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Adipose, or fat, tissue (AT) was once considered an inert tissue that primar-
ily existed to store lipids, and was not historically recognized as an
important organ in the regulation and maintenance of health. With the
rise of obesity and more rigorous research, AT is now recognized as a
highly complex metabolic organ involved in a host of important physiologi-
cal functions, including glucose homeostasis and a multitude of endocrine
capabilities. AT dysfunction has been implicated in several disease states,
most notably obesity, metabolic syndrome and type 2 diabetes. The study
of AT has provided useful insight in developing strategies to combat these
highly prevalent metabolic diseases. This review highlights the major func-
tions of adipose tissue and the consequences that can occur when disruption
of these functions leads to systemic metabolic dysfunction.
1. Introduction
Adipose tissue (AT) is now fully recognized as a metabolically active organ.
Historically, AT was thought to provide fuel or insulation to organs, and to
serve as a connective tissue. Studies in the last two decades have demonstrated
that AT plays a critical role in systemic metabolic health. While AT is indeed the
primary site for energy storage in the form of lipid, it is also a major endocrine
organ, producing and secreting adipose-tissue-specific hormones known as adi-
pokines. In addition to hormones, fat tissue secretes various forms of genetic
material, lipid and proteins that all contribute to its substantial endocrine
activity. AT also responds to a variety of circulating metabolites and hormones,
including lipids, growth hormone, cortisol, insulin, catecholamines and many
others. Moreover, AT is known to be a major metabolic organ, along with the
liver and skeletal muscle, critical to maintaining proper glucose homeostasis
[1]. Disruption in any one of the three primary functions of adipocytes (lipid
storage, endocrine function and responsiveness to insulin) can have major
impacts on overall metabolic health. Excess adiposity, or obesity, is a major
risk factor in several disease states including type 2 diabetes, cardiovascular dis-
ease, hepatic steatosis and at least 13 types of cancers [2–5]. Although research
in adipocyte biology and physiology has advanced dramatically in recent years,
our understanding of the complex processes governing the role of AT in health
and disease is still emerging. This review highlights our knowledge of AT path-
ologies and how they contribute to metabolic diseases, as well as gaps in our
understanding of AT biology that require further study.
2. Adipose tissue expansion and development
2.1. Cellular growth and development
AT is the primary organ for the storage of lipids. Excessive lipid accumulation
results in obesity, also known as excessive adiposity or AT expansion, which is
driven by adipocyte hyperplasia and/or hypertrophy. Hyperplasia refers to the
formation of new adipocytes from preadipocytes through adipogenesis, a
highly complex and tightly regulated process involving many hormones and
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transcription factors [6], most notably peroxisome prolifera-
tor-activated receptor gamma (PPARγ), which is absolutely
required for adipocyte differentiation and is considered the
master regulator of adipogenesis [7]. Although adipogenesis
in vitro is well understood, the control of this developmental
pathway in vivo, in the presence of other tissues and a
plethora of circulating factors, is less understood, due in
part to the limited methodologies available to study adipo-
genesis in vivo. However, recently developed model systems
featuring fluorescent labelling of adipocytes have allowed
for a more rigorous in vivo assessment of adipogenesis
[8–10]. For example, Tang and colleagues were able to
detect newly formed adipocytes with the use of the Adipo-
Trak mouse model and demonstrated that PPARγ agonist
treatment enhances adipogenesis in vivo, supporting pre-
viously established in vitro studies [8]. Utilization of
fluorescence-activated cell sorting and liquid chromato-
graphy–tandem mass spectrometry methods has led to the
identification of several unique types of adipocyte progenitor
cells in adipose tissue, and provided insight into adipocyte
origin, development and heterogeneity in both mice and
humans [11–13]. Furthermore, other recent technologies
such as single-cell RNA sequencing have advanced our com-
prehension of the genes and processes governing adipocyte
commitment of precursors, progenitors and adipocyte stem
cells [14,15]. The study of adipogenesis in vivo is still an emer-
ging field and we have much left to learn. A recent review
provides a detailed overview of the complex nature of adipo-
cytes, as well as other cells within adipose tissue, and
highlights the advantages of using of single-cell RNA sequen-
cing in the study of adipocyte biology and development [16].
Further utilization of these new methods will enhance our
understanding of overall AT expansion.

