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A growing body of experimental evidence suggests that sirtuins (SIRTs) are associated with tumorigenesis in differentiated thyroid
cancer (DTC). Nevertheless, the involvement of SIRTs in the pathogenesis of DTC and their clinical value remain ill-defined and
should be thoroughly examined. We explored the transcription of SIRTs and survival data of patients with DTC by the systematic
utilization of bioinformatics to analyze data of publicly accessible databases including Oncomine, cBioPortal, Kaplan-Meier
Plotter, Gene Expression Profiling Interactive Analysis (GEPIA), Protein Atlas, LinkedOmics, and GSCALite. The examination
of gene expression profiles showed that SIRT2, SIRT3, SIRT4, SIRT5, and SIRT6 were downregulated in DTC tissues compared
with the normal thyroid tissues. The decreased expression levels of SIRT2, SIRT4, and SIRT5 were correlated with advanced
tumor stages. The survival results showed that the increased SIRT4 mRNA expression level was associated with improved
overall survival (OS) in the DTC patients. In addition, patients with DTC with high SIRT2, SIRT3, SIRT4, and SIRT5 mRNA
levels had higher disease-free survival (DFS). These results showed that SIRT2, SIRT3, SIRT4, SIRT5, and SIRT6 are potential
targets for precise treatment of DTC patients and that SIRT2, SIRT3, SIRT4, and SIRT5 are novel potential biomarkers for the
prognosis of DTC.

1. Introduction

Thyroid cancer is classified among the most widespread
malignant tumors that occur in the endocrine system. The
global incidence of thyroid cancer, especially differentiated
thyroid cancer (DTC), has been steadily amplified in recent
years. DTC is the major type of thyroid cancer and encom-
passes papillary thyroid cancer (PTC) and follicular thyroid
cancer (FTC) [1]. PTC accounts for about 80% of thyroid
cancer, while FTC accounts for about 15% within the total
of 95% DTC patients [2]. Currently, the main treatments
for DTC include surgery, postoperative assisted ablation,
thyroid stimulating hormone (TSH) inhibition therapy,
and targeted molecular therapy [3]. Targeted molecular
therapy has become a new approach for the treatment of
advanced thyroid cancer [4, 5]. Studies have shown that
RET, RAS, BRAF, and VEGF are closely related to the path-
ogenesis of thyroid cancer, which lay a foundation for tar-
geted molecular therapy [6–8]. About 70% of PTC is

caused by BRAF mutations, RAS mutations and RET/PTC
gene rearrangements [9]. In FTC, RAS point mutations,
and PPARγ/PAX8 gene rearrangements produce the PPFP
fusion gene, the most common oncogene alteration, and
PTEN deletion/mutation; PIK3CA mutation and IDH1
mutation are also responsible for FTC [10–13]. Small mole-
cule inhibitors targeting these signaling kinases have become
a hot spot for targeted therapies. Due to the heterogeneity of
tumors, the use of biomarkers for predicting targeted thera-
pies has some limitations. Therefore, new biomarkers are
needed in this field to effectively enhance prognosis and
individualized treatment.

Sirtuins (SIRTs) are deacetylases that are highly con-
served from bacteria to humans. To date, there are seven
recognized members of the human SIRT family which are
numbered in order of their discovery into SIRT1-7. X-ray
crystal diffraction revealed that multiple members of the
SIRT family contain one small domain made of approxi-
mately 270 amino acids and a large domain [14]. The large
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domain is mainly constituted of the Rossmann folds while
the small domain encompasses a zinc finger structure [15].
The SIRT family has a deacetylase activity and ADP-
nuclease transferase activity, and the deacetylation mediated
by SIRTs is characterized by the transfer of the acetyl group
to the ADP-ribosyl of NAD [16]. SIRTs mediate both cata-
lytic activities of deacetylation and NAD cleavage. The
ADP-ribosyltransferase activity of SIRTs is the transfer of
ADP-ribose from NAD to acetylated proteins [16]. SIRTs
are of great importance in clinical medicine and basic
research. SIRTs are significantly dysregulated in many
malignancies challenging human health, in particular colo-
rectal cancer, prostate cancer, ovarian cancer, lung cancer,
breast cancer, and thyroid cancer [16–19]. The interactions
between mammalian SIRTs and FOXO/PGC-1α, Ku70, NF-
κB, p53, and other proteins modulate cellular metabolism,
cellular stress response, aging, and apoptosis [20, 21]. SIRTs
are thought to have complex and unique features in human
DTC [10, 11]. SIRT1 was shown to participate in the regula-
tion of p21 and Bax-related molecular events via the SIRT1-
Foxp3 pathway in PTC cells [22]. Other research groups
have found that by inhibiting ERK and Mcl-1, SIRT6 silenc-
ing can downregulate the invasiveness of PTC cells in vitro.
Compared with normal thyroid cancer cells, the expression of
SIRT7was significantly increased in DTC, and the overexpres-
sion of SIRT7 and SIRT1 conferred resistance to DTC cells [23,
24]. In addition, some researchers have found that the SIRT
family plays a pivotal role by downregulating the expression
pattern of the tumor-suppressor gene ARHI in thyroid cancer
cells [25]. But so far, which SIRT family is activated or inhib-
ited and the unique function of SIRTs in thyroid cancer
remain to be absolutely deciphered [16]. Dysregulation of
the SIRTs and its relationship with clinical and pathological
traits and the predictive value have been conveyed in human
thyroid cancer. With the advent of microarray and next-
generation sequencing technology, revolutionary advances
have become an important part of biological and biomedical
research [26, 27] and have allowed datamining using bioinfor-
matical approaches. Nevertheless, to the best of our knowl-
edge, bioinformatical approaches have not been used to
figure out the link between the SIRTs and DTC [28].

