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The population of childhood cancer survivors (CCS) has grown rapidly in recent decades.
Although cured of their original malignancy, these individuals are at increased risk of
serious late effects, including age-associated complications. An impaired immune system
has been linked to the emergence of these conditions in the elderly and CCS, likely due to
senescent immune cell phenotypes accompanied by low-grade inflammation, which in the
elderly is known as “inflammaging.”Whether these observations in the elderly and CCS are
underpinned by similar mechanisms is unclear. If so, existing knowledge on
immunosenescent phenotypes and inflammaging might potentially serve to benefit
CCS. We summarize recent findings on the immune changes in CCS and the elderly,
and highlight the similarities and identify areas for future research. Improving our
understanding of the underlying mechanisms and immunosenescent markers of
accelerated immune aging might help us to identify individuals at increased risk of
serious health complications.
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INTRODUCTION

Each year, ∼300,000 children are diagnosed with a form of cancer globally. (Steliarova-Foucher et al.,
2017). Cancer therapy has made immense progress in recent decades, increasing the 5 year survival
rate to up to 85% in countries with advanced healthcare systems (Gatta et al., 2014; Howlader et al.,
2020). Yet with this great step forward, a significant problem has emerged: childhood cancer
survivors (CCS) have a higher incidence of developing other, severe health conditions compared to
their siblings (Armstrong et al., 2014), with up to 75% experiencing at least one late adverse effect
and 40% suffering from at least one serious or life-threatening condition in early-mid adulthood
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(Geenen et al., 2007). The earlier prevalence of certain health
complications in CCS compared to their siblings (or control
population) (Figure 1) is a phenomenon known as premature
aging. These complications include cardiovascular diseases,
frailty, and secondary neoplasms (Oeffinger et al., 2006;
Armstrong et al., 2013; Ness et al., 2013). Frailty is described
by experiencing three or more conditions of established frailty
phenotype (low lean muscle mass, exhaustion, low energy
expenditure, slowness and weakness), while prefrailty is
described by experiencing two of these conditions conditions
(Ness et al., 2013). The early onset of health complications for
CCS seems to prove the fragile health status of CCS being more

similar to elderly (Table 1). The most pronounced comorbidities
in CCS span through many tissues and organ systems, such as
pulmonary, cardiac and circulatory, genitourinary, nervous and
endocrine (Geenen et al., 2007; Reulen et al., 2010; Armstrong
et al., 2014; Bhakta et al., 2017). The diseases developing in above
mentioned organ systems are accompanied bymetabolic changes,
higher rate of infections and subsequent malignancy (Reulen
et al., 2010; Lorenzi et al., 2011). In CCS, secondary cancer has
been described as the most severe comorbid condition compared
to cardiovascular or respiratory diseases (Reulen et al., 2010). The
emergence of these conditions is thought to be driven by late
effects of the often aggressive treatments needed to cure the

FIGURE1 | The prevalence of age-associated complications in CCS and siblings/control population. Datamarked # has amean age of 26.6 years (range 18–48) for
CCS and a mean age of 29.2 years (range 18–56) for siblings (Oeffinger et al., 2006); data marked * has a median age of 33.7 years (range 11–58) in CCS and a median
age of 36 years (range 7–62) for siblings (Armstrong et al., 2013); data marked $ has a mean age of 33.6 years (range 18–50) for CCS and a mean age of 29 years (range
18–50) for the control population (Ness et al., 2013). Malignant neoplasm represents secondary neoplasms for CCS and primary neoplasms for siblings/control
population. Abbreviation: CV, cardiovascular.

TABLE 1 | Adverse health conditions associated with accelerated senescence in CCS and the elderly.

Comorbidities CCS Healthy elderly

Frailty Ness et al. (2013), Vatanen et al. (2017) Fried et al. (2001)
Infections Reulen et al. (2010), Lorenzi et al. (2011), Perkins et al. (2014) Gavazzi et al. (2002)
Blood diseases Reulen et al. (2010), Lorenzi et al. (2011), Armstrong et al. (2014) Wolff et al. (2002)
Reduced microbial diversity Chua et al. (2017) Woodmansey et al. (2004), Xu et al. (2019)
Obesity and diabetes mellitus Mostoufi-Moab et al. (2016) Marengoni et al. (2009), Liu et al. (2018)
Metabolic changes Chow et al. (2010), Lorenzi et al. (2011), Azanan et al. (2016), Ariffin et al. (2017),

Vatanen et al. (2017), Daiel et al. (2018)
Wolff et al. (2002), Liu et al. (2018)

Pulmonary disease Mertens et al. (2008), Reulen et al. (2010), Armstrong et al. (2014), Bhakta et al. (2017) Wolff et al. (2002), Marengoni et al. (2009)
Cardiac and circulatory disease Mertens et al. (2008), Reulen et al. (2010), Armstrong et al. (2014), Bhakta et al.

(2017), Bates et al. (2019), Effinger et al. (2019)
Wolff et al. (2002), Marengoni et al. (2009),
Liu et al. (2018)

Genitourinary disease Geenen et al. (2007), Reulen et al. (2010), Felicetti et al. (2011), Brignardello et al.
(2013)

Wolff et al. (2002)

Nervous system disease, stroke Geenen et al. (2007), Reulen et al. (2010), Lorenzi et al. (2011), Armstrong et al. (2014) Wolff et al. (2002), Marengoni et al. (2009)
Musculoskeletal disorders Geenen et al. (2007), Armstrong et al. (2014), Bhakta et al. (2017) Wolff et al. (2002), Marengoni et al. (2009)
Endocrine disease, Growth hormone
deficiency

Geenen et al. (2007), Reulen et al. (2010), Felicetti et al. (2011) Lorenzi et al. (2011),
Brignardello et al. (2013), Armstrong et al. (2014), Mostoufi-Moab et al. (2016), Bhakta
et al. (2017)

Wolff et al. (2002)

Subsequent malignancy, secondary
cancer

Geenen et al. (2007), Mertens et al. (2008), Reulen et al. (2010), Lorenzi et al. (2011),
Armstrong et al. (2014), Mostoufi-Moab et al. (2016), Bhakta et al. (2017), Effinger
et al. (2019)

Marengoni et al. (2009)

Epigenetic changes Daniel et al. (2018) Bollati et al. (2009), Christensen et al. (2009)
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childhood cancer, (Gallicchio et al., 2008; Fowler et al., 2020), but
the precise mechanisms are unknown. However, cancer
therapeutics have been already associated with cellular aging
through senescence initiation, free radical generation, DNA
damage and telomere attrition (Cupit-Link et al., 2017; Wang
et al., 2021).

Many conditions affecting CCS in early/mid-adulthood are age-
associated; cardiovascular diseases, diabetes mellitus, hypertension,
frailty and cancer increase during aging (Partridge et al., 2018). Aging
itself is a complex process that ultimately results in the gradual decline
of various critical cellular processes, signaling pathways, and
regulatory mechanisms, leading to eventual disruption of tissue
homeostasis and the emergence of disease (López-Otín et al.,
2013). The immune compartment is widely affected by aging
through the process of progressive dysregulation of immune
function. Alterations to the innate and adaptive immune
compartments and aging-associated chronic low-grade
inflammation (CLGI), (Solana et al., 2012; Fulop et al., 2013),
termed “inflammaging” (Franceschi et al., 2000a), are common.
Together, these changes are termed “immunosenescence” and
contribute to the emergence of various health conditions, such as
frailty, (Pansarasa et al., 2019), type 2 diabetes mellitus (Lee et al.,
2019), pulmonary diseases (Murray and Chotirmall, 2015), increased
susceptibility to infections, autoimmune disease, and cancer (Pawelec,
1999) in aged individuals. Unsurprisingly, strategies aimed at
improving aspects of immunosenescence in the elderly are being
actively explored.

The immune systems of young adult CCS exhibit common
features with those of the elderly (Azanan et al., 2016; Ariffin
et al., 2017). High prevalence of typical aging-associated
conditions in CCS suggest that CCS might exhibit premature
immunosenescence as a result of their cancer and/or its
treatment. Understanding this phenomenon will help
determine whether screening for early immunosenescence will
enable the risk-stratification of CCS after treatment and thereby
facilitate optimal clinical management, e.g. earlier screening for
secondary cancer. Furthermore, if conserved mechanisms are at
play in both CCS and elderly patients, emerging therapies to
ameliorate immunosenescence in the elderly should be assessed
for their potential benefit to CCS.