It is well established that inhibiting adipogenesis in mice
can lead to metabolic dysfunction. For example, loss of
PPARγ inhibits adipocyte hyperplasia and total AT accumu-
lation, while promoting adipocyte hypertrophy, insulin
resistance and other markers of metabolic dysfunction
[17]. PPARγ agonists not only promote adipocyte differen-
tiation [18], but also improve overall glucose homeostasis
and metabolic health [19–21]. Deuterium labelling has
allowed for further study of adipogenesis in humans in
vivo. In line with the studies above, there is evidence that
PPARγ agonists promote femoral adipocyte differentiation
and improve insulin sensitivity in humans [22]. New adipo-
cytes resulting from PPARγ-driven adipogenesis facilitate
increased lipid storage in AT and are associated with reduced
circulating lipids, enhanced glucose disposal and increased
fat oxidation in diabetic patients [8,23]. Notably, this for-
mation of new adipocytes is associated with reduced
ectopic lipid storage and a decrease in other markers of meta-
bolic syndrome in patients with fatty liver disease [24,25].
Although PPARγ agonists are highly effective insulin sensi-
tizers for type 2 diabetes treatment, their clinical use has
been drastically reduced in recent years due to considerable
side effects, including weight gain, fluid retention, congestive
heart failure and bone fractures [26–29]. Conversely, there is
recent data to suggest that enhanced adipocyte turnover
negatively impacts metabolic health [30]. However, as the
authors indicated, these data are correlative and it is still
unclear whether adipocyte death was a driver of the
increased adipogenesis. Clearly, more research needs to be
performed in this area.
In contrast to hyperplasia, hypertrophy is the enlarge-
ment of individual adipocytes by lipid accumulation.
Hypertrophy can occur through uptake of dietary lipids
from the circulation, or through the fatty acid synthesis path-
way in adipocytes, known as de novo lipogenesis (reviewed in
[31]). Many rodent studies have suggested that larger adipo-
cytes are a characteristic of metabolic dysfunction [32–34].
This notion is supported by clinical studies reporting that
increased adipocyte size is associated with insulin resistance,
hepatic steatosis and other markers of metabolic dysfunction
[27,28,35]. Similarly, adipocyte volume was higher in patients
who did not show improvements in insulin resistance follow-
ing bariatric surgery [36]. Adipocyte hypertrophy has also
been associated with insulin resistance and inflammation in
healthy patients who are genetically predisposed to type 2
diabetes [37]. While it is generally accepted that impaired adi-
pogenesis and excessive adipocyte hypertrophy are drivers of
insulin resistance in obese states, data from several mouse
models indicate that the relationship between fat cell size
and metabolic dysfunction is not straightforward, and that
changes in metabolic parameters can occur in the absence
of altered adipocyte size, and vice versa. For example, abla-
tion of Siah2, a ubiquitin ligase, results in obesity and
enlarged adipocytes, but preserved insulin sensitivity [38].
Conversely, adipocyte-specific mTORc1 depletion in mice
leads to smaller adipocytes accompanied by systemic insulin
resistance [39]. Similarly, mice with ectopic expression of
nuclear SREBP-1c in adipocytes have overt metabolic dys-
function and lipodystrophy, despite having notably smaller
adipocytes when compared to controls [40]. Mice lacking col-
lagen VI have large adipocytes due to uninhibited expansion,
but have substantially improved whole-body energy and glu-
cose homeostasis [41]. Also, a mouse model with ectopic
expression of endotrophin, a proinflammatory adipokine, in
adipocytes displayed increased AT inflammation and fibrosis,
as well as systemic metabolic dysfunction, while adipocyte
size was unchanged [42]. These data and many other
examples make it clear that fat cell size is not an absolute
indicator of systemic metabolic health. Overall, a balanced
combination of adipocyte hypertrophy and hyperplasia is
required for appropriate AT expansion and maintenance of
metabolic health.

