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Abstract

Background: Pandemic influenza poses a serious threat to global health and the world economy. While vaccines are
currently under development, passive immunization could offer an alternative strategy to prevent and treat influenza virus
infection. Attempts to develop monoclonal antibodies (mAbs) have been made. However, passive immunization based on
mAbs may require a cocktail of mAbs with broader specificity in order to provide full protection since mAbs are generally
specific for single epitopes. Chicken immunoglobulins (IgY) found in egg yolk have been used mainly for treatment of
infectious diseases of the gastrointestinal tract. Because the recent epidemic of highly pathogenic avian influenza virus
(HPAIV) strain H5N1 has resulted in serious economic losses to the poultry industry, many countries including Vietnam have
introduced mass vaccination of poultry with H5N1 virus vaccines. We reasoned that IgY from consumable eggs available in
supermarkets in Vietnam could provide protection against infections with HPAIV H5N1.

Methods and Findings: We found that H5N1-specific IgY that are prepared from eggs available in supermarkets in Vietnam
by a rapid and simple water dilution method cross-protect against infections with HPAIV H5N1 and related H5N2 strains in
mice. When administered intranasally before or after lethal infection, the IgY prevent the infection or significantly reduce
viral replication resulting in complete recovery from the disease, respectively. We further generated H1N1 virus-specific IgY
by immunization of hens with inactivated H1N1 A/PR/8/34 as a model virus for the current pandemic H1N1/09 and found
that such H1N1-specific IgY protect mice from lethal influenza virus infection.

Conclusions: The findings suggest that readily available H5N1-specific IgY offer an enormous source of valuable biological
material to combat a potential H5N1 pandemic. In addition, our study provides a proof-of-concept for the approach using
virus-specific IgY as affordable, safe, and effective alternative for the control of influenza outbreaks, including the current
H1N1 pandemic.
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Introduction

Highly pathogenic avian influenza A virus (HPAIV) of the

H5N1 subtype that has emerged since 2004, resulted in more than

430 cases of laboratory-confirmed human infection in 15 countries

with a death rate of more than 50% (www.who.int/csr/disease/

avian_influenza/). H5N1 influenza virus remains a global threat

because of its continued transmission among domestic poultry and

wild birds. H5N1 influenza vaccines are now under development

but none are yet available for human use [1]. The current H1N1

influenza pandemic was officially declared on June 11, 2009 by the

World Health Organization (WHO) (http://www.who.int/csr/

disease/swineflu) based on the rapid worldwide spread of the novel

swine-origin pandemic influenza A (H1N1) 2009 virus (H1N1/09).

As vaccine manufacturers scramble to produce new H1N1

vaccines for the upcoming influenza season, the limited global

supply of the vaccine will require both prioritizing target groups

for vaccination and exploring other interventions that can help

reduce H1N1/09 virus transmission and disease severity, including

the administration of antiviral agents (http://h1n1.nejm.org/).
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Passive immunization (the transfer of specific immunoglobulins/

antibodies (Abs) to a previously non-immune recipient host) could

offer an alternative strategy to prevent and treat influenza virus

infection. Even after targeted vaccines become available, passive

immunization could still have prophylactic effects and provides an

additional countermeasure against influenza [2].

A number of attempts have been made to develop human

monoclonal Abs (mAbs) against H5N1 influenza haemagglutinin

(HA) using Epstein-Barr virus (EBV) immortalization of B cells

isolated from patients infected with H5N1 [3], phage display [4],

humanized mAbs [5], and human recombinant Abs [6]. Passive

immunization based on mAbs, however, may require a cocktail of

mAbs with broader specificity to provide full protection, since

mAbs are generally specific for single epitopes. Polyclonal Abs that

recognize multiple epitopes on the surface of microbes provide

better protection and are less expensive compared to mAbs [7].

Chickens produce a unique immunoglobulin molecule called IgY

that is functionally equivalent to mammalian IgG [8]. IgY are

found in the sera of chickens and are passed from hens to the

embryo via the egg yolk, imparting a high concentration of

chicken IgY to the developing embryo [9]. Egg IgY have been

used to prevent bacterial and viral infections [see review [10]] of

the gastrointestinal tract and recently for protection against

Pseudomonas aeruginosa infection of the respiratory tract of patients

with cystic fibrosis (CF) [11]. However the effectiveness of IgY

against influenza virus infection has not been explored.