Herein, based on publicly available databases, we ana-
lyzed in detail different SIRTs in patients with DTC to exam-
ine their expression changes, probable function, and
prognostic value of SIRT family in DTC.

2. Materials and Methods

2.1. Patients. This study was performed based on bioinfor-
matics analysis of The Cancer Genome Atlas (TCGA) data
stored in different databases, namely Oncomine, cBioPortal,
Kaplan-Meier Plotter, The Gene Expression Profiling Inter-
active Analysis (GEPIA), Protein Atlas, LinkedOmics, and
GSCALite. No particular approval was needed, and the study
followed TCGA policies.

2.2. Oncomine. Oncomine is a database containing microar-
ray expression data for cancers and integrated data-mining
platform (http://www.oncomine.org/). Oncomine was

employed for analyzing and visualizing the expression levels
of genes in the SIRT family members in diverse cancers follow-
ing the online instructions. The mRNA levels of SIRTs in nor-
mal and cancer tissues were compared, and Student’s t test was
used for assessing the difference between both groups. The sig-
nificant differences were declared at p < 0:05.

2.3. GEPIA. GEPIA is an interactive online platform for
mining the RNA sequencing data from the Genotype-
Tissue Expression (GTEx) and TCGA projects (http://gepia
.cancer-pku.cn/). GEPIA was used for analyzing the expres-
sion profiles of SIRTs in DTC and its pathological stages fol-
lowing the default settings online. GEPIA was also used for
survival analysis based on the SIRTs.

2.4. The Kaplan-Meier Plotter. The Kaplan-Meier Plotter
(http://www.kmplot.com/) was used to analyze the OS and
DFS of patients with DTC. The samples were grouped into
high expression and low expression groups relatively to the
median expression. The Kaplan-Meier Plotter was used for
generating the survival plot containing the log rank p value
and the hazard ratio (HR) with 95% confidence intervals
(CIs).

2.5. cBioPortal. TCGA database contains genomic and clini-
cal data on more than 30 cancer types. Samples from TCGA-
THCA dataset were chosen and used for the analysis of
SIRTs using cBioPortal (http://www.cbioportal.org). Genetic
variations were analyzed by selecting copy number alter-
ations (CNAs) and mutations as selected molecular profiles.

2.6. Human Protein Atlas. Immunostaining images of SIRTs
in human DTC tissues compared to nontumorous thyroid
tissues were obtained from the Protein Atlas database
(https://www.proteinatlas.org).

2.7. LinkedOmics. The LinkedOmics database is a multio-
mics tool for the interpretation of attribute associations
between the existing cancer databases [29]. It was used for
association analysis between the SIRTs and other genes in
the DTC RNA-Seq data. The analysis was performed online
following the instructions displayed on the platform (http://
www.linkedomics.org).

2.8. Functional Enrichment Analysis. GO and KEGG func-
tional enrichment analyses were performed to uncover the
functions prominently associated with the SIRTs and their
coregulated genes using the ClusterProfiler package in the
R software.