2.2. Extracellular development
Angiogenesis and vascularization are also important contri-
butors to AT development, as they are required not only for
oxygenation, but also for endocrine functions and nutrient
transport to and from AT. Insufficient vascularization
during AT expansion promotes hypoxia, which may trigger
further complications including inflammation, fibrosis and
apoptosis [43], contributing to adipose tissue dysfunction
(figure 1). While many proteins participate in AT remodelling
during expansion, vascular endothelial growth factor (VEGF)
is considered the primary player in this process [44]. Several
rodent studies demonstrate that reduced AT vascularity in
obesity leads to systemic metabolic dysfunction. For example,
mice with adipocyte-specific deletion of VEGF that are
exposed to high-fat feeding have reduced vascularity,
increased inflammation and significantly reduced glucose
handling abilities despite a reduction in fat mass [45]. Nota-
bly, adipocyte overexpression of VEGF reverses these
outcomes [45]. Several review articles have highlighted the
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Figure 1. General classifications of metabolically healthy and unhealthy white adipose tissue (AT). Metabolically healthy AT is generally stored subcutaneously, is
highly vascularized with low levels of macrophages and has appropriate adiponectin secretion. Healthy adipocytes also have less production and secretion of leptin
and resistin. Healthy adipocytes are insulin sensitive with low basal lipolysis that is associated with overall systemic metabolic health. In contrast, metabolically
compromised AT is primarily stored in the visceral cavity, has reduced vascularity with increased infiltration or presence of proinflammatory macrophages, and
enhanced secretion of leptin and resistin. Typically, unhealthy adipocytes are insulin resistant and have increased basal lipolysis. The increased fatty acids from
lipolysis contribute to systemic metabolic dysfunction.
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implications of impaired VEGF signalling in obesity-induced
metabolic disease in humans [46,47]. The anti-angiogenic
transcription factor forkhead box O1 (FOXO1) and the angio-
genic adipokine neuroregulin 4 (NRG4) are also known to
contribute to vascular regulation. FOXO1 levels are elevated
in obesity, and mice with reduced endothelial expression of
FOXO1 had improved vascular remodelling in AT and
enhanced glucose tolerance [48]. However, the FOXO1-
deficient mice also had reduced body and fat mass, con-
founding the interpretation of these findings. NRG4 has
recently been recognized as a pro-angiogenic adipokine
[49]. Constitutive expression of NRG4 in adipocytes leads
to improved glucose tolerance, increased adipose blood
vessel formation and reduced hypoxia in AT of obese mice
when compared to control mice of the same body weight
[49]. Moreover, pharmacological inhibition of angiogenesis
or blockade of the NRG4 receptor (ErbB) in the transgenic
mice prevented the enhancement of angiogenesis and the
favourable metabolic effects noted above [49]. These data
suggest that NRG4-induced angiogenesis is a positive regula-
tor of metabolic health in AT. Taken together, these data
underscore the notion that AT development as a whole is
crucial to systemic health.
3. Inflammation
Inflammation is a normal and necessary acute physiological
response to a variety of stimuli, such as injury, but is often
chronically elevated in several disease states including obes-
ity and metabolic dysfunction. AT inflammation has been
extensively studied over the past decade, and obesity is
known to be associated with chronic low-grade inflammation
and metabolic disease [50–52]. Numerous proinflammatory
molecules in AT are involved in obesity-related metabolic
disease, including tumour necrosis factor alpha (TNFα), inter-
leukin 6 (IL6), monocyte chemoattractant protein 1 (MCP1)
and various adipokines (reviewed in [53], and discussed
below in ‘Endocrine functions within adipose tissue’).
A high-profile report of obesity-induced inflammation was
a study in the early 1990s showing elevated TNFα expression
in the AT of genetically obese mice [54]. TNFα is known to
induce insulin resistance in adipocytes through several mech-
anisms, including downregulating the expression of both the
insulin receptor and the insulin-sensitive glucose transporter
[55,56], as well as impeding insulin signalling events, antag-
onizing PPARγ action and inducing expression of
proinflammatory genes (reviewed in [57]). Conditions such
as hyperinsulinaemia and excess circulating lipids result in
the recruitment of macrophages and other immune cells to
the AT (figure 1), where they act as primary drivers of inflam-
mation through the production of various paracrine factors,
including inflammatory cytokines such as TNFα and IL-6
[43,58–62]. In obesity, the chronic overproduction of these
inflammatory mediators can cause impaired adipocyte insu-
lin signalling, further inflammation and a continued
deterioration of AT function [43,60,63]. Traditionally, macro-
phages have been classified as either M1 or M2. The M1
type is associated with a proinflammatory environment and
enhanced secretion of proinflammatory cytokines from macro-
phages and adipocytes; whereas the M2 type is considered
immunosuppressive and typically plays a more protective or
restorative role following inflammatory insults [64]. However,
in the last few years, studies have identified several subtypes
within the M1/M2 classifications, as well as additional classi-
fications including the newly defined obesity-associated,
metabolically activated (MMe) and metabolically oxidized
(Mox) macrophages [62,65]. Moreover, new techniques such
as single-cell RNA sequencing allows for highly sophisticated
analysis of the cellular composition within adipose tissue and
has revealed that immune cells represent a substantial percen-
tage of adipose tissue cells and encompass an even greater
variety than previously thought [15,66]. The understanding
of the contributions of adipose tissue macrophages to adipo-
cyte function and metabolic regulation continues to be an
active and expanding area of research.

