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Purpose. Next-generation sequencing (NGS) has become more accessible, leading to an increasing number of genetic studies of
familial bradycardia being reported. However, most of the variants lack full evaluation. The relationship between genetic factors
and bradycardia should be summarized and reevaluated. Methods. We summarized genetic studies published in the PubMed
database from 2008/1/1 to 2019/9/1 and used the ACMG/AMP classification framework to analyze related sequence variants.
Results. We identified 88 articles, 99 sequence variants, and 34 genes after searching the PubMed database and classified
ABCCY, ACTN2, CACNAIC, DES, HCN4, KCNQI1, KCNH2, LMNA, MECP2, LAMP2, NPPA, SCN5A, and TRPM4 as high-
priority genes causing familial bradycardia. Most mutated genes have been reported as having multiple clinical manifestations.
Conclusions. For patients with familial CCD, 13 high-priority genes are recommended for evaluation. For genetic studies,

variants should be carefully evaluated using the ACMG/AMP variant classification framework before publication.

1. Introduction

One of the inherited bradycardias that is currently being
reported is inherited progressive cardiac conduction disease
(IPCCD). Progressive cardiac conduction disease (PCCD) is
an unidentified, heterogeneous, life-threatening disease that
manifests as progressing fibrosis of the cardiac conduction
system [1]. It is characterized by a decreased conduction rate,
prolonged PR interval, and widened QRS wave, and it ulti-
mately leads to complete atrioventricular block, syncope,
and even sudden cardiac death [1]. Initially, patients present
with only a widened QRS wave without a bundle branch
block, and later, they develop complete atrioventricular
block. Abnormalities in the conduction system may be
related to changes in cardiac structure and function [2]. It
is currently believed that the etiology of PCCD may be
related to genetic factors, valvular disease, cardiomyopathy,
and autoimmune disease [3]. PCCD caused by genetic factors

was originally called progressive familial heart block (PFHB)
[3], and some studies directly used PCCD or IPCCD to refer
to progressive conduction system diseases related to genetic
factors. It is believed that PCCD is caused by the SCN5A
mutation [4], and it may also be correlated with TRPM4
[5], DSP [6], and others. Genetic studies about other kinds
of familial bradycardia have been published over the past
decade, such as sick sinus syndrome and heart block. How-
ever, those studies have still not been summarized, and the
clinical significance of the related variants is still unknown.
In 1977, Sanger et al. developed Sanger’s “chain-
termination” or dideoxy technique for nucleic acid sequence
testing [7]. The improvement of Sanger sequencing makes
DNA sequence testing for complex species available [8]. In
the course of the development of next-generation sequencing
(NGS), genetic testing becomes quicker, cheaper, and easier
[9]. For patients who suffer from inherited cardiac disease,
NGS has become a potential choice for the diagnosis,
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prevention, and treatment of certain diseases [9]. The rela-
tionships between inherited ion channel disease, such as long
QT syndrome (LQTs) [10] and Brugada syndrome (BrS)
[11], inherited cardiomyopathy, such as dilated cardiomyop-
athy (DCM) [12], hypertrophic cardiomyopathy (HCM)
[13], and arrhythmogenic right ventricular cardiomyo-
pathy/dysplasia (ARVC/D) [14], and variant sequencing
have been well studied. However, the role of genetic sequence
variants in bradycardia is still under debate.

Evaluation of sequence variants is a complex process. The
integrity of both the genome and the protein being translated
should be studied. In 2015, the American College of Medical
Genetics and Genomics (ACMG) and the Association for
Molecular Pathology (AMP) recommended an interpretative
category of sequence variants and an algorithm for interpreta-
tion [15]. The ACMG/AMP classification framework is
prominent in the evaluation of the Mendelian system. By eval-
uating the allele frequency, segregation, de novo, and protein
expression, functional studies and other factors, sequencing
variants can be scored as pathogenic or benign. The two
parallel scoring systems divided mutations into 7 categories
(Table 1). Sequence variants were then classified into a five-
tier system: “pathogenic,” “likely pathogenic,” “uncertain
significant,” “likely benign,” and “benign” (Table 2). By using
this method, evaluated genomic variants can be quantified.
With the development of evaluation methods for sequence
variants, a growing number of databases have been developed.
InterVar [16] is a tool implementing ACMG/AMP criteria
that can automatically analyze sequence variants. LitVar
[17] links genomic variants in PubMed and PMC, making
functional studies achievable. With those databases, sequence
variants can be evaluated properly.