3. Results

3.1. Genomic Profiles of SIRTs. The genomic profiles of SIRT
family members in patients with DTC were assessed utilizing
the Oncomine, GEPA, and Human Protein Atlas databases.
The transcriptional expression of SIRTs between various
normal and cancer tissues was explored by data analysis in
the Oncomine database (Figure 1). The results indicated that
SIRTs were diversely expressed in different cancer types.
Here, DTC was classified to head and neck cancer. Six
unique analyses showed significant differences for SIRT1 in
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head and neck cancer, of which two were upregulated and
four were downregulated. Similar results were observed for
SIRT3 and SIRT4. The same expression trends were also
observed in the other cancer types. The expression levels of
SIRT2 in head and neck cancer were upregulated in five
unique analyses and downregulated in one unique analysis.
Similar results were observed for SIRT5, including 7 upregu-
lations and 4 downregulations. Compared with normal tis-
sues, SIRT6 mRNA expression levels in head and neck
cancer were significantly decreased in five unique analyses.
The expression levels of SIRT7 were elevated in the majority
of analyses across all types of cancer. For head and neck can-
cer, however, SIRT7 was upregulated in two unique analyses
and downregulated in two unique analyses.

Next, the GEPIA database was exploited for examining
the expression of the SIRTs in DTC samples in comparison
with the normal tissues at mRNA level. The scatter diagram
and the box plot of the expression levels of SIRTs are
reported in Figures 2(a) and 2(b), respectively. 512 DTC
samples and 337 normal tissues were selected. The results
displayed that the expression levels of SIRT2, SIRT3, SIRT4,
SIRT6, and SIRT7 in DTC tissues were lower than those in
normal tissues (Figures 2(a) and 2(b)). Immunohistochemis-

try (IHC) analysis from the Protein Atlas database was done
to assess the protein expression of SIRT proteins in DTC tis-
sues. There was moderate or weak immunoreactivity of
SIRTs 1, 3, 4, 5, 6, and 7 in DTC tissues while their corre-
sponding immunoreactivity was relatively weaker in normal
tissues (Figure 2(c)). SIRT2 was not detected in both DTC
and normal tissues. We also analyzed the expression of the
SIRT family in different tumor stages in DTC. The decreased
expression of SIRT2, SIRT4, and SIRT5 was significantly
associated with advanced stages of DTC, while the expres-
sion levels of SIRT1, SIRT3, SIRT6, and SIRT7 groups did
not differ significantly between the DTC stages
(Figure 3(a)). Pearson’s correlation was also performed to
evaluate whether there was a relationship between SIRTs in
DTC. The results showed that there were significantly posi-
tive correlations observed between SIRT1 and SIRT2/3/5/7,
SIRT2 and SIRT3/4/5/6/7, SIRT3 and SIRT4/5/6/7, SIRT4
and SIRT5/7, SIRT5 and SIRT7, and SIRT6 and SIRT7
(Figure 3(b), shown in blue). SIRT1 had a negative corre-
lation with SIRT6 (p = 0:028). No significant correlations
were found between SIRT1 and SIRT4, SIRT4 and SIRT6,
or SIRT5 and SIRT6. 32 (2%) of selected patients (1503)
had altered genes, including missense mutation (SIRT4
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Figure 1: The transcription levels of SIRTs in different types of cancers (Oncomine). Red color represents elevated expression, and blue
color represents reduced expression. The depth of the color represents the best gene rank percentile.
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Figure 2: The expression of SIRT family members in DTC using GEPIA. (a) Scatter diagram showing the expression profile of SIRTs in DTC
and normal samples. Red color represents the SIRT expression level in tumor samples, and green color represents the SIRT expression level in
normal samples. (b) Box plot showing the expression of SIRTs in DTC and normal samples. Red color represents the SIRT expression level in
tumor samples, and blue color represents the SIRT expression level in normal samples. (c) Representative IHC images of SIRTs in DTC.
T represents tumor tissues and N represents normal tissues. Positive staining was mainly concentrated at the nucleus.
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Figure 3: Continued.
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and SIRT6), truncating mutation (SIRT2), amplification
(SIRT2, SIRT4, and SIRT7), and deep deletion (SIRT1,
SIRT3, and SIRT6, Figure 3(c)). No alteration was
recorded for SIRT5.

3.2. Prognosis Evaluation of SIRTs in DTC Patients. To
explore the possible involvement of the SIRT family in the
survival outcomes of DTC patients, the Kaplan-Meier Plot-
ter tool was utilized to assess their survival rates by using
the openly accessible DTC datasets. A positive correlation
between the increased SIRT4 mRNA expression level with
improved overall survival (OS) was recorded (Figure 4, p <
0:05). The increased SIRT7 mRNA expression had a trend
toward better OS (p = 0:052). DTC patients with high SIRT2,
SIRT3, SIRT4, and SIRT5 mRNA levels had longer disease-
free survival (DFS) time (Figure 4, p < 0:001).