The recent epidemic of HPAIV H5N1 virus has resulted in

serious economic losses to the poultry industry, mostly in

Southeast Asia (www.fao.org/docs/eims/upload/214194/rushton-

comp.pdf). Therefore, many countries including China, Indonesia,

Thailand, and Vietnam have introduced mass vaccination of

poultry with H5N1 virus vaccines that controls the H5N1 epidemic

to some extent [12]. Chickens immunized with recombinant H5

and/or inactivated H5N1 reassortant vaccines produced a high

level of virus-specific serum Abs and were protected from H5N1

virus challenge [13]. Theoretically, H5N1-specific Abs are passed

from hen to embryo and could be separated and used in humans

for prevention against and therapy of H5N1 HPAIV infection and

disease, respectively. Here, we tested the possibility that IgY

isolated from consumable eggs available in supermarkets in

Vietnam where mandatory H5N1 vaccination has been imple-

mented, provide prophylaxis and therapy of HPAIV H5N1

infection and thus an alternative against potential A/H5N1

pandemic. Furthermore, we examined whether IgY isolated from

eggs of hens immunized with inactivated H1N1 A/PR/8/34 (PR8)

virus prevent influenza virus infection and cure the disease in mice.

The results will provide a proof-of-concept for the approach using

generated H1N1/09 virus-specific IgY to combat current H1N1

pandemic.

Materials and Methods

Animals
Female wild-type (WT) BALB/cAnNCrl (H-2d) mice were

purchased at 6 to 8 weeks of age from Charles River Co.

(Wilmington, MA) or the Jackson Laboratory (Bar Harbor, ME).

All mice were maintained in specific pathogen–free barrier

facilities. All experiments and animal procedures conformed to

protocols approved by the Institutional Animal Care and Use

Committees of Seoul National University, Yonsei University,

Konkuk University, Seoul, Korea, and the United States Centers

for Diseases Control and Prevention (US CDC), Atlanta, GA.,

USA. Hy-Line Leghorn hens purchased from Kyunggi Poultry

Farm were housed in an animal facility at Konkuk University. All

the hens were kept in rooms lightened for 16 h per day with

constant temperature of 25uC.

Cell lines
Madin-Darby canine kidney (MDCK) cells (ATCC, Manassas,

VA) were maintained in standard complete Dulbecco’s modified

Eagle’s medium (D-MEM) (Gibco, Grand Island, NY) containing

5% fetal bovine serum (FBS) and antibiotics.

Viruses
Influenza virus strains, A/PR/8/34 (H1N1) (PR8) and A/

Philippines/2/82/X-79 (H3N2) (A/Philippines) were prepared as

previously reported [14]. Mouse-adapted viruses PR8 and A/

Philippines, harvested from supernatants of mouse lung homog-

enates of intranasally infected mice were used for challenge. The

H5N1 human influenza isolate A/Vietnam/1203/2004 (VN/

1203) was obtained from the World Health Organization (WHO)

influenza collaborating laboratory at the US CDC, Atlanta, GA.

Inactivated reassortant avian H5N1 influenza virus (A/Goose/

GD/96-derived, strain Re-1) (Harbin, China) was used for mass

vaccination of poultry in Vietnam, and A/ck/Scotland/59 (H5N1)

was used for determination of haemagglutination inhibition (HI)

titers of sera and IgY from hens raised in Vietnam. The A/Aquatic

bird/Korea/W81/2005 (H5N2), isolated from a wild bird in

Korea in 2006, kindly provided by Dr. Young-Ki Choi, Chungbuk

University, Korea, was adapted by multiple passages (15 times) in

BALB/c mice. After final passage, a single plaque was isolated by

three consecutive plaque purifications on MDCK cells, amplified

in embryonated chicken eggs, and the LD50 of the H5N2 virus was

determined in mice for challenge experiment. Avian H5N1 viruses

were propagated in the allantoic cavity of 10-day-old embryonated

hen’s eggs at 37uC for 24 h to 30 h. The H5N1 human influenza

isolate was incubated for an additional 10 h to 18 h. Allantoic

fluid was pooled from multiple eggs, clarified by centrifugation,

and frozen at 270uC until use. All experiments with HPAI

(VN1203) virus were conducted under Biosafety Level 3

containment, including enhancements (BSL3+) required by the

U.S. Department of Agriculture and the Select Agent [15].

Eggs
Eggs laid by hens raised in the poultry unit of Konkuk

University, Seoul, Korea and purchased from randomly selected

supermarkets in Hanoi, Vietnam and Seoul, Korea and farms in

Vietnam were used in experiments.