At present, most of the related mutant genes reported in
the literature are not analyzed according to the ACMG guide-
lines. In this article, we summarized and reevaluated pedigree
studies of bradycardia published in PubMed from 2008/1/1
to 2019/9/1 using the ACMG/AMP variant classification
framework.

2. Materials and Methods

2.1. Database Search. We searched the PubMed database by
using the term “heart block” or “sick sinus syndrome”
associated with “pedigree” and “2008/1/1’[PDAT]:
2019/9/1’[PDAT]” [We used the term of
(CCCCCccecceecccccccc(((Heart Block) OR Block, Heart) OR
Blocks, Heart) OR Heart Blocks) OR Auriculo-Ventricular
Dissociation) OR Auriculo Ventricular Dissociation) OR
Auriculo-Ventricular Dissociations) OR Dissociation, Auri-
culo-Ventricular) OR Dissociations, Auriculo-Ventricular)
OR Atrioventricular Dissociation) OR Atrioventricular
Dissociations) OR Dissociation, Atrioventricular) OR Disso-
ciations, Atrioventricular) OR A-V Dissociation) OR A V
Dissociation) OR A-V Dissociations) OR Dissociation, A-
V) OR Dissociations, A-V)) OR ((((((((((Hereditary bundle
branch system defect) OR Heart block, progressive familial,
type 1) OR Cardiac conduction defect, progressive) OR
Lenegre Lev disease) OR Lenegre-Lev Disease) OR Pthbla)
OR Heart Block, Progressive Familial, Type I) OR Pthbla)

OR Pthbi) OR Heart block progressive, familial)) OR ((((Pro-
gressive Familial Heart Block, Type II) OR Progressive
Familial Heart Block, Type Ia) OR PFHBII) OR PFHB2))
OR (((Progressive Familial Heart Block, Type Ib) OR
PFHBI1B) OR PFHBIB))) AND (((((((Gene) OR Cistron)
OR Cistrons) OR Genetic Materials) OR Genetic Mate-
rial) OR Material, Genetic) OR Materials, Genetic))
AND (“2008/01/01”[Date - Publication]: “3000”[Date -
Publication])].

2.2. Study Selection. The aim of this study was to evaluate
genetic studies of bradycardia, in addition to the inclusion
criteria and exclusion criteria, as follows:

Inclusion criterion:

(i) Article published in English or have an abstract
written in English

(ii) Pedigree studies with at least one family member
with bradycardia (include both sick sinus syndrome
and atrioventricular block)

Exclusion criteria:

(i) Functional studies that demonstrate the main func-
tion of the sequence variants that are not focused
on bradycardia

(ii) Studies that have not demonstrated the specific
mutation sites

2.3. Sequence Variants Analyze

2.3.1. Organization of Relevant Sequence Variants. After a
thorough evaluation of the related articles by two researchers,
we gathered basic information about relevant sequence
variants. The information included the chromosome position
of the sequence variant (version: GRCh38), genomic
sequence, protein sequence, dbSNP, gene, clinical manifesta-
tions, and so on.

2.3.2. Clarification of Sequence Variants. The variants were
named after different versions of genomics, so we used
The National Center for Biotechnology Information’s
ClinVar database (https://www.ncbinlm.nih.gov/clinvar/),
Online Mendelian Inheritance in Man (OMIM, https://
www.omim.org), and The Human Gene Mutation Database
(HGMD, http://www.hgmd.cf.ac.uk/ac/index.php) to com-
plete detailed information on each variant.