In this review, we discuss the possible adverse effects of childhood
cancer treatment on the immune system and the potential links to
enduring ill health in CCS.We compare these effects to the senescent
immune system in the “healthy” elderly, assessing the evidence for
parallel versus distinct mechanisms in these two populations. We
conclude by speculating on how we might exploit our knowledge of
cellular, molecular and epigenetic mechanisms of immunosenescence
to improve health and wellbeing in CCS and we highlight possible
directions for future research in the field.

IMMUNE CELL SUBSETS AFFECTED BY
AGING AND CHILDHOOD CANCER
TREATMENT

Many of the initial studies defining immunosenescence were
performed in unique cohorts of centenarians, allowing the

identification of immunosenescent cellular phenotypes/markers
that enable successful aging (Effros et al., 1994; Fagnoni et al.,
1996; Ostan et al., 2008). These descriptive studies revealed
characteristic frequencies of immunosenescence-associated cell
subsets (naïve, memory and terminally differentiated T cells) that
are now widely used to describe the immunosenescent phenotype
in humans. Stemming from this work, several possible
mechanisms were proposed to account for the development of
immunosenescence, including 1) decrease in naïve T cells
accompanied by expansion of memory T cell subsets with age;
(Saule et al., 2006) 2) changes in myeloid cells, particularly
monocytes; (Hearps et al., 2012) 3) CLGI; (Fülöp et al., 2019)
and 4) chronic infection with pathogens such as cytomegalovirus
(CMV) (Olsson et al., 2000; Koch et al., 2007; Kallemeijn et al.,
2017).

Immune changes in both the elderly and CCS have now been
identified (Table 2); below we consider each immune cell subset
in turn, identifying the parallels and differences between the two
population groups.

Adaptive Immune Cells
T Cells
Age-associated changes in the subpopulation frequencies of
CD4+ and CD8+ T cells are well established (Di Mitri et al.,
2011; Montecino-Rodriguez et al., 2013; Lanna et al., 2014;
Callender et al., 2018). Multi-parameter flow cytometry of
circulating T-cell subsets in cohorts of elderly individuals has
identified increasing proportions of specific T-cell subsets as
major immunosenescence markers. The four main T-cell
subsets are distinguished based on the recognition of antigens
and are delineated as naive (CD45RA+, CD45RO−, CD27+,
CD28+, and CCR7+), central memory (CD45RA−, CD45RO+,
CD27+, CD28+, and CCR7+), effector memory (CD45RA−,
CD45RO+, CD27−, CD28−, and CCR7−) and terminal effector
T cells (CD45RA+, CD45RO−, CD27−, CD28− and CCR7−)
(Wang et al., 1995; Boucher et al., 1998; Hendriks et al., 2000;
Larbi and Fulop, 2014; Xu and Larbi, 2017). In general, a decrease
in naive T cells and an increase in effector memory and terminal
effector T cells during normal aging have been established (Saule
et al., 2006). Interestingly, even though markers used to
determine immunosenescent phenotype are established
(Figure 2), T-cell phenotyping strategies using flow cytometry
still vary among human studies. (Fagnoni et al., 1996; Kovaiou
et al., 2005; Koch et al., 2008; Lázničková et al., 2020).

The marker expression patterns of senescent T cells are
consistent with their altered functionality. Instead of
expressing co-stimulatory molecules such as CD27 and CD28,
(Hendriks et al., 2000; Weng et al., 2009; Parish et al., 2010)
senescent T cells express Killer cell lectin-like receptor subfamily
G member 1 (KLRG-1) and CD57, (Brenchley et al., 2003;
Wherry, 2011) which are associated with low proliferative
capacity but high cytotoxic potential (Ibegbu et al., 2005;
Kared et al., 2016). Furthermore, these cells exhibit elevated
reactive oxygen species (ROS) production and constitutive p38
MAP kinase activation in response to AMP-activated protein
kinase (AMPK) and possibly a nutrient-sensing and/or DNA-
damage response (Lanna et al., 2014; Akbar et al., 2016).
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Senescent T cells are also characterized by shorter telomeres, the
inability to upregulate telomerase expression, inadequate
expression of the DNA damage response machinery, increased
cyclin-dependent kinase inhibitor p16INK4a expression, and
elevated secretion of inflammatory cytokines (Akbar et al.,
2016). Chemotherapy regimens and stem cell transplantation
cause T cell senescence through p16INK4a expression in patients
treated for hematological malignancy (Wood et al., 2016) and
chemotherapy can induce surface expression of CD57 in Vδ2pos
T cells as demonstrated in elderly patients with liver metastatic
colorectal cancer (Bruni et al., 2019). On top of that, it has been
shown that T cells from patients with hematological malignancy
show higher clonality and lower T cell diversity based on T cell
receptor repertoire analysis by next-generation sequencing than

those with solid tumors, when compared to healthy donors above
60 yo (Simnica et al., 2019). Therefore, certain therapeutic
approaches may represent a risk for senescence induction in
T cells with the potential to compromise the overall health status
of cancer survivors. Moreover, a mouse study has uncovered that
senescence driven by Ercc1 deletion (encoding a crucial DNA
repair protein) in hematopoietic cells drives senescence also in
other non-lymphoid organs, e.g. aorta, heart, lung, liver and
gastrointestinal tract, and splenocytes from these mice drive
senescence in young senescence reporter mice upon transplant
(Yousefzadeh et al., 2021).

T-cell frequency studies in CCS are scarce (Table 2), but we
recently showed that high-risk neuroblastoma CCS exhibit
immunosenescent-like alterations, including a decrease in
naive T-cell frequency and an increase in the frequency of
memory T cells, accompanied by the transient expression of
CD57 in memory T-cell populations within the first 4 years after
diagnosis (Lázničková et al., 2020). Other T-cell phenotyping
studies in CCS have also detected the loss of CD28 and increase in
CD57 in CD4+ T cells (Azanan et al., 2016). The studies of
activation status of T cells in CCS and elderly are unparalleled.
Increased activation of CD8+ T cells by double positivity for
CD38 and HLA-DR has been detected in CCS, (Azanan et al.,
2016) while the activation status by only CD38 increased
(Sulicka-Grodzicka et al., 2021) and by HLA-DR only
decreased in CD8+ T cells in CCS (Chua et al., 2017). In the
elderly, the activation status by only CD38 has been found to be
decreased and by only HLA-DR increased in CD8+ T cells in
elderly (Qin et al., 2016). Interestingly, terminally differentiated
CD8+ T cells do not show a senescent phenotype in CCS like in
elderly, while the central memory CD8+ and CD4+ T cells
increase in both, CCS and elderly (Saule et al., 2006; Sulicka-
Grodzicka et al., 2021).

In addition to phenotyping and telomere length analyses,
epigenetic remodeling in blood cells contributes to the
alterations in genome that accompany aging (Weidner et al.,
2014). By this approach, researchers have identified aging-related
T-cell epigenetic remodeling in CCS (Daniel et al., 2018). For
example, total body irradiation alters the DNA methylation
signature of T cells, which has been associated with an

TABLE 2 | The phenotypes of cellular subsets associated with senescence/immunosenescence in CCS and the healthy elderly.

Cell type Immune cell
phenotype

CCS Healthy elderly

T cells (CD3+) CD4+CD38+ HLA-DR+ ALL, AML (26) Azanan et al. (2016)
CD4+ central memory ALL, Hodgkin lymphoma, Non-Hodgkin lymphoma Sulicka-Grodzicka

et al. (2021)
Saule et al. (2006)

CD4+CD28− ALL, AML Azanan et al. (2016) Vallejo et al. (2000), Suarez-Álvarez et al. (2017)
CD8+CD38+ HLA-DR+ ALL, AML Azanan et al. (2016) Not found
CD8+ central memory ALL, Hodgkin lymphoma, Non-Hodgkin lymphoma Sulicka-Grodzicka

et al. (2021)
Saule et al. (2006)

CD8+CD28− Not found Fagnoni et al. (1996), Weng et al. (2009)
Monocytes CD14+CD16+ ALL Sulicka et al. (2013) Seidler et al. (2010), Hearps et al. (2012), Ong et al.

(2018)
NK cells CD56dimCD57+ Not found Le Garff-Tavernier et al. (2010)

To compare the immunosenescent phenotype among two independent groups, we reviewed cell phenotypes that were marked in the literature as significantly changed in CCS compared
to age-matched peers. Abbreviations: ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; NK, natural killer cells.