Hen immunization
Twenty-five-week-old domestic Leghorn hens were immunized

intramuscularly with heat-inactivated A/PR/8/34 (H1N1) mixed

with Freund’s adjuvant (FA) (Sigma, MO, USA). 5 mg of antigen was

suspended in 250 ml of phosphate-buffered saline (PBS) and

emulsified with an equal volume of complete FA. Incomplete FA

was used for boosting immunizations. The hens were immunized

three times with two weeks between the immunizations. The hen sera

were collected eight weeks after the initial immunization, and eggs

laid after last immunization were collected continuously. In some

cases, immunized hens were boosted within a 3–4 months’ interval to

keep in hyperimmunized condition for a longer time period.

Preparation of IgY
A rapid and simple water dilution method for extraction of IgY

from egg yolk was adapted from the work by Akita and Nakai [16].

Briefly, the yolk from ten eggs (total volume, 120 ml) was

separated from the white by egg separators and washed with
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deionized water. Each yolk sac was disrupted by inserting a needle

and the yolk was allowed to drip through a nylon mesh into a

measuring cylinder. The egg yolk was diluted 10 times with cold

3 mM HCl to give the suspension a final pH of 5 (adjusted with

10% acetic acid). The suspension was incubated for at least 6 h at

4uC before the supernatant containing the IgY was collected by

centrifugation (10 0006g for 15 min at 4uC). Solid ammonium

sulfate was added to reach 60% saturation (390 g/l) and the

mixture was stirred in the cold for 15 min. Precipitate was

collected by centrifugation and washed once with 60% saturated

ammonium sulfate (SAS). The protein precipitate was dissolved in

PBS and dialyzed three times against at least 10 volumes of PBS.

Dialyzed IgY was adjusted to the original egg yolk volume (ten

yolks equal 120 ml) pasteurized at 60uC for 30 minutes and stored

at 4uC. The purity of the IgY preparations was determined by

sodium dodecyl sulfate-polyacrylamid gel electrophoresis (SDS-

PAGE) followed by Coomassie blue staining and is consistent with

that obtained by others [10,17,18].

Infection and treatment of mice
Fifty percent lethal dose (LD50) titers were determined by

inoculating groups of eight mice intranasally with serial 10-fold

dilutions of virus as previously described [19]. For infection,

ketamine-anesthetized mice were inoculated intranasally with a

lethal dose with 250 pfu (56LD50) of A/PR/8/34 (H1N1) virus,

1,000 pfu (56LD50) of A/Philippines (H3N2), 106LD50 of VN/

1203 (H5N1) or 56 LD50 A/Aquatic bird/Korea/W81/2005

(H5N2) resuspended in 50 ml PBS per animal. Ketamine-

anesthetized mice were treated intranasally with 50 ml of IgY

before or after infection. Death was defined when animals

presented with more than a 25% weight loss, which required

euthanasia and used as the endpoint in these studies.

Virus titration
The 50% egg infectious dose (EID50) was determined by serial

titration of virus stock in eggs, and EID50/ml values were calculated

according to the method of Reed and Muench [20]. Human virus

stocks were grown in MDCK cells as described previously [21], with

viral titers determined by standard plaque assay. Determination of

50% tissue culture infectious dose (TCID50) was performed on

MDCK cells by detection of viral protein according to Rowe et al.

[22]. Briefly, 100 ml of freshly trypsinized MDCK cells (26105/ml)

were incubated in Dulbecco’s modified Eagle’s medium containing

5% FBS and 16 of antibiotic-antimycotic solution (GIBCO)

(complete DMEM) in 96-well NunclonTM Surface plates (NUNC,

Inc., Roskilde, Denmark) for 3 h at 37uC with 5% CO2. Cells were

washed with serum free medium before adding serial dilutions of

virus-containing samples in 100 ml of DMEM containing 2.5 mg/ml

of trypsin. Plates were incubated for 18 h at 37uC with 5% CO2

before fixation of the cells with cold 80% acetone for 10 min. Plates

were then washed with PBS/Tween 20 before addition of anti-NP

IgG antibody (US CDC, Atlanta, GA) diluted 1/4,000 in PBS

containing 1% bovine serum albumin and incubated at room

temperature for 1 h. Goat anti-mouse IgG horseradish peroxidase-

conjugated antibody (Southern Biotechnologies Associates, Inc.,

Birmingham, Ala.) was added for 1 h at room temperature.