2.3.3. Use of the ACMG/AMP Classification Framework to
Evaluate. According to the ACMG/AMP classification
framework, we used InterVar (http://wintervar.wglab.org)
(version: hg38) to evaluate sequence variants directly.
With those variants that could not be defined in InterVar,
we used The Genome Aggregation Database (gnomAD,
https://console.cloud.google.com/storage/browser/gnomad-
public/release/2.0.2/) to evaluate the allele frequency and Lit-
Var (https://www.ncbinlm.nih.gov/CBBresearch/Lu/Demo/
LitVar/) to evaluate whether there were relevant functional
studies. Under 0.001 were defined as gnomAD. Based on
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TABLE 2: Sequence variant classification.

1PVS1+21 (PS1-PS4)
1PVS1+22 (PM1-PM6)
1PVS1 + 1 (PS1-PS4) + 1 (PM1-PM6)
1 PVS1+22 (PP1-PP5)
>2 (PS1-PS4)
1 (PS1-PS4)+>3 (PM1-PM6)

1 (PS1-PS4) + 2 (PM1-PM6)+>2 (PP1-PP5)
1 (PS1-PS4) + 1 (PM1-PM6)+>4 (PP1-PP5)

Pathogenic

1PVS1 + 1 (PM1-PM6)

1 (PS1-PS4) + 1-2 (PM1-PM6)
1 (PS1-PS4)+>2 (PP1-PP5)
>3 (PP1-PP5)

2 (PM1-PM6)+>2 (PP1-PP5)
1 (PM1-PM6)+>4 (PP1-PP5)

Likely pathogenic

1 BA1

Ben
crign >2 (BSI-BS4)

1 (BS1-BS4) + 1 (BP1-BP7)

Likely benign
>2 (BP1-BP7)

. Other criteria shown above have not met OR
Uncertain

significant Criterion for benign and pathogenic is

contradictory

OR: odds ratio.

information gathered in the databases and the ACMG/AMP
classification framework (Tables 1 and 2), we evaluated
related sequence variants and proposed a clinical judgement.

3. Results and Discussion

We summarized genetic studies published in the PubMed
database over 11 years (Figure 1). A total 1015 articles were
enrolled after searching the database. 927 articles were
excluded. Finally, 88 articles fit the profile; 99 variants and
34 genes were studied in the current article.

Information in InterVar was gathered to evaluate all the
sequence variants, and the relevant evidence for pathogenic
and benign criteria was summarized (Table 3). For mutation
cannot be defined in InterVar, we used gnomAD and Clin-
Var to analyze frameshift mutations (Table 4) and large frag-
ment deletions (Table 5). We also gathered information
about splicing mutations (Table 6).

We studied 88 articles, including 99 variants and 34
genes, after searching the PubMed database and identified
13 high-priority genes causing familial bradycardia, as
follows: ABCC9 [18], ACTN2 [19], CACNAIC [20, 21],
DES [22-27], HCN4 [28-32], KCNQI1 [33, 34], KCNH2
[35], LMNA [36, 37], MECP2 [38], LAMP2 [39], NPPA
[40], SCN5A [41-45], and TRPM4 [5, 46-48] (Table 3).

We use InterVar to reevaluate APOB, CLCA2 DSG2,
GJC1, GLA, GNB2, JPH2, KCNJ3, LDB3, MYBPC3, NKX2-

International Journal of Genomics

1015 articles were enrolled|

—| 927 articles were excluded

88 articles fit the profile
99 sequence variants mentioned

FIGURE 1: Summary of specification.

5, NXF5, PDYN, PRKAG2, and TTN, which have been pub-
lished as pathogenic variants. According to the ACMG/AMP
variant classification framework, those genes should be clas-
sified into uncertain significance.

For the majority of related genes, the clinical manifesta-
tions were not unique. These mutations may lead to brady-
cardia, arrhythmia, myopathy, and nerve system disease.
LMNA mutations may present as AVB and arrhythmia;
DES, GJA5, TTN, LAMP2, and MECP2 mutations may pres-
ent as AVB and myopathy; GNB5 mutation may present as
CCD and nerve system disease; HCN4, KCNQ1, PRKAG2,
and SCN5A mutations may present as CCD, myopathy,
and arrhythmia.