3.3. Identification of Genes Correlated with SIRTs. With the
aim of identifying the genes that were correlated with the
expression of SIRTs, the Pearson correlation analysis was
performed using the LinkedOmics database. The results
indicated the expression of SIRTs was significantly corre-
lated with a multitude of genes (Figures 5 and 6). We found
that TNKS2, PHF3, MORC3, SMC3, and SPOPL were genes
most positively correlated with SIRT1 while AP2S1,
EXOSC4, GPS1, NDUFS8, and POLR2L were the genes most
negatively associated with SIRT1 (Figures 5 and 6). Genes
such as NAPA, BCAT2, and GNAS were the most positively
correlated with SIRT2 while NOTCH2, AHNAK, ASAP2, and
SGMS2 were genes most negatively associated with SIRT2
(Figures 5 and 6). Genes positively associated with SIRT3
were represented by DMAP1, TCEA2, MYST1, and SNRPA
whereas the most negatively correlated genes were
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Figure 3: Correlation between SIRT expression and tumor stage in DTC (GEPIA) and genetic variation. (a) Association between the
expression level of SIRTs and tumor stages. (b) Correlation analysis between SIRTs in DTC. Darker colors represent the higher
correlation. (c) Genetic variation of SIRTs in DTC. Genetic variation included mutation, amplification, and deep deletion.
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HEATR5A and YME1L1 (Figures 5 and 6). SLC25A42,
ZNF346, and LOH12CR2 were genes most positively associ-
ated with SIRT5 while KCNQ3, FLNA, RUNX1, and FN1
were those most significantly and negatively associated with
SIRT4 (Figures 5 and 6). The genes most positively corre-
lated with SIRT5 were OXSM, SFXN4, COQ9, and NDUFA5
while those most negatively regulated with this gene were
B4GALT5 and GALNT5 (Figures 5 and 6). SIRT6 was most
positively associated with LSM7 and FKBP8 but most nega-
tively associated with STT3B and CLCN3 while genes most
positively associated with SIRT7 were SPSB3, ZGPAT,
PUS1, and TSEN54 but PRKAR2A and PDZD8 were the

most negatively associated with SIRT7 (Figures 5 and 6).
Specially, BRAF mutation is the most common gene alter-
ation in DTC [30]. We examined the correlation between
SIRTs and BRAF and found that BRAF was positively associ-
ated with SIRT1, SIRT2, SIRT3, SIRT4, SIRT5, and 7 but neg-
atively associated with SIRT6 (p < 0:05).

3.4. Functional Analysis of SIRTs. In order to uncover the
functions prominently associated with the SIRTs and their
coregulated genes, functional enrichment analysis was per-
formed on a set of genes containing SIRTs and genes corre-
lated with SIRTs with r greater than 0.8 and p < 0:05. The
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Figure 4: The prognostic value of mRNA level of SIRT factors in DTC (Kaplan-Meier Plotter), including OS and DFS analysis. HR > 1:0
represents a risky gene, and HR < 1:0 represents a protective gene.
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results indicated that SIRTs and coregulated genes were
involved in biological processes (BP) of protein deacetylation,
peptidyl-lysine modification, protein ADP-ribosylation, and
protein diacylation (Figure 7(a)). In the category of cellular
component (CC), cohesin complex, chromatin, and mitotic
spindle pole were the most represented gene ontology (GO)
terms while in the category of molecular function (MF),
NAD+ binding, NAD-dependent protein deacetylase activity,
and protein deacetylase activity were the predominant GO
terms (Figures 7(b) and 7(c)). The KEGGpathway enrichment
analysis showed that nicotinamide and nicotinamide metabo-
lism, basal transcription factors, central carbon metabolism in
cancer, Huntington’s disease, and FOXO signaling pathway
were the most significantly enriched signaling pathways asso-
ciated with SIRTs and their correlated genes in DTC
(Figure 7(d)). In the pathway of central carbon metabolism
in cancer, SIRT6 could directly inhibit hypoxia-inducible fac-
tor 1α (HIF-1α), and SIRT3 could inhibitHIF-1α by repressing
HIF-1 signaling, which then affectedmetabolic process such as
glycolysis and tricarboxylic acid (TCA) cycle (Figure 8). The
Ras/Raf/ERK/MAPK pathway was also regulated by SIRT6,
thus contributing to c-Myc deregulated expression. In addi-
tion, SIRT1, together with BARF, could modulate the FOXO
signaling pathway (Figure 9).