FIGURE 2 | The surface markers implicated in the immunosenescence
phenotype of designated cells. Abbreviations: KLRG-1, Killer cell lectin like
receptor sub family G member 1; NK, natural killer cells.
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increased frequency of type 1 cytokine-producing T cells and
increased systemic levels of these cytokines (Daniel et al., 2018).
Epigenetic changes might, therefore, explain why radiotherapy
confers up to an eight-fold increased risk of a severe or life-
threatening medical condition (Oeffinger et al., 2006; Armstrong
et al., 2010; Ness et al., 2018).

B Cells
The role of B cells in immunosenescence is relatively under-
studied and thus their contribution to this process is elusive. In
the peripheral blood, four major B-cell subsets can be
distinguished, based on expression patterns of surface
molecules: naive (IgD+/CD27−), IgM memory (IgD+/CD27+),
switched memory (IgD−/CD27+), and late/exhausted memory
(LM, IgD−/CD27−). While total B-cell counts remain relatively
unchanged in the peripheral blood in healthy adults, (Blanco
et al., 2018) recent findings have indicated a shift in the B-cell
subset distribution in the elderly in favor of LM B cells. This shift
is accompanied by increased expression of senescence-associated
secretory phenotype (SASP) markers, including TNF-α, IL-6, and
IL-8 (Frasca et al., 2017a; Frasca et al., 2017b). Quantification of
the LM B-cells subset showed a decrease in CSS and naive B cells
an increase in CCS compared to age-matched controls, (Sulicka-
Grodzicka et al., 2021) showing a deregulation in the B cell
compartment in both directions, to healthy peers and to elderly.
The accumulation of the LM B-cell subset contributes to lower
vaccine protection against influenza in the elderly and is further
decreased in obese individuals (Frasca et al., 2016). CCS are often
in need of boosters or complete revaccination after cancer
therapy due to active treatment in early childhood resulting in
incomplete series of vaccinations and no/low immune recovery
depending on the type of implemented treatment (Patel et al.,
2007; Shetty andWinter, 2012; Han et al., 2018; Choi et al., 2020).
In contrast to children with active chemotherapy treatment,
patients who had completed chemotherapy and healthy
children had similar, stronger vaccination response efficacies
(Goossen et al., 2013). Therefore, monitoring of B cell subsets
might be an indicator of the B cell ability to cope with infections
and eventually infection rate in general but the subset distribution
in CCS does not seem to reflect the aging phenotype described in
elderly.

In the year 2011, a subset of B cells designated age-associated
B cells (ABCs) was shown to accumulate in aged mice (Hao et al.,
2011; Rubtsov et al., 2011). These cells are responsive to Toll-like
receptor (TLR) 7 and 9 stimulation, actively secrete IL-10 and IL-
4, and favor T-cell polarization towards T helper 17 (Th17) cells.
In 2019, their possible counterparts have been identified in
humans in relation to autoimmune diseases and viral
infections (Ma et al., 2019). Whether these B cells also
accumulate during normal aging or in CCS is unclear.
Therefore, there is a need of verifying this B cell subset in
elderly and find the comorbidities associated with this
phenotype. The mouse studies (Hao et al., 2011; Rubtsov
et al., 2011) imply that comorbidities linked to higher
emergence of Th17 cells (e.g. obesity) might be linked with
these ABCs (Frasca et al., 2017a; Blanco et al., 2018). Whether
ABCs will be applicable to CCS remains elusive but due to the

prevalence of comorbidities similar to those in the elderly,
chances are the phenotype might be present.

Innate Immune Cells
The profound age-associated changes in the immune system
underlying immunosenescence are mainly linked to adaptive
immunity. However, research conducted over the past two
decades has demonstrated many functional age-related
alterations in innate immune cells (Shaw et al., 2013; Pinti
et al., 2016; Agrawal et al., 2017; Ortmann and Kolaczkowska,
2018). We outline the main findings on innate immune cells in
elderly and CCS below.

Monocytes/Macrophages
Monocyte/macrophage activation status and function are
essential for appropriate immune responses against pathogens
and transformed cells and for mounting the adaptive immune
response. Data from human and animal studies show age-related
dysfunction of the monocyte/macrophage system (Solana et al.,
2012; Linehan and Fitzgerald, 2015). A detailed overview
addressing the impact of ageing on monocyte/macrophage
function is beyond the scope of this article and more
comprehensive reviews can be found elsewhere (Shaw et al.,
2010; Solana et al., 2012). Here we will highlight sporadic
recent findings of monocyte/macrophage alteration seen in
CCS, potentially associated with the chronic health condition
development.

While the total number of monocytes seems to be unaffected
by aging, (Seidler et al., 2010) proportional changes in monocyte
subsets, including the relative expansion of CD16+ populations,
have been observed in healthy males and females (20–84 yo)
(Hearps et al., 2012). The CD14+CD16+ monocyte subset is also
expanded in CCS (Sulicka et al., 2013) (Table 2). Since CD16+

monocyte subsets are characterized as significant producers of
pro-inflammatory cytokines, (Hearps et al., 2012) their
proportional increase in the elderly and CCS may contribute
to CLGI and thus to the pathogenesis of inflammatory diseases.
Moreover, significantly shorter relative telomere length has been
determined in monocyte subsets from older individuals.
Although information about monocyte telomere length in CCS
are not available, shortened leukocyte telomere length has been
reported in CCS (Song et al., 2020). Whether telomere shortening
affect monocyte function remain to be elucidated. Nevertheless,
shorter leukocyte telomeres have been associated with chronic
health conditions in elderly and CCS (Spyridopoulos et al., 2009;
Song et al., 2020). Although older individuals exhibit dysregulated
inflammatory response, (Hearps et al., 2012; Metcalf et al., 2017)
no data on monocyte functions, including phagocytosis or TLR
stimulation, are available in CCS at the moment. This knowledge
gap provides an opportunity for future research studies in the
CCS field.

Neutrophils
Neutrophils are professional phagocytes adapted to perform
rapid immune action at the site of infection or tissue damage.
Even though neutrophil counts remain stable during an
individual’s adulthood, (Solana et al., 2012) profound
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age-related changes at the functional level have been reported. In
particular, neutrophils from elderly subjects exhibit reduced
migration potential, phagocytosis, bactericidal activity, ROS
production, and neutrophil extracellular trap formation
(Wenisch et al., 2000; Butcher et al., 2001; Simell et al., 2011;
Brubaker et al., 2013; Hazeldine et al., 2014; Sapey et al., 2014;
Itagaki et al., 2015; Sauce et al., 2017). By contrast, evidence of
increased neutrophil proteinase activity and upregulated
degranulation has been observed in older adults (Sapey et al.,
2014). Interestingly, in a mouse model, a higher level of
neutrophil elastase was associated with a low-grade
inflammatory state accompanying obesity (Talukdar et al.,
2012). In CCS, a low absolute neutrophil count (neutropenia)
has been reported as a consequence of intensive cancer treatment
and possess a higher risk of infection (Han et al., 2009). Studies on
neutrophil functionality in CCS are lacking but we can speculate
that neutrophils of CCS might possess similar defects as seen in
elderly. Thus, the impaired effector function of neutrophils might
be involved in the increased susceptibility of some CCS to
microbial infections.

Dendritic Cells
Dendritic cells (DCs) are professional antigen-presenting cells
that can prime naive T-cell activation and effector differentiation.
In general, the phenotypes and numbers of DCs are largely
unaffected by aging, (Granot et al., 2017) although some
studies have reported a marked decrease in plasmacytoid DCs
(pDCs) (Pérez-Cabezas et al., 2007; Jing et al., 2009; Garbe et al.,
2012; Splunter et al., 2019) and in CD141+ myeloid DCs (mDCs)
upon in vitro stimulation with retinoic acid in healthy elderly
(Agrawal et al., 2016). Since pDCs play key role in antiviral
responses, their reduction in combination with mDC dysfunction
may partially explain higher incidence of viral infections in
elderly (Jing et al., 2009). The same mechanism might be
critical for some CCS, although there are currently no studies
regarding DC phenotype and function in CCS.