Genetic diagnosis has become an inalienable part of the
diagnosis, treatment, and prevention of SCD. Cardiac ion
channel disease, closely related to sudden cardiac death
(SCD), has been discussed for decades. In contrast, the rela-
tionship between bradycardia and genetic factors is still
unclear. Syncope and SCD caused by bradycardia are life-
threatening diseases. If the relationship between genetic fac-
tors and bradycardia is eliminated, SCD could be prevented.

Pedigrees of bradycardia families have been reported for
decades. However, those studies are lacking. Some of the stud-
ies do not include full information about related sequence var-
iants, and some of the studies do not list the whole family tree.
In addition, the methods used to evaluate sequence variants
are complex, and different centers have their own experience.
It is still doubtful whether those variants are pathogenic.
Therefore, ACMG/AMP promotes a guideline for thorough
evaluation. By analyzing the allele frequency, segregation, de
novo, protein expression, functional studies, and other
factors, sequencing variants can be scored into a five-tier sys-
tem: pathogenic, likely pathogenic, uncertain significant,
likely benign, and benign. As accurate as the guideline may
be, pathogenicity has been defined as being greater than 90%
of pathogenicity [15]. According to the precise classification
of pathogenicity, pedigrees of familial bradycardia can be ree-
valuated. InterVar [16] is a tool implementing ACMG/AMP
criteria that can automatically analyze sequence variants. In
this article, we used InterVar to summarize 13 high-priority
genes, as follows: ABCCY9, ACTN2, CACNAIC, DES,
HCN4, KCNQI, KCNH2, LMNA, MECP2, LAMP2, NPPA,
SCN5A, and TRPM4 (Table 3). High-throughput sequencing
(next-generation sequencing) is quite expensive. In contrast,
the gene panel is cheaper and easier to analyze. We recom-
mend that patients with a family history of bradycardia have
their clinical manifestations gathered and that related patho-
genic genes be highly regarded.

For future reference, multicenter studies on the epidemi-
ology of familial bradycardia should be organized. In
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TaBLE 5: Using InterVal to analysis large fragment deletion.

Genome AD  Chr dbSNP  Gene Variant Functional study
- o o DES Deletion-insertion mutation (c.10.45-10.63 del/G‘ ins), @eleting 7 amino acids .
(Met349-Arg355) and inserting 1 amino acid (Gly349)
TABLE 6: Analyzing splicing mutation.
Genome AD Chr dbSNP Gene Varjant Functional study
— — . HCN4 c.1737+1G>T —
— Chr:1:156130615 — LMNA c.357-2A>G —
— — — LMNA ¢.357-1G>T —
— — — LMNA IVS9-3C>G —
G =0.00001 Chr3:38562413 rs397514447 SCN5A €.3963+2T>C —
— — — SCN5A c.1141-2A>G —
— — — SCN5A c.-225-820T>C —
— — — TGF beta 1 c4246-2A>G —
— — — MYH6 €.2292+2T>C —

addition, detailed information about sequence variants
should be addressed in related articles and should be evalu-
ated under the ACMG/AMP classification framework. The
relationship between bradycardia and genomic variants
remains unknown, and epigenetics and modifier genes
should be used to investigate the relationship between genes
and diseases.

4. Limitation

We summarized sequence variants published in only the
PubMed database. There should be more pathogenic genes
studied related to bradycardia.

5. Conclusion and Future Direction

Only 13 pathogenic genes (99 sequence variants and 34 genes
being studied) were identified after using the ACMG/AMP
variant classification framework to reevaluate. For future ref-
erence, pedigree studies should be fully evaluated before
being published.

For patients with familial CCD, 13 high-priority genes
are recommended for evaluation. Compared to whole
genome sequencing, this will increase the clinical utility of
genetic testing.
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