Reaction was developed by adding 100 ml of freshly prepared

TMB (3,39,5,59-tetramethylbenzidine) substrate (BD Biosciences,

Franklin Lakes, NJ) to each well, and the plates were incubated at

room temperature for approximately 5 min. The reaction was

stopped with 50 ml of 1 M sulfuric acid. The absorbance was

measured at 450 nm (A450) with SPECTRAmax photometer

(Molecular Devices, Palo Alto, CA). Wells having an absorbance

reading greater than 3 standard deviations above the mean

absorbance of wells containing only MDCK cells were scored

positive for virus growth. The TCID50 of each stock virus was

calculated by the method of Reed and Muench [20].

Microneutralization (MN) assay
Neutralizing antibody titers were determined by microneutra-

lization (MN) assays performed on MDCK cells following the

procedure as previously described [22]. Briefly, 2-fold serially

diluted samples were incubated with 100 TCID50 of viruses in 96-

well cell culture plates at 37uC for 1 h before adding to MDCK

cells. The presence of viral protein was detected by ELISA with

anti-NP IgG antibody as described above. The neutralizing

antibody titers were expressed as the reciprocal of the highest

dilution of serum that gave 50% neutralization of 100 TCID50 of

virus in MDCK cells. Positive serum control and negative cell

controls with no serum were included on each plate.

Table 1. Haemagglutination inhibition (HI) and virus neutralization (VN) titers in hen sera and egg yolks.

Sera IgY

Immunization HI (log2) VN HI (log2) VN

Heat inactivated PR8 6* 320* 8* 320*

Inactivated A/Goose/GD/96. Sera and eggs collected from farm – set 1 5.361.5m ND 7 ND

Inactivated A/Goose/GD/96. Sera and eggs collected from farm – set 2 5.561.0m ND 7 ND

Consumable eggs from Vietnam supermarket - batch 1 NA NA 7**/*** 320**

Consumable eggs from Vietnam supermarket - batch 2 (vn045) NA NA 7*** ND

Unimmunized – consumable eggs from Korea ,2 ND ,2 ,10

ND: Not done.
NA: Not available.
* A/PR/8/34 (PR8).
** A/Vietnam/1203/2004 (VN/1203 – H1N1).
*** A/Aquatic bird/Korea/W81/2005 (H5N2).
mMean and SEM of log2 titers.
Two hens were immunized with heat inactivated PR8 (as described in Materials and Methods) and IgY was pooled from 15 collected eggs. Sera of hens raised in Vietnam
farms were tested individually (10 samples in each batch) and IgY was pooled from 10 eggs in each batch. If not otherwise indicated A/ck/Scotland/59 (H5N1) was used
for H5 virus-specific HI titration. Sera from two unimmunized hens and IgY pooled from 10 eggs obtained in Korea were used as negative control. Titers of VN antibody
were determined as the reciprocal of the highest dilution of specimens that neutralized 100 pfu or TCID50 of virus in MDCK cell cultures.
doi:10.1371/journal.pone.0010152.t001
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Hemagglutination-inhibition (HI) assay
Samples were treated with receptor destroying enzyme II (RDE,

Denka Seiken Co., Ltd., Tokyo, Japan) at a final dilution of 1:3

before being tested in HI assay. Two-fold serially diluted samples

were incubated with equal volume containing 100 TCID50 of

viruses in U-bottom 96-well microtiter plates at 37uC for 1 h. At

the end of incubation, freshly prepared 1% chicken red blood cells

(CRBC) were added, and plates were mixed by agitation, covered,

and allowed to set for 1 h at room temperature. The HI titers were

determined by the reciprocal of the last dilution which contained

non-agglutinated CRBC. Positive and negative control samples

were included on each plate.

ELISA
The standard ELISA was performed for detection of anti-IgY in

the sera of IgY-immunized mice. 96-well MaxiSorpTM Nunc-

Immuno plates (Nalgene Nunc International, Naperville, IL) were

coated overnight with purified IgY (Gallus Immunotech, Ontario,

Canada) at a concentration of 10 mg/ml. Dilutions of serum were

incubated 2 h on coated and blocked ELISA plates. Bound

Figure 1. Protection against challenge with A/Aquatic bird/Korea/W81/2005 (H5N2). BALB/c mice were treated with H5N1-specific IgY
[anti H5N1 IgY or different batch of anti H5N1 IgY (vn045)] at 6 hours before and 18, 42, and 66 hours after infection with H5N2 virus (Pre- and post-
infection treatments, Fig. 1A); at 6, 30, 54, and 78 hours after infection (Post-infection treatments, Fig. 1B); or once at 6 hours before infection (Single
pre-infection treatment, Fig. 1C). Five LD50 of mouse-adapted A/Aquatic bird/Korea/W81/2005 (H5N2) virus and 50 ml of IgY were used for intranasal
infection and treatment, respectively. The values are the mean of 5–10 mice in each group.
doi:10.1371/journal.pone.0010152.g001
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immunoglobulins were detected with goat anti-mouse Ig (H+L)

horseradish peroxidase-conjugated antibody (Southern Biotech-

nologies Associates, Inc., Birmingham, Ala.) At the end of the

incubation (2 h at 37uC), TMB substrate was added and the

reaction was stopped with an equal volume of 1 M sulfuric acid.