Concerning DC function, the following alterations have been
reported in elderly individuals: decreased capacity to phagocytose
antigens, (Agrawal et al. 2007) migrate, (Agrawal et al., 2007)
prime naive T cells after stimulation, (Sridharan et al., 2011)
respond to TLR stimulation, (Panda et al., 2010) secrete type I and
III interferons (Panda et al., 2010; Qian et al., 2011; Sridharan
et al., 2011). Furthermore, these cells produce increased levels of
pro-inflammatory cytokines, and decreased levels of anti-
inflammatory and immune-regulatory cytokines (summarized
in review) (Agrawal et al., 2017). Overall, the disruption of
DC functions followed by increased pro-inflammatory
potential might result not only in higher risk of infections but
also to CLGI and loss of tolerance. Thus, DC dysfunction likely
contribute to chronic age-associated diseases in elderly and
probably in CCS.

Natural Killer Cells
Natural killer (NK) cells are a subset of cytotoxic non-T
lymphocytes that promote an early innate immune response
by recognizing and killing virus-infected and tumor cells.
Thus, quantitative and functional NK cell defect may lower

resistance to infections and protecting effect against tumors in
elderly/CCS.While the distribution of NK cell subsets seems to be
altered in elderly individuals, the data are inconsistent (Pinti et al.,
2016). A decrease in CD56bright NK cells as a possible
consequence of limited production of new NK cells,
(Chidrawar et al., 2006; Le Garff-Tavernier et al., 2010) with a
concomitant increase in CD56dim NK cell population, has been
reported in the elderly (Le Garff-Tavernier et al., 2010). Similar to
T cells, CD57 expression can be used as a marker of replicative
senescence in NK cells (White et al., 2014). The aging-related
changes in NK cells described in the elderly population have not
been studied in CCS. Nevertheless, decreased or absent NK cell
cytolytic activity in 25% of patients has been reported in CCS
6 months after completion of leukemia therapy (Perkins et al.,
2017). If altered NK cell function is transient or persist for years
after therapy completion remains to be determined.

HEMATOPOIETIC STEM AND
PROGENITOR CELL AGING IN THE
ELDERLY AND CHILDHOOD CANCER
SURVIVORS

Thus far, we have discussed how age-related alterations of
individual immune cell types and their function underlie
aging. However, there are also data to suggest that the age-
related dysfunction of effector immune cells is in fact
inherited from their progenitors. Throughout our lifespan,
encounters with various stressors (e.g. allergens, viruses,
bacteria, therapy of more or less severe disorders and diseases)
progressively impair various cellular repair mechanisms. A
consequence of inadequate repair is hematopoietic stem and
progenitor cell (HSPCs) aging (Todhunter et al., 2018). Key
markers of HSPC aging include higher levels of oxidative
stress and DNA damage response rates, expression of
p21–p53, senescence-associated β-galactosidase, and shorter
telomeres (Fali et al., 2018). Additionally, the expression of
genes involved in hematopoiesis, leukocyte activation, and
intracellular signaling is downregulated in aged human bone
marrow-derived HSPCs (Rundberg Nilsson et al., 2016).

Aged HSPCs in humans are associated with perturbed
lymphopoiesis (Kuranda et al., 2011) and increased myeloid
cell differentiation, (Pang et al., 2011) underlined by epigenetic
changes (Beerman et al., 2013) and an age-related higher
frequency of hematopoietic stem cells (HSCs) within the bone
marrow (Pang et al., 2011; Farrell et al., 2014). However, data
from a study on bone marrow and blood samples from patients
undergoing hip replacement surgery suggests lower frequencies
of HSCs in both, the bone marrow and peripheral blood in the
elderly (Brusnahan et al., 2010).

Another age-related phenomenon of clonal hematopoiesis is
associated with a risk of developing hematologic malignancies
and an increase in specific somatic mutations in peripheral blood
cells with age (Genovese et al., 2014; Jaiswal et al., 2014). These
mutations have been further associated with an increased risk of
myocardial infarction and coronary heart disease (Jaiswal et al.,
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2017). However, these mutations occur in a relatively small
fraction of individuals (12.5%) as was demonstrated in the
study population of Icelanders (11,262 men and women,
median age of 74 years) (Zink et al., 2017). However,
prevalence of these mutations increased towards 50% in
subpopulation of Icelanders >85 years. Interestingly, 10 year
survivorship of individuals >80 years of age seems unaffected
by carrying the mutations in two of the most common genes
associated to clonal hematopoiesis DNMT3A and TET2 (van den
Akker et al., 2016) compared to middle-aged population study
(Jaiswal et al., 2014).

HSC transplantation is a frequently used therapeutic option in
childhood cancer treatment, but only few researchers have
assessed its long-term impact on overall immune health in
CCS. Telomere length in HSCs rapidly shortens upon
transplant while replenishing the pool of blood cells.
Recipients of HSC transplants have shorter telomeres in
leukocytes compared with their HSC donors, (Wynn et al.,
1998; Baerlocher et al., 2009) suggesting a higher turnover of
recipient HSCs to ensure immune recovery. A high degree of
telomere loss might occur between CD34+CD38− and
CD34+CD38+, (Vaziri et al., 1994) while more committed
progenitors are more rapidly replenishing the pool of blood
cells in recipients (Wynn et al., 1999). Therefore, the higher
turnover rate of HSCs may predispose the recipient to an
increased risk of accelerated aging of the hematopoietic
compartment. This suggestion has been confirmed in serial
transplantation assays in vitro, which showed that HSCs with
increased cell cycle activity resulted in shorter telomeres, (Allsopp
et al., 2001) even though HSCs exhibit some telomerase activity
(Morrison et al., 1996). Moreover, HSCs after serial
transplantation possess high levels of ROS, (Jang and Sharkis,
2007) which could lead to post-transplant HSCs suffering from
oxidative damage to cellular components and altered metabolism
and intracellular signaling (Zhang et al., 2016; Forrester et al.,
2018; Milkovic et al., 2019). Although the telomere length of
leukocytes in HSC transplant recipients and other markers
described previously, such as high ROS and altered
intracellular signaling, suggest immunosenescence in CCS,
there are no studies confirming the presence of HSC aging
markers and their fitness in CCS compared to the elderly.
Moreover, there are no studies describing HSC aging in CCS
comparing individuals with and without HSC transplantation.
Even though, HSCs aging could be caused by transplantation
followed by higher turnover of HSCs, there can be other likely
mechanisms involved. First of all, telomerase complex has been
implicated to control hematopoietic stem cell differentiation and
senescence in vitro (Jose et al., 2018). Second of all, mesenchymal
stromal cells (MSCs), which have been described to be critical for
extracellular matrix production in the bone marrow, and thus
facilitation of HSCs engraftment and cell fate decision, (Zhao and
Liu, 2016; Krater et al., 2017), can likely present another pro-
aging scenario regarding HSCs. There has been evidence, that
paclitaxel (chemotherapy drug) induces senescence in MSCs
in vitro, (Munz et al., 2018) and SASP produced by MSCs can
in turn cause senescence of other epithelial cells posing a risk for
HSCs upon transplant (Alessio et al., 2019). Moreover, while

MSCs are being investigated to improve the engraftment of HSCs
and to overcome Graft versus host disease (GvHD) in
hematological transplantations, (Lee et al., 2002; Squillaro
et al., 2016; Zhao and Liu, 2016; Burnham et al., 2020)
concomitant immunosuppressive treatment through inhibition
of Nuclear factor of activated T cells (NFAT) signaling, which is
traditionally used to prevent GvHD, (Castagna et al., 2016) can
induce extracellular matrix remodelling through impaired NFAT
signaling in MSCs, (Tidu et al., 2021) and thus can impact the
homing and function of HSCs in the bone marrow.

Overall, there are some parallels between the decline in
function of naturally aged HSPCs seen in the elderly and the
post-transplant phenotype and function of HSCs in CCS. We
consider that there is an urgent need for long-term follow-up
studies in CCS and their healthy counterparts to directly compare
HSPC status and the expression of molecular aging markers.
From the resulting data, we can then determine to what extent
HSPC aging might be accountable for the complications and
comorbidities of CCS observed later in life.