Inflammasomes, which also contribute to AT inflam-
mation, are also known to influence glucose homeostasis.
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These multiprotein complexes promote the maturation and
secretion of inflammatory cytokines and mediate inflamma-
tory responses to a variety of stress signals, including
microbial infection, as well as endogenous mediators such
as free fatty acids or extracellular ATP (reviewed in [67]).
The most thoroughly characterized is the NLRP3 inflamma-
some, which is associated with AT inflammation and
systemic insulin resistance [67–71]. Its components include
a Nod-like receptor (NLR), caspase-1 and apoptosis-associ-
ated speck-like protein containing a CARD (ASC) adaptor
protein. Whole-body knockouts of inflammasome com-
ponents have alleviated metabolic disturbances from diet-
induced obesity [72,73]; however, these global knockouts
also result in reduced body weight and fat mass, complicat-
ing the overall interpretation of the metabolic data. More
recently, macrophage-specific knockouts have been devel-
oped and have yielded similar results [74]. There is
evidence to suggest these data are translatable to humans
as monocyte-derived macrophages from newly diagnosed
type 2 diabetics expressed higher levels of NLRP3, ASC
and proinflammatory cytokines, including several interleu-
kins and TNFα, when compared to non-diabetic control
macrophages [75]. Moreover, the release of proinflammatory
cytokines was significantly elevated in the culture media as
well as in the serum of diabetic patients at baseline and fol-
lowing stimulation from fatty acids, when compared to
non-diabetic controls [75]. These findings are consistent
with previous studies documenting macrophage infiltration
into AT as a feature of obesity-associated metabolic dysfunc-
tion in mice [59]. While our understanding of AT
macrophages and the involvement of other AT immune
cells in metabolic health and disease continues to evolve, it
is clear that proinflammatory conditions are implicated in
the pathology of obesity and associated metabolic disease
states. However, in a field that is rapidly changing, it is
worth noting that some degree of inflammatory signalling
appears to necessary for normal AT function. Two proinflam-
matory cytokines, TNFα and oncostatin M, are known to be
required for proper AT expansion and maintenance of insulin
sensitivity in mice [76–79]. Moreover, recent findings suggest
that inhibition of a high-fat diet induced inflammation
specifically in adipocytes interferes with proper glucose
handling [80]. Although AT inflammation clearly has detri-
mental effects in obesity, it also has adaptive and
homeostatic roles in AT expansion and function and its
impact on systemic metabolic regulation.
4. Location of lipid storage
On the whole, excess adiposity poses an increased risk of
developing metabolic syndrome [81] and type 2 diabetes
[82,83]. However, there are individuals who have increased
adiposity in the absence of metabolic dysfunction, and are
considered metabolically healthy obese [84]. Clearly, factors
beyond simple adiposity are involved in regulating systemic
metabolic homeostasis (figure 1). It is recognized that AT is
highly heterogeneous, and that its many functions are
impacted by parameters such as its constituent adipocyte
types and anatomical locations. First, it is important to under-
stand that there are several different types of adipocytes and
AT, each with unique metabolic profiles. These types include
white, brown and beige (or ‘brite’) fat. White AT (WAT) is the
most abundant, and is the main focus of this review. Its meta-
bolic characteristics are largely dependent on its anatomical
location, as discussed below. Brown AT (BAT) is characterized
by its ability to generate heat by uncoupling fuel oxidation
from ATP generation, a process of metabolic inefficiency
that has been speculated to be favourable to weight loss.
Beige/brite AT is a newer designation and typically refers
to white AT that has acquired some characteristics of brown
fat. There is controversy regarding beige fat. While a large
body of literature suggests that beige fat is metabolically ben-
eficial [85,86], it has also been considered a stress response to
a large variety of conditions [87,88]. The functional differences
among the AT varieties are not only dependent on location or
energy production and utilization, but also on differences in
gene expression, lipid droplet size, innervation and mitochon-
drial density. BAT and beige AT biology and function have
been extensively reviewed [89]. Adding to the complexity of
AT biology, recent studies reveal significant heterogeneity
within the individual AT depots that likely impacts overall
function and metabolic health [15,90,91]. Characteristics
of AT heterogeneity are an emerging area of investigation;
therefore, our understanding is still in its infancy.

