1.523 1.418 1.675 1.891
Total Total Tolerated 22,624 3,170 7,222 2,778 0.003

Deleterious 15,839 2,222 5,046 1,770
lTotal 0.700 0.701 0.699 0.637

SNP, single nucleotide polymorphism; ASDM, Asian domestic; ASWB, Asian wild boar; EUDM, European domestic; EUWB, European wild boar.
a
l corresponds to the ratio of deleterious vs. tolerated SNPs.

b
P-value obtained from x2 test of the 2 · 2 table containing nonoverlapping SNP sets (nonsignificant genes from nonsignificant pathways vs. significant genes from
significant pathways).
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Conclusions
We have studied the functional basis of domestication and breeding in
the pig. This was possible because a modern equivalent of the wild
ancestor is still available for study and was facilitated by the numerous
sequences in the public domain. We show that these processes pre-
dominantly involved pathways related to behavior, especially in Asia,
but also others like insulin, organ size development, recombination,
and female reproduction. At least in part, these results can be explained
by a relaxation of purifying selection associated with the domestication
and/or breeding processes. Nevertheless, this purifying selection was
stronger in genes and pathways that were significant using Fst than in
random genes, likely because these genes play central roles and are
highly functionally constrained. Negative selection was also stronger
in Asia than in Europe, likely due to the larger effective size of the Asian
population. In all probability, this analysis is conservative since we have
focused on SNPs and genes that are consistently differentiated between
all domestic breeds pooled together vs.wild boar. Focusing on a specific
breed may have increased power but also could be prone to false
discovery rate, identifying signals that are breed specific rather than
domestic specific.
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