CHRONIC LOW-GRADE INFLAMMATION
AT THE CROSSROADS OF IMMUNE CELL
DYSREGULATION IN THE ELDERLY AND
CHILDHOOD CANCER SURVIVORS

Frailty is a common feature of aging, (Lu et al., 2016; Wang et al.,
2020) but it is also seen in young adult CCS (Collerton et al., 2012;
Ness et al., 2013; Ness et al., 2015). This multi-system condition is
closely linked with chronic inflammation (Lu et al., 2016).
Interestingly, studies in the elderly, particularly those with
poor physical function or frailty, have identified the presence
of CLGI that is characterized by increased circulating levels of the
pro-inflammatory cytokines IL-6, IFN-γ, IL-8, IL-15, CRP, and
TNF-α (Bruunsgaard et al., 1999; Franceschi et al., 2000b; Zanni
et al., 2003; Gangemi et al., 2005; Koelman et al., 2019). CLGI in
this population, referred to as inflammaging, (Franceschi et al.,
2000a) is considered a major known contributor to clinical
manifestation of age-associated diseases but does not have to
be the source of disease development (Fülöp et al., 2019).

The presumed sources of the inflammatory molecules
contributing to inflammaging include not only immune cells
but also non-immune cells, particularly adipocytes (Mau and
Yung, 2018) or senescent cells from outside of the immune
system (Childs et al., 2017). Moreover, cell debris, misfolded/
misplaced cell molecules, referred to as damage-associated
molecular patterns (DAMPs), metabolic processes, age-
associated changes in the gut microbiome, and persistent viral
infection can all contribute to some degree to the activation of
immune cells and the ongoing chronic inflammatory response
(Franceschi et al., 2017; Chen and Yung, 2019).

Several researchers have reported a partial CLGI phenotype
among CCS (Table 3), characterized by high levels of IL-6,
(Azanan et al., 2016; Ariffin et al., 2017; Chua et al., 2017)
but not TNF- α, and accompanied by other pro-inflammatory
(IL-17a, IL-2) and anti-inflammatory (IL-10) cytokines
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(Ariffin et al., 2017). Nevertheless, the emerging data on CLGI
phenotype is still inconsistent showing also comparable levels
of TNF- α, IL-6, soluble high-sensitivity C-reactive protein
(hsCRP) to healthy age-matched controls (Sulicka et al.,
2013). In addition, expression of the inflammatory marker
soluble CRP has been reported in several CCS cohorts
(Azanan et al., 2016; Ariffin et al., 2017; Chua et al., 2017).
Another sign of CLGI in CCS is the presence of CMV Ig,
which is also found in the elderly population, suggesting an
age-related immunophenotype (Azanan et al., 2016).
Furthermore, recent findings indicate that monitoring
DAMPs might have prognostic or predictive value in
cancer patients because their increased level signals
unfavorable disease progression and survival so could serve
as a potential biomarker of the level of tissue damage during/
after therapy (Fucikova et al., 2015). To date, no studies on
DAMPs in CCS have been published, but future work should
focus on this phenomenon in CCS. After therapy, DAMPs
evaluation can provide valuable information about the patients’
response to therapy and comparison of different
chemotherapeutic regimens and intensity of radiotherapy
between patients. In the search for early cancer development
markers, further monitoring of DAMPs during regular check-ups

could potentially uncover a secondary malignancy occurring
frequently as late effect in CCS.

While the effects of different therapies might have distinct
outcomes in terms of changes to the cellular immune
compartment, this convergence of immune dysregulation into
CLGI might enable blood inflammatory markers to be used as a
relatively simple and straightforward approach to define the levels
of damage in individual CCS.While the effect of CLGI in CCS has
not been specifically addressed, CLGI is likely to be linked to the
risk level for various comorbidities, as evidenced by the number
of comorbidities and CLGI markers in the elderly. Therefore,
CLGI might present a common ground not only for individuals
with chronic inflammatory disorders and elderly, but also for
CCS. Thus, CCS with significant evidence of CLGI could be
potentially stratified for more intense monitoring and/or early
intervention strategies.

IMMUNOSENESCENCE-TARGETED
INTERVENTIONS

In CCS, chemotherapy, radiotherapy, and HSC transplants have
all been associated with adverse effects on the immune system

TABLE 3 | Immune mediators associated with the senescent/immunosenescent phenotype in cohorts of CCS and the healthy elderly detected in serum/plasma.

Protein CCS Healthy elderly

IL-6 ALL Azanan et al. (2016), Chua et al. (2017), Sadurska et al. (2018); AML
Azanan et al. (2016)

↑ Toft et al. (2002), Forsey et al. (2003), Pedersen et al. (2003), Ferrucci et al.
(2005), Donato et al. (2008), Ogawa et al. (2008), Cartier et al. (2009), Brusnahan
et al. (2010), Kim et al. (2011), Njemini et al. (2011), Palmeri et al. (2012), Hooten
et al. (2012), Morrisette-Thomas et al. (2014), Lane-Cordova et al. (2016),
Puzianowska-Kuźnicka et al. (2016), Valiathan et al. (2016),
Wyczalkowska-Tomasik et al. (2016), Castañeda-Delgado et al. (2017), Erskine
et al. (2017), Rusanova et al. (2018), Koelman et al. (2019), Milan-Mattos et al.
(2019)
∼ Beharka et al. (2001), Toth et al. (2005), Slusher et al. (2019)

TNF-α Not found ↑ Bruunsgaard et al. (2000), Pedersen et al. (2003), Sandmand et al. (2003),
Ogawa et al. (2008), Cartier et al. (2009), Kaszubowska et al. (2011), Njemini
et al. (2011), Valiathan et al. (2016), Saldias et al. (2017), Ong et al. (2018),
Koelman et al. (2019), Slusher et al. (2019)
∼ Toth et al. (2005), Donato et al. (2008), Kim et al. (2011), Palmeri et al. (2012),
Angelovich et al. (2016), Wyczalkowska-Tomasik et al. (2016), Arroyo et al.
(2017), Erskine et al. (2017)

IL-2 ALL Ariffin et al. (2017) ↑ Valiathan et al. (2016), Koelman et al. (2019)
∼ Kim et al. (2011), Palmeri et al. (2012)

IL-10 ALL Ariffin et al. (2017) ↑ Rusanova et al. (2018)
↓ Njemini et al. (2011), Morrisette-Thomas et al. (2014)
∼ Forsey et al. (2003), Kim et al. (2011), Palmeri et al. (2012), Erskine et al. (2017),
Slusher et al. (2019)

IL-17a ALL Ariffin et al. (2017) ↑ Li et al. (2017)
∼ Kim et al. (2011), Palmeri et al. (2012)

hsCRP/
CRP

ALL Azanan et al. (2016), Ariffin et al. (2017), Chua et al. (2017), Sadurska
et al. (2018), Masopustová et al. (2018); AML Azanan et al. (2016); Hodgkin
lymphomaCepelova et al. (2019); HR-NB Vatanen et al. (2017); ALL, Hodgkin
lymphoma, Non-Hodgkin lymphoma Sulicka-Grodzicka et al. (2021)

↑ Bruunsgaard et al. (2000), Ferrucci et al. (2005), McFarlin et al. (2006), Donato
et al. (2008), Ogawa et al. (2008), Cartier et al. (2009), Morrisette-Thomas et al.
(2014), Halper et al. (2015), Lane-Cordova et al. (2016), Puzianowska-Kuźnicka
et al. (2016), Wyczalkowska-Tomasik et al. (2016), Li et al. (2017), Milan-Mattos
et al. (2019)
∼ Toth et al. (2005), Angelovich et al. (2016)

sCD163 LEU Sandmand et al. (2003) ↑ Møller et al. (2011)

The number of studies listed in the healthy elderly group suggests the clear establishment of themarker in the aging phenotype. Increases in the elderly aremarked by ↑, decreases by ↓ and
no age-based difference is marked ∼. Abbreviations: ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; HR-NB, high risk neuroblastoma; LEU, leukemia.
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through telomere shortening, phenotype/epigenetic changes, and
cytokine production (Li et al., 2012; Azanan et al., 2016; Ariffin
et al., 2017; Vatanen et al., 2017; Daniel et al., 2018). While
therapeutics aiming to restore optimal function to the ailing
immune system in CCS have yet to be developed, several
groups have explored possible strategies to reduce the impact
of immunosenescence in the elderly. These findings have been
nicely compiled in many review articles on the topic of reversing
or retarding aging, (Fulop et al., 2017; Duggal, 2018; Aiello et al.,
2019; Weyh et al., 2020) and strategies, such as diet, exercise and
pharmacologic therapies are proposed to remediate cancer
treatment-related aging of CCS (Guida et al., 2021).