The color developed was measured in a SPECTRAmax

photometer at 450 nm. The reproducibility of the assay was

ascertained by applying a control hyperimmune mouse serum on

each plate. Assay results were expressed as end-point titration

values which are determined by the last dilutions that are above

cutoff for assay (OD 450 nm reaches plateau).

Statistics
The data are expressed as the mean 6 one standard error of the

mean (SEM) and compared using a two-tailed student’s t-test or an

unpaired Mann Whitney U test available in Microsoft Excel

software (Redmond, WA).

Results

HI and VN activities of IgY isolated from consumable
eggs available in markets in Vietnam

We first tested the possibility that yolks from commercially

available eggs in Vietnam, where mass vaccination of poultry

against avian influenza H5N1 is mandatory, contain H5N1-

speficific IgY. We determined H5-specific HI titers in the sera and

yolks of the eggs obtained from a farm in Vietnam that was

participating in a national mass vaccination program. IgY

preparation was restored in PBS to the original volume of yolk.

Indeed, H5-specific HI titers determined in yolks were comparable

to those seen in sera of vaccinated hens (Table 1). Next, we

determined the H5-specific HI titers of IgY isolated from eggs

purchased in randomly selected supermarkets in Hanoi, Vietnam

that offer safe foods with recorded origin. Consistently, 90% of

eggs purchased in supermarkets contain H5-specific IgY at the

levels comparable with those observed in sera of hens selected

randomly from the farm that underwent supervised H5N1

vaccination (data not shown). IgY pooled from 10 eggs have

comparable HI and VN titers (Table 1). In contrast, IgY separated

from eggs laid by unimmunized hens or purchased in Korean

markets where poultry are not vaccinated against avian influenza

H5N1 contained no detectable H5-specific HI or VN activity

(Table 1).

IgY derived from consumable chicken eggs in Vietnam
provide protection against H5 influenza viruses

We first used a mouse-adapted, low pathogenic avian influenza

A virus (LPAIV) strain A/Aquatic bird/Korea/W81/2005

(H5N2), which shares 94.4% nucleotide sequence homology with

HA (H5) but has different NA (N2) from the one used for mass

immunization in Vietnam (reassortant avian H5N1 influenza virus

A/Goose/GD/96-derived, strain Re-1) for challenge experiments

in BALB/c mice. As shown in Fig. 1, complete protection against

infection with avian H5N2 was achieved by intranasal adminis-

tration with H5N1-specific IgY before or after the lethal infection

(Fig. 1a and 1b). A single treatment with H5N1-specific IgY before

inoculation was sufficient to protect animals completely from

disease (Fig. 1c). Treatments with H5N1-specific IgY before and/

or after infection with H1N1 PR8 that shares same type of NA but

different HA did not prevent or cure the disease (data not shown).

Based on these results, we further examined whether protection

against infection with HPAIV H5N1 strain, A/Vietnam/1203/

2004, which was isolated from a fatal case, could be achieved.

Animals treated intranasally with H5N1-specific IgY before

infection displayed mild weight loss and recovered completely by

the end of the first week after inoculation (Fig. 2a). Of note,

animals treated with H5N1-specific IgY after H5N1 inoculation

exhibited minimal weight loss during the first week after

inoculation, and virus titers in the lungs were substantially reduced

at day 3 after infection (Fig. 2b), but 50% of treated mice

succumbed to infection during the second week after inoculation.

It is possible that not all of the HPAIV H5N1 viruses were

neutralized upon single treatment with IgY, and escaping viruses

could have spread systemically to organs outside of the lungs.

These viruses may reappear in lung tissue later when specific IgY

are absent. Indeed, VN/1203 virus injected intravenously or into

the brain can spread to the lungs [23]. To circumvent the virus

escape, we administered multiple post-infection treatments with

H5N1-specific IgY. As a result, all of the infected mice recovered

completely by the second week post-infection (Fig. 2c), and virus

titers in the lungs were substantially reduced to the level as seen in

protected mice that received a single pre-infection treatment

(Fig. 2d).