The anatomical location of AT also influences systemic
metabolism and overall health. Fat depots found in humans
are not metabolically or anatomically identical to those
found in rodents [92]. This information should be considered
when interpreting AT studies. In general, WAT depots are
broadly categorized as subcutaneous (located under the
skin) or visceral (surrounding internal organs), and these dis-
tinctions are widely used and accepted in the study of AT.
Typically, subcutaneous AT is considered metabolically
healthy, especially when located around the gluteal-femoral
region [93]; whereas visceral AT is associated with inflam-
mation and increased metabolic disease risk. Specifically,
human clinical studies have reported strong positive corre-
lations between visceral fat and metabolic syndrome
components including HOMA-IR and triglycerides, as well
as hepatic steatosis, fibrosis and inflammation [94–96]. More-
over, visceral fat is positively associated with cardiovascular
disease [95] and inflammatory markers [94,97]. Patients
with severe obesity that had an omentectomy (where less
than 1% of total fat was removed) in addition to gastric band-
ing had significantly improved glucose handling 2 years after
surgery when compared to gastric banding control patients,
without significant differences in weight [98]. However, it is
important to note that while not statistically significant, the
omentectomy group lost more weight and had significantly
lower BMI, potentially confounding these data. Metabolic
improvement from omental removal has also been observed
in lean dogs where omentectomy resulted in enhanced glu-
cose uptake when compared to sham-operated dogs
without significant alterations in visceral or total adiposity
[99]. Similarly, metabolic improvements are observed when
visceral fat is removed from mice, but not from the removal
of other AT depots [100]. Conversely, subcutaneous AT is gen-
erally positively associated with metabolic health. Findings
across several studies indicate that subcutaneous AT is nega-
tively correlated with circulating triglycerides, insulin and
glucose in humans [93,101]. This is supported by evidence
in obese rodents showing that transplantation of subcu-
taneous depots from the same mouse or a donor mouse
into the visceral cavity improves metabolic profiles without
altering total fat mass; however, this was not true of visceral
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depot transplants [102,103]. Collectively, these data suggest
that the location of AT may be a stronger predictor of meta-
bolic health than total fat mass is, and that large amounts
of AT in the visceral cavity are detrimental.

One major hypothesis as to why visceral fat has such det-
rimental effects on metabolic health is its proximity to the
portal vein, such that anything released from visceral
depots, including fatty acids and inflammatory molecules,
have direct access to the liver. This idea is referred to as
‘the portal theory’ (see review [104]). In contrast, subcu-
taneous fat depots drain into the vena cava and enter the
systemic circulation. In support of this theory, one study
showed that donor epididymal AT depot transplants into
the mesenteric cavity of recipient mice (i.e. portal drainage)
resulted in significant glucose intolerance, increased IL-6
expression and macrophage infiltration [105]. On the con-
trary, when a depot of equal size from the same donor was
transplanted to the visceral side of the peritoneum of another
littermate (i.e. caval drainage) modest improvements in
glucose tolerance were observed. Interestingly, ablation of
IL-6 prevented glucose disturbances and reduced other
inflammatory markers in the portal-drained group, indicat-
ing that inflammatory mediators released from the visceral
AT may play a significant role in the associated pathology.
Another study in obese rats showed that mesenteric visceral
fat, which drains into the portal vein and most closely
resembles human visceral AT, played a greater role in insulin
resistance when compared to perirenal and epididymal fat
depots (typically considered to be visceral depots in rodents,
although they do not drain portally) [106]. These data further
support AT location as a major driver of metabolic symptoms
associated with AT dysfunction.

Though the data described in support of the portal theory
are sound and rigorous, there is evidence that glucose disposal
rate is negatively associated with the amount of subcutaneous
fat, suggesting that subcutaneous depots can also contribute to
poor glucose metabolism [107,108]. Intrinsic depot-specific
properties, such as inflammatory profiles and lipolytic rates
are difficult to separate from the potential impacts of anatom-
ical position (such as portal versus caval drainage), and more
research in this area is warranted to determine the relative con-
tributions of these factors to metabolic health. Also, the
characteristics of AT that are primarily responsible for improve-
ments in metabolic health are still largely unknown. Hopefully,
future research and methods will identify more specific drivers
of metabolic health and disease. Nonetheless, we can conclude
that both the metabolic profile and the location of fat tissue can
substantially contribute to metabolic disease.

Finally, in instances where there is insufficient AT mass or
elevated AT lipolysis (discussed in further detail below),
lipids can be stored ectopically across several tissues resulting
in metabolic dysfunction. This phenomenon is commonly
observed in lipoatrophy, a condition in which there is very
little AT present, thereby preventing proper lipid storage.
As a consequence, individuals with lipoatrophy have elev-
ated circulating lipids, as well as ectopic fat storage in the
liver and muscle [109,110], conditions that are commonly
associated with impaired glucose homeostasis [111,112].
Indeed, ectopic lipid accumulation in cardiac and skeletal
muscle can result in tissue-specific and systemic insulin resist-
ance [113–117]. As a whole, these findings underscore the
importance of proper lipid storage within the AT and away
from internal organs or skeletal muscles.
5. Adipose tissue lipolysis and insulin
resistance