A simple and non-invasive strategy to combat
immunosenescence and CLGI is to follow an active lifestyle.
Exercise reduces the proportion of CD14+CD16+ monocytes
and TNF-α production upon stimuli (Timmerman et al., 2008)
and improves the migration of neutrophils towards IL-8 (Bartlett
et al., 2016). Exercise has a positive effect on the adaptive immune
system. As it increases the frequency of naive T cells and recent
thymic emigrants, and lowers T-helper 17 cell polarization in
those who exercise compared with less active counterparts
(Duggal et al., 2018). Nevertheless, the proportion of
CD28−CD57+ CD8 T cells seems unaffected. In general, it has
been suggested that exercise induces a systemic anti-
inflammatory response in the organism by initially IL-6 and
later IL-1Ra and IL-10 expression (Petersen and Pedersen, 1985).

An interesting review by Leal et al. (2018) highlights the
involvement of adipokines and myokines in the body’s
response to exercise (Steensberg et al., 2003; Fischer et al.,
2007; Miyamoto-Mikami et al., 2015). Nowadays, a clinical
trial has been established to determine the type of exercise
beneficial to the elderly (NCT04534049). The observation of
the whole organism response is important, in particular,
because of the comorbidities (e.g. diabetes mellitus, metabolic
diseases) that are often observed in CCS (Table 1). Thus, regular
exercise could also form a preventative measure.

Potential therapeutic approaches targeting the already existing
immunosenescent phenotype through metabolic pathways could
involve AMPK activators, mechanistic target of rapamycin
(mTOR) inhibitors, and caloric restriction (Hortova-
Kohoutkova et al., 2021). AMPK activators, mTOR inhibitors,
and caloric restriction are all associated with increased life and/or
health span (Harrison et al., 2009; Martin-Montalvo et al., 2013;
Pifferi et al., 2019). Nevertheless, there are still major knowledge
gaps in the crosstalk between AMPK and mTOR related to
senescence and aging on the whole body and cell type/subset,
as AMPK drives T-cell senescence through p38 kinase (Lanna
et al., 2014) and mTOR complex 1 is involved in autophagy
induction of CD8+CD28+ T cells but not CD8+CD28− T cells via
the T-cell receptor (Arnold et al., 2014). Regarding the
mechanisms underlying the benefits of caloric restriction,
AMPK and sirtuin 1 (SIRT1), and NAD+-dependent
deacetylase seem to mediate the caloric restriction health
benefits while triggering autophagy (Cohen et al., 2004; Lee,
2019). Sirtuins might also have protective roles in age-related
disease development (Lee, 2019). For example, resveratrol, a
SIRT1 activator, has anti-inflammatory effects, and can

suppress TLR signaling, reduce pro-inflammatory gene
expression, (Malaguarnera, 2019) and decrease age-related
changes of CD4 and CD8 T lymphocytes in aged mice (Wong
et al., 2011). Although caloric restriction has proven to have
beneficial effects on immune cell phenotypes distribution, it may
conversely increase susceptibility to infection as has been shown
in aged mice (Gardner, 2005; Goldberg et al., 2015). Thus,
balancing a proper diet-related strategies or interventions in
the AMPK-mTOR pathways have to be in concordance with
the organismal health. Inappropriate diet in individuals with
obesity and/or metabolic syndrome may increase a risk of
infection (Hortova-Kohoutkova et al., 2021).

Another important anti-aging strategy aims to rejuvenate the
thymus in elderly (Thomas et al., 2020). The data available on
thymus regeneration are so far limited to animal models;
although, increased serum levels of IL-7, a thymoprotective
cytokine, has been described in trained elderly cyclists (Duggal
et al., 2018). Data from an early study showed that IL-7 treatment
in the form of a fusion protein restored thymic cellularity and
architecture, (Henson et al., 2005) producing additional de novo
T cells and increasing thymic output. Another thymic
regeneration strategy involves reprogramming fibroblasts with
forkhead box N1 (FOXN1) to form thymic epithelial cells and
create a functional thymic stroma, (Bredenkamp et al., 2014a) or
gene therapy in the form of inducible FOXN1 expression
(Bredenkamp et al., 2014b). A combination of the AMPK
activator (metformin) and other active substances with the
focus on immunosenescence and epigenetic markers in elderly
participants is currently used in an ongoing phase 2 clinical trial
on thymus regeneration (NCT04375657).

A promising therapeutic approach centers on gut microbiota
manipulation. Loss of microbiota diversity is associated with
aging and has also been observed in CCS (Table 1). Probiotic
supplements are already widely used by cancer patients with
questionnaire-based positive results (Ciernikova et al., 2017;
Nazir et al., 2018). Further studies on the long-term use of
these supplements that evaluate the progression of
comorbidities and immunosenescence are needed. Studies on
the gradual change of microbiome diversity with aging (Xu et al.,
2019) and in CCS (Chua et al., 2017) can serve to optimize
probiotic composition.

Some strategies to overcome immunosenescence, namely
exercise and probiotic supplements, can be relatively smoothly
implemented in CCS post-therapy regimens, and studies on their
quality of life and immunosenescence markers are much needed.
These strategies can prove to be helpful rather than harmful by
off-target effects in both groups, CCS and elderly. Moreover,
implementation of exercise in young cancer patients or CCS
could have many additional benefits including a motivation to
meet with their peers, retrieve emotional and social stability
(Gallicchio et al., 2008; Effinger et al., 2019) and thus overall
higher quality of life. Unlike CCS, the elderly might have many
physical limitations already unable to perform exercise such as
longer-distance walking and thus performing exercise presents a
rather preventative strategy for exercise-habituated aging
individuals. The approved metabolic manipulation strategies
can be used in CCS as well as in elderly when advised by and
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closely examined its suitability to the overall health status by their
general practitioners/specialists. Unlike some above-mentioned
strategies, thymus regeneration strategies are still in the process of
development and thus not approved yet. Nevertheless, this
strategy might be more beneficial to the elderly rather than
CCS depending on the rate of thymic involution and thymic
output. Lastly, so far unapproved strategies based on interfering
with metabolic and signaling pathways have to be carefully
studied in mouse models and in clinical trials because of
possible off-target effects.

CHILDHOOD CANCER SURVIVORS RISK
STRATIFICATION STRATEGIES

Specialised life-long follow-up care programmes for CCS are
gradually being established across the world’s healthcare
systems (Jacobs and Shulman, 2017; van Kalsbeek et al., 2021).
In order to provide personalised, effective and also cost-effective
surveillance of late effects, evidence-based strategies and models
are sought to stratify CCS by risk of individual late effects.
However, current risk-stratification schemes (Wallace et al.,
2001; Edgar et al., 2013; Frobisher et al., 2017) are largely
based on intensity of treatment, especially cumulative doses of
chemotherapy and type and intensity of radiotherapy, and do not
suffice to explain many variations in individual responses to
treatment.

Given the CLGI is the condition contributing to aetilogy of
many late effects, and concurrently is associated with
immunosenescence, we suppose that accelerating aging
phenotype of CCS might be accompanied by
immunosenescence. Understanding the relationship between
age-related immunosenescence and immune features of CCS
may allow the identification of new markers. Combination of
conventional factors (e.g cardiovascular – hypertension, diabetes,
dyslipidemia) (Armstrong et al., 2013; Chow et al., 2014) and
newly identified markers may improve currently existing risk
stratification models. Such a classification of CCS into groups can
eventually become the subjects of different prevention regimens/
programs. Based on the reviewed literature, several candidate
markers could be promising tools to screen CCS cohorts: 1)
analysis of serum/plasma for major markers of the senescent
phenotype (TNF-α, IL-6, hsCRP, IL-10, IL-2, IL-17A and
sCD163), 2) analysis of cellular senescence in the subsets of
peripheral blood cells (T cells, NK cells, and monocytes), 3)
senescence markers (telomere length, p16INK4a expression,
β-galactosidase, epigenetic changes (T cells and other
peripheral blood mononuclear cells)) and 4) presence of health
complications (Figure 3). Detection of these markers in CCS
cohorts is likely to correlate with, and may even predict, the risk
of developing serious typical age-related polymorbidities and
frailty and would be a useful first step towards a more detailed
understanding of the mechanistic link between comorbidities in
CCS, immune phenotypes, and premature aging.