H1N1 virus-specific IgY derived from immunized hens
provide protection against lethal infection

We further examined the protective effect of IgY prepared from

eggs laid by hens immunized in the laboratory with heat-

inactivated human influenza A H1N1 PR8 virus. PR8 virus is a

common laboratory mouse-adapted influenza strain that serves as

a model virus for current pandemic H1N1/09 virus and can be

handled safely under Biosafety Level 2 (BSL2) conditions. We

found substantial levels of haemagglutination inhibition (HI) and

virus neutralization (VN) Abs in the sera and yolks derived from

immunized hens (Table 1). When naı̈ve mice were administered

anti-PR8 IgY intranasally at 6–8 h before and 16, 40 and 62 h

after infection (Fig. 3a) or only after infection with a lethal dose of

PR8 virus (Fig. 3b), they were protected from disease or death,

respectively. Mice receiving anti-PR8 IgY only after infection

started to lose weight after the last IgY treatment (day 3 after

infection) with the maximum weight loss occurring 9 days post-

infection, however they recovered completely 14 days after the

infection. Importantly, a single treatment at 6 h before lethal

challenge prevented weight loss, a measure of morbidity, which

was comparable with that seen in the control group receiving

murine immune serum specific for PR8 virus (anti-PR8 serum)

(Fig. 3c). The virus titers in the lungs of PR8-specific IgY-treated

mice at day 3 after infection were significantly lower than those

seen in untreated mice or in mice receiving normal IgY (Fig. 3d).

The protection correlated with VN activity of the virus-specific

IgY and virus clearance in the lungs of infected mice (Table 1 and

Fig. 3c) suggesting that VN is the major mechanism of protection.

Figure 2. Protection against challenge with HPAIV H5N1. Morbidity and mortality of BALB/c mice that were treated with H5N1-specific IgY
[anti H5N1 IgY] at 6 hours pre- (26 h) or post- (+6 h) infection with VN/1203 (H5N1) virus (Single pre- or post-infection treatment, Fig. 2A - 6 mice per
group); or at 6, 24, 48, and 72 hours after infection (Multiple post-infection treatments, Fig. 2C – 5 mice per group). Ten LD50 of VN/1203 H5N1 virus
and 50 ml of H5N1-specific IgY were used for intranasal infection and treatment, respectively. The mice protected from disease did not die even after
3 weeks monitoring. Virus titers (EID50) in the lungs were determined on day 3 after infection (Fig. 2B and 2D). The values are the mean of 4 mice in
each group. The group of mice receiving single pre-infection treatment was included as control.
doi:10.1371/journal.pone.0010152.g002
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IgY treatment induced anti-IgY Ab responses which do
not prevent protection mediated by virus-specific IgY

Although raw eggs are consumed widely in many countries and

uncooked egg components are used in the preparation of many

foods, reports on the presence of anti-IgY Abs in humans have

been limited to only two studies. One study demonstrated the

presence of anti-IgY Abs in sera obtained from normal individuals

[24], and the other study showed the absence of anti-IgY Abs in

humans upon oral ingestion of IgY or consumption of raw egg

components [25]. In mice, intravenous injection of IgY elicits a

typical anti-IgY antibody response [26]. It is, however, not clear if

administration of IgY in the respiratory tract induces an anti-IgY

response. We examined sera obtained from IgY-treated mice for

the presence of anti-IgY Abs. Indeed, detectable anti-IgY Abs

were observed in animals that received IgY by single intranasal

administration (Fig. 4a). There was no significant difference in the

levels of anti-IgY Abs in mice receiving multiple or single

administration of IgY.