Insulin resistance and the progression to type 2 diabetes are
among the most common metabolic syndrome co-morbidities
associated with obesity [83,118]. AT contributions to systemic
insulin resistance have been previously addressed and are
discussed throughout this review, but insulin resistance
within the AT should also be considered when evaluating
the role of AT in metabolic diseases. Although skeletal
muscle is responsible for the majority of insulin-stimulated
glucose uptake [119], proper insulin signalling in AT is also
important for systemic regulation of blood glucose as
revealed by a variety of different mouse models. For example,
adipocyte-specific ablation of GLUT4, the primary glucose
transporter responsible for insulin-stimulated glucose
uptake in AT and muscle, impairs insulin signalling in liver
and muscle, and induces systemic insulin resistance and glu-
cose intolerance in mice [120]. Likewise, adipocyte-specific
insulin receptor knockouts have similar basal glucose
uptake, but significantly reduced insulin-stimulated glucose
uptake in adipocytes when compared to controls [121]. Nota-
bly, these mice have improvements in systemic glucose
tolerance and this discrepancy may be a result of an upregu-
lation in other signalling pathways to combat the loss of
adipocyte insulin signalling from congenital gene ablation.
For instance, one study investigated the effects of insulin
receptor (IR) and insulin-like growth factor 1 receptor (IGF-
1R) on outcomes of metabolic disease in chow-fed mice by
generating adipocyte-specific inducible knockout (KO)
models of one (IRKO or IGF-1RKO) or both of these recep-
tors (double KO; DKO [122]). Despite all KO groups having
similar or reduced fat mass when compared to controls
(depot dependent), the IRKO and DKO mice displayed sys-
temic insulin resistance and hepatic steatosis when
compared to the control and IGF-1RKO groups, with the
combined deletion of these receptors resulting in the greatest
disturbances in glucose handling. These findings suggest
that a compensatory mechanism may be activated in other
insulin responsive tissues, potentially including non-insulin
dependent signalling pathways, to combat systemic glucose
intolerance when there are defects in insulin receptor signal-
ling in the AT from birth. Nevertheless, these data indicate
that proper insulin signalling within the AT is key for
systemic health.

One way in which AT insulin sensitivity impacts systemic
health is through regulation of AT lipolysis (the breakdown of
triglycerides into free fatty acids and glycerol). Lipolysis is
induced by adrenergic stimulation to mobilize energy stores
in conditions such as fasting, exercise and stress. In the fed
state, insulin inhibits lipolysis and promotes lipid storage.
Disruption of insulin signalling in AT, therefore, can result
in elevated basal lipolysis (reviewed in [123]). The chronic
low-grade inflammation associated with obesity also contrib-
utes to excessive release of lipids by adipocytes, as the
inflammatory cytokine TNFα can also induce lipolysis in a
manner independent of insulin signalling (reviewed in [124]
and [57]). Indeed, obesity and insulin resistance are known
to be associated with high basal lipolysis rates (figure 1).
The resulting increase in circulating fatty acid levels promotes
further metabolic dysfunction through ectopic lipid accumu-
lation, particularly in liver and muscle [123]. The vicious
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cycle of insulin resistance and elevated basal lipolysis in adi-
pocytes is represented in figure 2. Type 2 diabetes and
hepatic lipid accumulation are often observed in conditions
associated with elevated basal lipolysis, including Cushing’s
syndrome [125,126], as well as in conditions of lipoatrophy
where there is an excess of circulating lipids [111]. Although
AT may not be directly responsible for the majority of whole-
body glucose uptake, it is clear that impaired glucose uptake
and lipid storage in AT affect other insulin-responsive organs
and thus modulate overall systemic health.
6. Endocrine functions within adipose
tissue