One notable effect of cancer therapies, including
chemotherapy, (Li et al., 2012) radiotherapy, and bone
marrow transplantation, (Schröder et al., 2001) is the
disruption of telomere homeostasis. Furthermore, telomere
attrition is promoted by an inflammatory environment (Jose
et al., 2017) and has been described as among the first
systemic hallmarks of aging in the elderly, (Woo et al., 2014)
accelerated aging in chronic disorders, (Zhao et al., 2013;
Haycock et al., 2014) and aging in CCS (Ness et al., 2018).
Significantly shorter leukocyte telomere length has been
reported among CCS exposed to various cancer treatment in
comparison to non-cancer control (Song et al., 2020) and has
been associated with prevalence of chronic health conditions in
CCS. Interestingly, favourable health behaviours have been
associated with longer leukocyte telomere length of younger
CCS. Song et al. (2020) suggests telomere length as a
promising aging biomarker which may be involved in
strategies for health promotion and disease prevention in CCS
particularly with regard to aging-related chronic health
conditions.

Here, we hypothesize that the crosstalk of telomere control
mechanisms and chronic inflammatory disorders is another
crucial factor in the development of accelerated senescence in
CCS. The fact that telomere shortening is induced by anticancer
therapy, and at the same time clearly correlates as an additional
risk for further development of cancer makes telomere length
assessment a strong candidate for stratification of CCS at different
risks of further adverse effects.

Several systemic markers correlate with the aging process
(Herranz and Gil, 2018; Wiley and Campisi, 2016) (Table 4).

FIGURE 3 | Immunophenotype, comorbidities, CLGI, and senescence
markers suggested for CCS patient stratification.; Abbreviations: CM, central
memory; TEMRA, terminally differentiated effector memory T cells re-
expressing CD45RA; CVD, cardiovascular disease; DM, diabetes
mellitus; ED, endocrinal disease; PD, pulmonary disease.
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Themarkers observed in peripheral blood cells in CCS include apart
from telomere shortening also expression of p16INK4a and epigenetic
changes. Moreover, p16INK4a expression in T cells correlates with
intensity of chemotherapy and frailty in the CCS, and thus cellular
senescence has been proposed to be associated with premature aging
in CCS (Smitherman et al., 2020). Another established aging marker
accessible from plasma, circulating cell-freemitochondrial DNA, has
not yet been studied in CCS and neither has been β-galactosidase, a
well-knownmarker for senescence (Dimri et al., 1995). Interestingly,
β-galactosidase has been reported in only one study recently in
peripheral blood cells (terminally differentiated CD8+ T cells
specifically) of healthy elderly, (Martínez-Zamudio et al., 2021)
and a study by Spazzafumo et al. (2017) reports increased
β-galactosidase activity in plasma of elders (Spazzafumo et al.,
2017). Nevertheless, none of those parameters has ultimate
informative value without the context of many other parameters
(Casella et al., 2019).

In summary, further analysis of candidate markers shared
between elderly and CCS might help to develop a risk-
stratification profiles for identification of high-risk (intense
monitoring and early intervention) and low risk (reduced
monitoring) subpopulation groups. The appropriate patient
stratification would enable increased screening and pro-active
early clinical management of these patients.

FUTURE PERSPECTIVES

The parallels between immune senescence in the elderly and immune
alterations seen in CCS are, in some cases, quite notable; however, the
definition of altered immune states in CCS is incomplete. The specific
effects of different cancer treatments on the young immune system
are yet to be fully understood, and long-term follow-up studies are
overall lacking.Moreover, another hurdle is that the data available for
CCS immune cell phenotype and CLGI consist almost exclusively of
leukemia survivors, while the comorbidities cover multiple cancer
types—leukemias, lymphomas, brain and nervous system tumors etc.
The question is, whether the studies were done on leukemia survivors
on purpose due to the highest incidence reaching up to 25% of all
pediatric neoplasms, (Howlader et al., 2020) and thus achieving a
phenotype assessment in a relatively homogeneous group of CCS, or
the immune senescence and CLGI occur predominantly in this type
of pediatric cancer due to its specific therapeutic regimen including
antracyclines and alkylating agents (in 73% of CCS), and

radiotherapy (in 52% of CCS) (Azanan et al., 2016; Ariffin et al.,
2017). We recently showed that high-risk neuroblastoma CCS
exhibited transient signs of an immunosenescent-like phenotype,
but this was resolved after 5 years, (Lázničková et al., 2020) illustrating
the dynamic nature of immune recovery from cancer treatment and
the need for larger longitudinal studies across tumor types. Although
more than two-thirds of CCS experience notable ill health in the
medium term, one-third do not. As yet, it is unclear whether the
immune systems of those patients in better health are more like those
of healthy age-matched peers or whether other factors are responsible
for the emergence of typical age-related conditions in these young
adults. Genetic factors, including those for metabolic diseases, that
predispose to obesity, hypertension or diabetes mellitus have not
provided sufficient predictive value in CCS, presumably due to low
patient numbers in genetic studies and lack of control cohorts
(Wilson et al., 2015; Clemens et al., 2018). So far, only one study
showed association of leptin receptor-encoding gene polymorphism
and obesity in irradiated female CCS (Ross et al., 2004).

Another possible explanation for the differences in the immune
features between CCS and healthy peers is that immune alterations
may pre-dated treatment, or even the cancer itself. Therefore, future
research should be directed to investigate mechanisms behind these
alterations resulting in identification of immune parameters allowing
prognosis prediction. One such predictive pre-treatment immune cell
characteristic has been already attributed to the neutrophil-to-
lymphocyte ratio in pediatric patients with solid brain tumors
who have elevated neutrophils and decreased lymphocyte counts
compared to children with unrelated diagnoses prior to surgery
(Yalon et al., 2019). These data remain to be validated for other
pediatric cancers; however, data has been collected for various adult
cancers (Howard et al., 2019). Nevertheless, it remains important to
understand the present state of the immune system status in CCS due
to the high number of CCS across the globe and the tight association
of the immune system with the development of comorbidities,
including possible relapses or secondary cancers.

In summary, we consider that the late adverse effects in CCS are
similar to the immunosenescence-related age-associated morbidities
observed in the elderly. Our belief is that immunosenescent
phenotyping could provide crucial information for patients
struggling with the therapy-induced morbidities that occur in
CCS. This link is especially relevant considering the growing
research emphasis on ways to ameliorate immunosenescence in
the elderly. If relevant parallels exist between these two patient
groups, then similar strategies could markedly benefit CCS. The

TABLE 4 | Systemic markers of senescence/aging in peripheral blood cells and plasma.

Marker CCS Healthy elderly

Telomere length ALL Ariffin et al. (2017); various cancer types Song et al. (2020),
Gramatges et al. (2014), Franco et al. (2003), NHL Lee et al. (2003); HR-
NB Vatanen et al. (2017)

Bischoff et al. (2005), Sanders et al. (2009), Haapanen et al. (2018),
Montiel Rojas et al. (2018), Kuo et al. (2019)

p16INK4a Various cancer types Smitherman et al. (2020) Liu et al. (2009), Song et al. (2010), Kao et al. (2016)
Epigenetic changes Various cancer types Daniel et al. (2018) Bell et al. (2012), Johnson and Conneely (2019)
Circulating mtDNA,
cf-DNA

Not found Jylhävä et al. (2013), Pinti et al. (2014), Teo et al. (2019)

β-galactosidase Not found Spazzafumo et al. (2017), Martínez-Zamudio et al. (2021)

Abbreviations: ALL, acute lymphoblastic leukemia; Cf-DNA, cell-free DNA; HR-NB, high-risk neuroblastoma; mtDNA, mitochondrial DNA; NHL, non-Hodgkin’s lymphoma.
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increasing numbers of CCS are an undisputable testament to one of
the biggest successes of oncological research in previous decades. The
challenge moving forward is to ensure that cancer cures are not
necessarily accompanied by a future of chronic conditions with the
potential to limit both quantity and quality of life.

AUTHOR CONTRIBUTIONS

PL prepared the figures and tables, and wrote the manuscript. KB
prepared the tables and wrote the manuscript. TK advised clinical
research interpretations and critically reviewed the manuscript.
JF conceptualized, wrote and critically reviewed the manuscript.
All authors contributed to manuscript revision, read, and
approved the submitted version.

FUNDING

The work has been funded by European Social Fund and European
Regional Development Fund—MAGNET (Grant/Award Number:
CZ.02.1.01/0.0/0.0/15_003/0000492) and ENOCH (Grant/Award
Number: CZ.02.1.01/0.0/0.0/16_019/0000868) and by the Ministry
of Health of the Czech Republic, DRO (Institute of Hematology and
Blood Transfusion—UHKT, 00023736).