We next asked whether pre-existing anti-IgY Abs prevent virus-

specific IgY-mediated protection. We immunized mice with

normal IgY or immune IgY specific for particular subtypes. Three

weeks later, serum Abs specific for IgY were determined by

ELISA. One hundred percent of the immunized mice generated

anti-IgY Abs at the level comparable to that of IgY-treated mice

(Fig. 4a). Such IgY-immunized mice were then treated with virus-

specific IgY before or after infection with a lethal dose of influenza

virus. The results were almost identical to those obtained from

treated, non-immunized mice (Fig. 4b), indicating that pre-existing

anti-IgY Abs do not interfere with protection mediated by virus-

specific IgY. We speculated that if IgY epitopes that bind anti-IgY

Abs are not located in the virus-binding sites of the IgY, then anti-

IgY Abs would not prevent the binding and/or neutralizing

activities of virus-specific IgY. To investigate this question, we

incubated murine anti-IgY serum with virus-specific IgY before

adding to the HI and VN assays. Indeed, incubation with anti-IgY

serum did not interfere with HI activity of the virus-specific IgY

Figure 3. Protection against challenge with H1N1 PR8. BALB/c mice were treated with PR8-specific IgY (anti PR8 IgY) - as described in Materials &
Methods at 8 hours pre- and 16, 40, and 64 hours post-infection (Pre- and post-infection treatments, Fig. 3A); at 8, 32, 56, and 80 hours post-infection
(post-infection treatments, Fig. 3B); or once at 6 hours before infection (Single pre-infection treatment, Fig. 3C). Five LD50 of mouse-adapted PR8 and
50 ml of IgY were used for intranasal infection and treatment, respectively. Morbidity (body weight loss) and mortality were monitored daily until
recovered animals regained their initial weight. The values are the mean of 5–10 mice in each group. Mortality is expressed as % of mice that survived the
lethal infection. Virus titers in the lungs (TCID50) determined at day 3 after infection in mice treated with PR8 specific IgY at 6 hours before (26 hrs) or
after (+6 hrs) infection (Fig. 3D). The values are the mean of 8 mice in each group derived from 2 independent experiments. As control, a group of mice
treated with mouse anti-PR8 serum (HI titer 1:128) was included. All mice received the same amount of the IgY preparation of identical HI titer.
doi:10.1371/journal.pone.0010152.g003

Figure 4. Induction of anti IgY Abs and IgY treatment in mice with pre-existing anti IgY. Anti IgY in the sera of mice immunized with
normal IgY (IgY immunized), treated once intranasally with PR8-specific IgY 8 hours before (anti PR8 IgY 28 h) or three times after infection (anti PR8
IgY +8, 32, 56 h) (Fig. 4A). Endpoint titers (log2) were determined by ELISA. Morbidity and mortality of IgY-immunized mice treated with PR8-specific
IgY (anti PR8 IgY) before (26 hr) or after (+6 hr) infection with mouse-adapted PR8 (Fig. 4B). The values are the mean of 5–10 mice in each group.
doi:10.1371/journal.pone.0010152.g004
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(not shown), indicating that anti-IgY Abs do not block virus

binding by virus-specific IgY. Similarly, incubation with anti-IgY

does not interfere with VN activity of the specific IgY (Fig. 5).

Discussion

Several animal studies and a number of human studies of IgY

against different pathogens have demonstrated preventive and

prophylactic effects of IgY. Rotavirus-specific IgY provided

protection against infection with bovine rotavirus both in calves

and in mice, whereas anti-Escherichia coli IgY reduced mortality in

newborn piglets [27]. Salmonellosis has been prevented by IgY

both in neonatal calves and in a mice model. In humans, IgY

against Streptococcus mutans decreased caries when used as a mouth

rinse [28] and anti-Helicobacter pylori IgY reduced Helicobacter

infections [29,30]. IgY have been used for first time in humans to

treat infection of respiratory tract, e.g. with Pseudomonas aeuruginosa

[11,31]. Our results indicate that when delivered intranasally IgY

derived from hens immunized with inactivated influenza virus

provide protection against lethal infection by neutralization of the

viruses in the lungs. Importantly, we found that readily available

IgY from consumable eggs in supermarkets in Vietnam provide

prophylaxis and therapy of HPAIV H5N1 infection and thus offer

an enormous source of valuable biological material to combat

potential H5N1 pandemic. Initially, we used oral and intraperi-

toneal routes for treatments; however, no protective effect was

observed by either route although IgY were detectable in the sera

of IgY-treated mice after either route of delivery (data not shown).

In humans, gargling could be an alternative to intranasal or

pulmonary (aerosol) delivery since treatment with bacteria-specific

IgY by gargling significantly reduced lung infections with

Pseudomonas aeuruginosa in cystic fibrosis (CF) patients [11]. Current

FDA approved intranasal delivery (spray) of licensed live

attenuated influenza vaccine FluMistH (http://www.fda.gov/

BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm094047.

htm) that contains egg components could be a proof for safe

intranasal delivery of IgY.

The efficacy of IgY seems to be specific for infection with viruses

of the same HA type, since H5N1-specific IgY provided protection

against infections with HPAIV H5N1 and H5N2 strains but failed

to protect against infection with H1N1 PR8 virus that shares the

same type of NA but not HA.