4. Discussion

Dysregulation of SIRTs has been investigated in diverse can-
cers [24]. Although the function and prognostic values of
SIRTs had been partly validated in various cancers, no bioin-
formatics analysis of SIRTs has been performed in DTC [31,
32]. This study reported for the first time the mRNA expres-
sion profiles and clinical value of SIRTs in DTC. Our findings
will help leverage existing knowledge to improve treatment
design and improve the prognosis of patients with DTC.

SIRT1 was generally known as an oncogene and involved
in multiple cellular processes including cell cycle, apoptosis,
and cancer metastasis [33]. SIRT1 was acknowledged as a
direct downstream target of miR-212, which hindered the
proliferation and promoted the apoptosis of thyroid cancer
cells by negatively regulating SIRT1 [34]. It has also been
reported that SIRT1-Foxp3 signaling-mediated regulation
of Bax and p21 mRNA expression is a hallmark molecular
event in DTC and shows significant resistance to genotoxic
stress induced by the chemotherapeutic agent etoposide
[22]. Li et al. [35] discovered that SIRT7 could promote
tumorigenesis by acting on the DBC1/SIRT1 axis in PTC
cells. The result was consistent with our findings that SIRT1
and SIRT7 were correlated significantly (r = 0:19, p < 0:001).
Roehlen et al. [36] demonstrated that the vitamin D-SIRT1-
FOXO3a axis played a pivotal role in DTC and Hashimoto
thyroiditis. Our KEGG results also showed SIRT1 affected
the FOXO signaling pathway along with BRAF. In the study,
however, no significant associations were found between
SIRT1 and clinical characteristics.

So far, our knowledge on the expression and regulation
of SIRT2 in DTC is limited. In contrast to previous results
suggesting a broad tumor-promoting effect for SIRT2 [37],
our study indicated that SIRT2 expression was decreased in
DTC tissues compared to the nontumorous tissues. Its
expression pattern was significantly associated with tumor
stage. Higher expression of SIRT2 was not significantly asso-
ciated with OS but was correlated with improved DFS in all
patients with DTC, which suggested SIRT2 as a possible tar-
get of treatment.

SIRT3, a nicotinamide adenine dinucleotide- (NAD-)
dependent deacetylase, was often recognized as a tumor-
suppressor gene [38]. However, SIRT3 was reported to be
highly expressed in DTC compared to benign thyroid
tumor and might involve mitochondrial alterations [39].
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Figure 5: Volcano plot of association results showing the correlation of different SIRTs with gene expression in DTC (LinkedOmics). Red
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Wang et al. showed that miR-1225-5p could promote DTC
cell proliferation and metastasis via targeting SIRT3
directly [40]. These results and ours were not in accor-
dance. Our findings indicated that the mRNA expression
level of SIRT3 was slightly lower in DTC tissue than in
normal tissue, and patients with high DTC expression
had better DFS. Additionally, there have been a few stud-
ies on SIRT3/HIF-1α pathway in cervical cancer and hepa-
tocellular cancer but not in DTC [41–43]. More validation
studies need to be performed to further investigate the role
of SIRT3 in DTC.

SIRT4 displayed deacetylase activity and were involved
in regulating cellular energy metabolism [44]. Studies
showed that SIRT4 was also reported to significantly
decrease in thyroid cancer and inhibit glutamine metabolism
and thus inhibit cell proliferation and invasion [45]. This is

consistent with our predictions. In our study, we demon-
strated that the expression of SIRT4 in DTC tissues was
downregulated, and its expression was associated with
tumor progression. Moreover, low expression of SIRT4 was
markedly correlated with poor OS and DFS, which corrobo-
rated with the findings that SIRT4 is an antitumor gene [46].
This suggests that SIRT4 may be considered a potential bio-
marker of poor prognosis and an effective molecular target
of treatment for DTC.