In addition to being highly insulin-responsive, AT also
secretes several molecules involved in glucose regulation
and metabolic health (figure 1). These molecules, collectively
known as adipokines, can be anti- or proinflammatory. Adi-
pokines can act as endocrine regulators, released into the
circulation and affecting several other tissues and organs,
but can also regulate local signalling in a paracrine or auto-
crine manner. Several adipokines have now been
discovered (reviewed in [127,128] [129]), but we will focus
here on the three adipokines that are produced in mouse adi-
pocytes: leptin, resistin and adiponectin. In 1994, leptin was
the first adipocyte-derived endocrine hormone to be discov-
ered. Leptin is released from adipocytes proportionally to
AT mass and is acutely regulated by fasting [130–132]. In a
normal physiological setting, high levels of leptin signal to
the brain to cease food intake and, therefore, is known as
an anorexigenic hormone [133–136]. An absence of leptin sig-
nalling due to genetic mutations in leptin or the leptin
receptor leads to severe obesity from hyperphagia in both
mice and humans [137], and restoration of signalling will
reverse these effects [138,139]. Leptin’s anorectic effects, and
its ability to rescue obesity in deficient states initially fuelled
enthusiasm that leptin would effectively combat obesity.
However, leptin is positively correlated with adiposity in
humans [140,141], and leptin resistance is a common occur-
rence in obese states [141,142]. Therefore, leptin treatment
in individuals with obesity who exhibit adequate or even
elevated leptin levels has not been as beneficial as once
hoped. On the contrary, recent findings from two mouse
models of reduced leptin expression exposed to high-fat
diet suggest that lower levels of leptin during the progression
of obesity are protective against weight gain as well as the
associated metabolic dysfunction [143]. In fact, a recent
review features several studies that support the notion that
a reduction in leptin signalling in the context of obesity is
associated with weight loss and metabolic improvements
[144]. Moreover, leptin has been recognized as a proinflam-
matory adipokine, so not only is it not beneficial in
enhancing weight loss in the general population, it can actu-
ally be detrimental to metabolic health when chronically
elevated [145]. Collectively these data suggest that low, but
sufficient leptin may be beneficial for maintaining metabolic
health. Leptin has also been shown to regulate endogenous
cortisol production, thereby indirectly modifying glucose
homeostasis [146]. These data highlight the importance of
leptin production and signalling in the regulation of food
intake and body weight.

Resistin is a proinflammatory adipokine, so named for its
ability to promote insulin resistance. It was discovered in
2001 in an effort to identify genes suppressed by the
PPARγ agonist and antidiabetic drug, rosiglitazone [147].
Interestingly, this endocrine hormone was also identified by
another laboratory as an inhibitor of adipogenesis, and
named ‘adipocyte-specific secretory factor (ADSF)’. Not sur-
prisingly, given its relationship with insulin resistance,
resistin is elevated in obesity in mouse and man [147,148].
Loss of resistin through gene ablation or inactivation
improves glucose metabolism in obese mouse models
[149,150]. Evidence indicates that resistin enhances the
protein levels and activity of SOCS3, which is required for
resistin’s ability to reduce insulin signalling in adipocytes
[151]. Though most of the data surrounding resistin are nega-
tive in terms of how it affects metabolic health, there is also
evidence that resistin is important in the regulation of fasting
blood glucose [152]. Therefore, it is likely that resistin is
necessary for glycaemic control, further illustrating the impor-
tance of adipocyte endocrine function in sustaining metabolic
health. It bearsmention thatwhile resistin is primarily secreted
from adipocytes in rodents, macrophages are the predominant
source of resistin in humans. Nevertheless, resistin’s function
remains the same across species [153,154].

Adiponectin, an endocrine hormone released by adipo-
cytes, is known to have anti-inflammatory effects and can
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enhance insulin sensitivity in several tissues, most notably
the skeletal muscle and liver. Adiponectin acts via two G
protein-coupled receptors called Adipor1 and Adipor2 and
highly expressed in muscle, liver and heart [155,156]. In con-
trast to leptin, adiponectin circulating levels are lower in
obesity and type 2 diabetes [157]. Adiponectin exerts its
anti-diabetic effects mainly through suppression of hepatic
glucose production [158–160], but also enhances glucose
uptake in skeletal muscle in vitro [161,162]. Administration
of adiponectin significantly lowers blood glucose in diabetic
mice without affecting insulin levels [158], and has not been
shown to induce hypoglycaemia, an added benefit in the
treatment of diabetes. Adiponectin can also act in an auto-
crine manner, as underscored by the fact that it was first
discovered in an effort to identify genes involved in adipo-
genesis [163]. It has now been shown that adiponectin can
increase insulin-independent and insulin-stimulated glucose
uptake within primary rat adipocytes [164] and regulate
lipid accumulation and glucose uptake within the adipocyte
[165]. Adiponectin signalling is also important in cardiac
muscle, as low hormone levels are associated with coronary
artery disease [166]. Furthermore, adiponectin is reported to
enhance multiple signalling events including antioxidant,
vasodilation and anti-inflammatory activities thought to pro-
mote cardiomyocyte health [167,168]. However, it should be
noted that there is some controversy regarding adiponectin
and cardiac health, as high adiponectin levels have been
linked to cardiac dysfunction [169]. Although still not widely
recognized, AT is a bona fide endocrine organ, releasing hor-
mones and participating in interorgan communication to
regulate glucose homeostasis and systemic health.
7. Emerging approaches to combat adipose
tissue-derived metabolic dysfunction

The studies described in this review highlight the substantial
complexities associated with AT in health and disease. As
described, alterations in any adipocyte function can be detri-
mental to overall health. However, as our knowledge of
adipocyte biology has expanded, a variety of interventions
have emerged as potentially viable therapeutic strategies to
ameliorate these metabolic disturbances. Listed below are a
few strategies that have recently been investigated to
combat adipocyte-mediated contributions to systemic
metabolic disease states.