ACKNOWLEDGMENTS

The authors would like to thank Lucy Robinson and Jessica
Tamanini from Insight Editing London for editing and critical
review of the manuscript.

REFERENCES

Agrawal, A., Agrawal, S., and Gupta, S. (2017). Role of Dendritic Cells in
Inflammation and Loss of Tolerance in the Elderly. Front. Immunol. 8, 896.
doi:10.3389/fimmu.2017.00896

Agrawal, A., Agrawal, S., Cao, J.-N., Su, H., Osann, K., and Gupta, S. (2007). Altered
Innate Immune Functioning of Dendritic Cells in Elderly Humans: A Role of
Phosphoinositide 3-Kinase-Signaling Pathway. J. Immunol. 178 (11),
6912–6922. doi:10.4049/jimmunol.178.11.6912

Agrawal, S., Ganguly, S., Tran, A., Sundaram, P., and Agrawal, A. (2016). Retinoic
Acid Treated Human Dendritic Cells Induce T Regulatory Cells via the
Expression of CD141 and GARP Which Is Impaired with Age. Aging 8 (6),
1223–1235. doi:10.18632/aging.100973

Aiello, A., Farzaneh, F., Candore, G., Caruso, C., Davinelli, S., Gambino, C. M.,
et al. (2019). Immunosenescence and its Hallmarks: How to Oppose Aging
Strategically? A Review of Potential Options for Therapeutic Intervention.
Front. Immunol. 10, 2247. doi:10.3389/fimmu.2019.02247

Akbar, A. N., Henson, S. M., and Lanna, A. (2016). Senescence of T Lymphocytes:
Implications for Enhancing Human Immunity. Trends Immunol. 37 (12),
866–876. doi:10.1016/j.it.2016.09.002

Alessio, N., Aprile, D., Squillaro, T., Di Bernardo, G., Finicelli, M., Melone, M. A.,
et al. (2019). The Senescence-Associated Secretory Phenotype (SASP) from
Mesenchymal Stromal Cells Impairs Growth of Immortalized Prostate Cells but
has No Effect on Metastatic Prostatic Cancer Cells. Aging 11 (15), 5817–5828.
doi:10.18632/aging.102172

Allsopp, R. C., Cheshier, S., and Weissman, I. L. (2001). Telomere Shortening
Accompanies Increased Cell Cycle Activity during Serial Transplantation of
Hematopoietic Stem Cells. J. Exp. Med. 193 (8), 917–924. doi:10.1084/
jem.193.8.917

Angelovich, T. A., Shi, M. D. Y., Zhou, J., Maisa, A., Hearps, A. C., and Jaworowski,
A. (2016). Ex Vivo foam Cell Formation is Enhanced in Monocytes from Older
Individuals by Both Extrinsic and Intrinsic Mechanisms. Exp. Gerontol. 80,
17–26. doi:10.1016/j.exger.2016.04.006

Ariffin, H., Azanan, M. S., Abd Ghafar, S. S., Oh, L., Lau, K. H., Thirunavakarasu,
T., et al. (2017). Young Adult Survivors of Childhood Acute Lymphoblastic
Leukemia Show Evidence of Chronic Inflammation and Cellular Aging. Cancer
123 (21), 4207–4214. doi:10.1002/cncr.30857

Armstrong, G. T., Kawashima, T., Leisenring,W., Stratton, K., Stovall, M., Hudson,
M. M., et al. (2014). Aging and Risk of Severe, Disabling, Life-Threatening, and
Fatal Events in the Childhood Cancer Survivor Study. J. Clin. Oncol. 32 (12),
1218–1227. doi:10.1200/jco.2013.51.1055

Armstrong, G. T., Oeffinger, K. C., Chen, Y., Kawashima, T., Yasui, Y., Leisenring,
W., et al. (2013). Modifiable Risk Factors and Major Cardiac Events Among
Adult Survivors of Childhood Cancer. J. Clin. Oncol. 31 (29), 3673–3680.
doi:10.1200/jco.2013.49.3205

Armstrong, G. T., Stovall, M., and Robison, L. L. (2010). Long-term Effects of
Radiation Exposure Among Adult Survivors of Childhood Cancer: Results from
the Childhood Cancer Survivor Study. Radiat. Res. 174 (6), 840–850.
doi:10.1667/rr1903.1

Arnold, C. R., Pritz, T., Brunner, S., Knabb, C., Salvenmoser, W., Holzwarth, B.,
et al. (2014). T Cell Receptor-Mediated Activation Is a Potent Inducer of
Macroautophagy in Human CD8+CD28+ T Cells but Not in CD8+CD28−
T Cells. Exp. Gerontol. 54, 75–83. doi:10.1016/j.exger.2014.01.018

Arroyo, E., Wells, A. J., Gordon, J. A., 3rd, Varanoske, A. N., Gepner, Y.,
Coker, N. A., et al. (2017). Tumor Necrosis Factor-Alpha and Soluble
TNF-Alpha Receptor Responses in Young vs. Middle-Aged Males
Following Eccentric Exercise. Exp. Gerontol. 100, 28–35. doi:10.1016/
j.exger.2017.10.012

Azanan, M. S., Abdullah, N. K., Chua, L. L., Lum, S. H., Abdul Ghafar, S. S.,
Kamarulzaman, A., et al. (2016). Immunity in Young Adult Survivors of
Childhood Leukemia is Similar to the Elderly Rather Than Age-Matched
Controls: Role of Cytomegalovirus. Eur. J. Immunol. 46 (7), 1715–1726.
doi:10.1002/eji.201646356

Baerlocher, G. M., Rovó, A., Müller, A., Matthey, S., Stern, M., Halter, J., et al.
(2009). Cellular Senescence of white Blood Cells in Very Long-Term Survivors
After Allogeneic Hematopoietic Stem Cell Transplantation: The Role of
Chronic Graft-Versus-Host Disease and Female Donor Sex. Blood 114 (1),
219–222. doi:10.1182/blood-2009-03-209833

Bartlett, D. B., Fox, O., McNulty, C. L., Greenwood, H. L., Murphy, L., Sapey, E.,
et al. (2016). Habitual Physical Activity Is Associated with the Maintenance of
Neutrophil Migratory Dynamics in Healthy Older Adults. Brain Behav.
Immun. 56, 12–20. doi:10.1016/j.bbi.2016.02.024

Bates, J. E., Howell, R. M., Liu, Q., Yasui, Y., Mulrooney, D. A., Dhakal, S., et al.
(2019). Therapy-Related Cardiac Risk in Childhood Cancer Survivors: An
Analysis of the Childhood Cancer Survivor Study. J. Clin. Oncol. 37 (13),
1090–1101. doi:10.1200/jco.18.01764

Beerman, I., Bock, C., Garrison, B. S., Smith, Z. D., Gu, H., Meissner, A., et al.
(2013). Proliferation-Dependent Alterations of the DNA Methylation
Landscape Underlie Hematopoietic Stem Cell Aging. Cell Stem Cell 12 (4),
413–425. doi:10.1016/j.stem.2013.01.017

Beharka, A. A., Meydani, M., Wu, D., Leka, L. S., Meydani, A., and Meydani, S. N.
(2001). Interleukin-6 Production Does Not Increase with Age. J. Gerontol. Ser.
A: Biol. Sci. Med. Sci. 56 (2), B81–B88. doi:10.1093/gerona/56.2.b81

Bell, J. T., Tsai, P. C., Yang, T. P., Pidsley, R., Nisbet, J., Glass, D., et al. (2012).
Epigenome-Wide Scans Identify Differentially Methylated Regions for Age and
Age-Related Phenotypes in a Healthy Ageing Population. PLoS Genet. 8 (4),
e1002629. doi:10.1371/journal.pgen.1002629

Bhakta, N., Liu, Q., Ness, K. K., Baassiri, M., Eissa, H., Yeo, F., et al. (2017). The
Cumulative burden of Surviving Childhood Cancer: an Initial Report from the
St Jude Lifetime Cohort Study (SJLIFE). Lancet 390 (10112), 2569–2582.
doi:10.1016/s0140-6736(17)31610-0

Frontiers in Aging | www.frontiersin.org July 2021 | Volume 2 | Article 70878812
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article distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Aging | www.frontiersin.org July 2021 | Volume 2 | Article 70878820
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