SIRT5 played a very important role in fatty acid oxida-
tion, glycolysis, TCA cycle, apoptosis, and antioxidant
defense [47]. Some researchers also found that SIRT5 was
upregulated in cisplatin-resistant ovarian cancer cells com-
pared with cisplatin-sensitive cells [48]. In addition, SIRT5
was found to promote cisplatin resistance (HO-1) pathway
in ovarian cancer by modulating Nrf2/heme oxygenase 1
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Figure 6: Heatmap plot of association results showing the correlation of different SIRTs with gene expression in DTC (LinkedOmics). Top
50 genes with the greatest correlation were presented.
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axis [48]. However, no study has reported the role of SIRT5
in DTC. In the present study, low expression of SIRT5 was
observed in DTC patients with advanced diseases and signif-
icantly correlated with improved DFS, suggesting SIRT5may
function as a tumor-suppressor gene.

Previous works indicated that SIRT6 plays a relevant role
in aging biochemical functions involved in tumor progres-

sion and could constitute an antitumor therapeutic target
[49]. Qu et al. [50] demonstrated that SIRT6 enhanced their
malignant behavior through the BRAF/ERK/Mcl-1 pathway.
Our studies also found the significant relationship between
SIRT6 and BRAF (Figures 3(b) and 8). Nevertheless, SIRT6
seemed to have no effect on tumor stage or clinical
outcomes.
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Figure 7: Functional enrichment analysis of SIRTs and coregulated genes in DTC. (a) Biological process. (b) Cellular component. (c)
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10 significant terms were presented.
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SIRT7 was upregulated in multiple cancers including
DTC and could promote the tumorigenesis of DTC cells
in vitro and in vivo [35, 51–53]. SIRT7 is reported to be cor-
related with active rRNA genes (rDNA) and actively
increases outgrowth and proliferation of U2OS cells [54].
Compared to the SIRT7-wildtype hepatoma cell line, the
SIRT7-deficient cell line exhibited exquisite sensitivity to
doxorubicin via the SIRT7-P53-NOXA axis [55]. Inhibition
of SIRT7 using small interfering RNAs inhibits tumor resis-
tance to radiation [56, 57]. In the present study, SIRT7
expression was not associated with tumor stage and progno-
sis in DTC.

Functional enrichment of SIRTs and their coregulated
genes in DTC indicated that these genes were involved
in protein deacetylation, peptidyl-lysine modification, pro-
tein ADP-ribosylation, and protein diacylation. The most
significant pathways were nicotinamide and nicotinamide
metabolism pathways and basal transcription factors.
These results indicated that SIRTs may participate in the
pathogenesis of DTC by regulating these pathways and
biological processes. In NIH3T3 cells, SIRT1 causes ubiq-
uitination and degradation of FOXO3, a FOXO transcrip-
tion factor family member that can play a crucial role in
tumor suppression and metabolism and may act as onco-
gene [58]. Previous studies reported that SIRT2 mediates
the acetylation of pyruvate kinase to regulate tumor
growth [59]. SIRT3, downregulated in cholangiocarcinoma
(CCA) patients, can prevent tumor progression by inhibit-
ing the HIF1α/PDK1/PDHA1 pathway [60]. SIRT5 was
also found to modulate the deacetylation of LDHB and
induce the autophagy in colorectal cancer [61]. Previous
study showed that SIRT6 might act as antioncogenesis fac-
tor by inhibiting HIF-1α, an angiogenesis-promoting mol-

ecule, in lung cancer [62], and by inhibiting c-Myc gene
and ribosome biosynthesis [63]. Since our results showed
decreased expression levels of SIRT3 and SIRT6 in DTC
tissues, we estimate that SIRT3 and SIRT6 take effect
through metabolic processes such as glycolysis and TCA
cycle. Similarly, SIRT7 was found to counteract cancer
development by the deacetylation of WDR77 [64]. These
studies support our finding that the SIRTs and coregulated
genes were involved in deacetylation in DTC. Moreover,
our study corroborated with previous studies demonstrat-
ing that nicotinamide metabolism regulates cancer pro-
cesses [65, 66].

5. Conclusion

In summary, we performed a systematic exploration to
examine the expression profiles and clinical value of the
SIRT family proteins in DTC and have provided an overview
of these SIRTs in DTC. Our findings suggest that high
expression of SIRT2, SIRT3, SIRT4, SIRT5, and SIRT6 in
DTC may indicate that they have significant regulatory func-
tions in thyroid carcinogenesis. Therefore, SIRT2, SIRT3,
SIRT4, SIRT5, and SIRT6may be relevant therapeutic targets
for DTC. Moreover, the expression of SIRT2, SIRT3, SIRT4,
and SIRT5 may have potential as prognostic markers for
determining the survival and prognosis of DTC.

Data Availability

The datasets used in the present study can be obtained in
The Cancer Genome Atlas (https://portal.gdc.cancer.gov/).
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