7.1. Exercise
Exercise is known to be extremely beneficial for health, and it
has been shown to improve glucose homeostasis [170,171];
however, AT-specific effects of exercise have not been studied
until recently. There is now evidence that exercise may drive
improvements in inflammatory profiles and insulin signalling
in AT. Specifically, in a rat model of HFD-induced obesity,
aerobic-interval exercise training significantly improved
macrophage and inflammatory profiles, as well as capillary
density in AT when compared with controls [172]. Moreover,
transplantation of WAT from exercise-trained mice into
sedentary mice significantly improved systemic glucose toler-
ance and insulin sensitivity in chow-fed and HFD-fed
animals when compared to sham controls or transplantation
of sedentary tissue from donor mice given the same diet [53].
Lastly, exercise-trained mice displayed significant elevations in
the expression of genes involved in browning in their WAT
[173], potentially enhancing energy expenditure and improv-
ing overall metabolism. These data suggest that exercise has
direct effects on adipocytes that could mitigate the AT
dysfunction associated with systemic metabolic perturbations.

7.2. microRNAs
microRNAs (miRNAs) are small non-coding RNAs that gen-
erally function as inhibitors of genes by binding to their
target mRNA transcripts, thereby preventing gene translation
and protein expression. These molecules were discovered in
1990, but AT has only recently been identified as a major
source of circulating miRNAs [174]. The importance of
miRNA expression and activity within the AT is a fairly
new topic and still being explored; however, recent evidence
indicates that they are crucial for maintenance of adipocyte
function. An adipocyte-specific gene knockout of dicer (the
enzyme involved in processing miRNAs) results in signifi-
cant reductions in all WAT depots and severe insulin
resistance [175]. Interestingly, with evidence that circulating
miRNAs are altered in individuals with obesity and type 2
diabetes, miRNAs are now being considered as potential bio-
markers of metabolic health in humans, and are being
investigated as potential therapeutics in the treatment of
metabolic disease (reviewed here [176]), clearly illustrating
miRNAs as promising targets in the regulation of metabolic
syndrome.

7.3. Exosomes
Exosomes are a particular type of extracellular vesicles that
can transport a wide range of materials, including proteins,
lipids, metabolites and different species of RNA. In recent
years, exosomes have been identified as mediators of disease
pathology and as potential therapeutics (reviewed in [177]).
Adipose-derived exosomes are currently the subject of
intense study, as they are now known to have a critical role
in interorgan communication, and to modulate whole-body
metabolism (reviewed in [178]). Recent evidence suggests
that AT exosomes are significant transporters of circulating
miRNAs [174]. A study in diet-induced obese mice showed
that intraperitoneal injections of exosomes from isolated adi-
pose-derived stem cells originating from the epididymal WAT
of lean mice promoted a shift in macrophage polarization
from M1 to M2 and resulted in significant reductions in
markers of inflammation within the circulation [179].
Additionally, the administration of exosomes resulted in
significant improvements in glucose tolerance, as well as sig-
nificant reductions in hepatic lipid accumulation. Exosomes
are also implicated in paracrine signalling within the AT, pro-
viding transport from different cell types and allowing for
intra-organ communication. One group reported the surpris-
ing finding that caveolin-1 (Cav-1) protein was detected in
adipocytes where the Cav1 gene had been successfully
deleted [180]. It was determined that Cav-1 was being trans-
ported via exosome from nearby endothelial cells and taken
up by the adipocytes. Furthermore, data from this paper
also suggest that exosome production in response to stimuli
such as the fasting/feeding transition is blunted in obesity.
These studies support the use of exosomes as a treatment
for metabolic disease. In fact, exosomes are currently being
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investigated for their ability to package and deliver
microRNAs as therapeutics [176].
oyalsocietypublishing.org/journal/rsob
Ope
8. Concluding remarks
Novel methodologies and technical advances continue to
drive the elucidation of complex mechanisms involved in
the contributions of AT to health and disease. We have sum-
marized the principal features of AT function and
dysfunction in figure 1. In addition to the many unresolved
questions we have discussed in this review, it should be
noted that mechanistic data from animal models are largely
derived from studies on male rodents, and that sex differ-
ences in metabolism and AT function are known to exist in
rodents as well as humans [181,182]. Therefore, special
emphasis should be placed on the study of sex differences
in the context of AT in health and disease in the future. In
conclusion, while much remains to be learned about how
AT contributes to metabolic disease, there is no question
that AT is central to systemic health and that disruption of
any of its functions can have substantial impacts.
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