Although IgY treatment induced significant Ab response

towards IgY, the anti-IgY, however did not interfere with the

protective effectiveness of virus-specific IgY. The findings suggest

that IgY treatment could be applied to persons who have

developed anti-IgY Abs and that such a treatment strategy could

be repeated if multiple treatment is required and necessary to

protect infections against other pathogens later on. Indeed, the

current protocol for treatment of P. aeuruginosa infection in the

lungs of CF patients requires long-term repeated applications of

anti-bacterial IgY [11]. Thus, our results provide a proof-of-

concept that virus-specific IgY prevent influenza virus infection

and cure the disease. The approach could be applied to generation

of H1N1/09 -specific IgY to combat the current H1N1 pandemic.

Since production of virus-specific IgY is relatively fast and cost-

effective, IgY-based prophylaxis and therapy are practical for

control of outbreaks with newly emerging influenza viruses.

Figure 5. Anti-IgY Abs do not block neutralizing activity of
virus specific IgY. PR8 virus neutralizing activity of PR8 specific IgY
(anti-PR8 IgY) in the absence of anti-IgY serum was determined by
microneutralization assay. VN titer of anti-PR8 IgY is 1:320 at which the

viral nuclear protein (NP) was not detected (Fig. 5A). In the presence of
anti-IgY serum VN by anti-PR8 IgY was not abrogated by incubation
with normal serum (Fig. 5B and 5D) or with anti-IgY serum (Figs. 5C and
5D). VN titer (1:320) of anti-PR8 IgY was used in the assay. The optical
density (O.D.) was determined at 450 nm (A450).
doi:10.1371/journal.pone.0010152.g005
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The approach of using specific IgY for prevention and therapy

of influenza virus infection offers an alternative to current

immunotherapy, which uses HPAIV H5N1 convalescent plasma

[32], and an additional therapeutic option to antiviral drugs since

widespread drug resistance has been recently reported among

influenza virus strains. Current FDA-approved anti-influenza viral

drugs consist of the adamantane compounds (amantidine/

rimantidine) and the neuraminidase inhibitors, oseltamivir and

zanamivir [33,34]. Widespread adamantine resistance was docu-

mented among seasonal H1N1 and H3N2 strains, and a majority

of clade 1 and some clade 2 H5N1 isolates from Southeast Asia

[35,36,37,38]. Oseltamivir-resistant H5N1 and H1N1 isolates

have also been reported [39,40,41]. Importantly, we show that the

effectiveness of virus-specific IgY surpassed that of antiviral drug

zanamivir in prophylaxis and treatment. For example, single pre-

infection or multiple post-infection treatment with virus-specific

IgY was sufficient to protect 100% of animals from lethal infection

(Figs 1, 2, and 3), while a much higher number of combined pre-

and post- infection treatments with a high dose of zanamivir (24 h

before infection, 4 h before infection, 4 h after infection, and then

twice daily for 5 days beginning 24 h after infection) is required to

protect 90% of animals from lethal infection [42]. Daily treatment

with virus-specific IgY for 4 days beginning as late as 24 h after

infection did not result in protection, but increased the mean

survival day (data not shown). A similar effect was seen during the

course of more intense multiple treatment with zanamivir, which

was initiated 24 h after infection and continued twice daily for 5

days [42].

IgY are relatively stable. We found no change in protective

activity after at least 13 months’ storage at 4uC, and lyophilization

does not affect activity, making production of IgY practical. The

use of IgY immunotherapy has many advantages since IgY does

not activate the human complement system or human Fc-

receptors, which all are well-known cell activators and mediators

of inflammation [43]. For the preparation of IgY from egg yolks,

we chose the water dilution method as the method is simple,

efficient, and does not require use of any toxic compounds or

additives. Such IgY preparations by this method have been used in

other human studies [11,31], and they contain low levels of egg

cholesterols and triglycerides [18]. Another advantage is that other

egg proteins found in IgY preparations could have additional

positive antimicrobial and immuno-stimulatory effects [44].

Finally, as eggs are a component in the diet of many people,

there is minimal risk of toxic side effects, except for those who are

allergic to eggs.

Thus, we show that consumable eggs available in the markets of

countries that impose mandatory H5N1 mass vaccination of

poultry, offer an enormous source of valuable, affordable, and safe

virus-specific IgY, which can be used for prevention and

protection against potential H5N1 pandemic influenza. Our study

provides a proof-of-concept for use of influenza virus-specific IgY

in passive immunization against influenza outbreaks, including

current H1N1 pandemic.
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