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Abstract

Background: Systematic aerobe training has positive effects on the compliance of
dedicated arterial walls. The adaptations of the arterial structure and function are
associated with the blood flow-induced changes of the wall shear stress which
induced vascular remodelling via nitric oxide delivered from the endothelial cell.
In order to assess functional changes of the common carotid artery over time in
these processes, a precise measurement technique is necessary. Before this study,
a reliable, precise, and quick method to perform this work is not present.

Methods: We propose a fully automated algorithm to analyze the cross-sectional
area of the carotid artery in MR image sequences. It contains two phases: (1) position
detection of the carotid artery, (2) accurate boundary identification of the carotid
artery. In the first phase, we use intensity, area size and shape as features to
discriminate the carotid artery from other tissues and vessels. In the second phase,
the directional gradient, Hough transform, and circle model guided dynamic
programming are used to identify the boundary accurately.

Results: We test the system stability using contrast degraded images (contrast
resolutions range from 50% to 90%). The unsigned error ranges from 2.86% ± 2.24%
to 3.03% ± 2.40%. The test of noise degraded images (SNRs range from 16 to 20 dB)
shows the unsigned error ranging from 2.63% ± 2.06% to 3.12% ± 2.11%. The test of
raw images has an unsigned error 2.56% ± 2.10% compared to the manual tracings.

Conclusions: We have proposed an automated system which is able to detect
carotid artery cross sectional boundary in MRI sequences during heart cycles. The
accuracy reaches 2.56% ± 2.10% compared to the manual tracings. The system is
stable, reliable and results are reproducible.

Background
Adaptations of the arterial structure and function were associated with blood flow-

induced changes of wall shear stress which induced vascular remodelling via nitric

oxide delivered from the endothelial cell [1]. In order to assess functional changes of

the common carotid artery (CCA) over time, a precise measurement technique was

necessary. In [2], only two static MR images representing the end-diastole and systole

were taken for the measurement of the lowest and the highest arterial diameter during

the heart cycle. However, this has been shown to have a higher variability than the
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measurement along the complete heart cycle. Furthermore the measurement on

continuous images by hand-hold tracing was extremely time-consuming. Only a lim-

ited number of publications focused on the carotid arterial structure and function

using MRI with advanced imaging technologies in healthy subjects were found [3-5].

The purpose of this study was to establish a novel automatic common carotid arterial

wall detection algorithm in MRI sequences over several heart cycles in order to pre-

cisely determine carotid diastolic and systolic diameter changes along time and the

CCA local compliance. For this purpose we have collected some MRI data from parti-

cipants of the multistage ultra-aahn"Trans Europe Foot Race” in 2009 (TEFR09).

Regarding related researches on engineering aspect, the similar work to ours was

found in [6]. The images they analyzed had plaques in the artery lumen. This was one

additional problem they encountered more than ours. The other problems such as:

contrast variations among blood, vessel wall and surrounding tissues, image artifacts

caused by blood flow and random patient motion were similar to ours. Their system

needed three user interactions: giving the system the artery’s center point, a seed point

inside the lipid core, and a circle surrounds the vessel. With the help of the prior

knowledge combined with an elliptic model and fuzzy clustering, their system was able

to identify the arterial boundary and plaque boundary.

Another previous study [7] was a measurement on arterial wall using discrete

dynamic contour (DDC) [8]. Their method was semi-automatic because the system

needed an initial contour of the inner wall contour. Moreover, their images were black

blood vessel so that they were able to detect both the inner and outer wall boundaries

of the carotid artery.

Another related article but focused on the coronary artery boundary detection was

found in [9]. They proposed a surface-based method to detect the coronary artery

boundary in the poor quality X-ray angiography based on a 3D generalized cylinder

model. Since their application was on the X-ray angiogram, therefore, the proposed

method was not suitable for the application on MRI sequences.

Our contributions are to develop an automatic method to measure the arterial

boundary in MR images. It is able to detect the carotid artery center position in the

first stage. In the second stage, the cross sectional arterial wall boundary can be

detected via Hough transform and a circle model dynamic programming. The circle

model dynamic programming lets the system control the output boundary to be some-

what round but having the ability to detect the fine structure.

The paper is organized as follows. The image sources and MRI protocol are intro-

duced in Section 2. Section 2.1-2.2 describes how to detect the artery lumen center posi-

tion. In Section 2.3, the circle model guided dynamic programming is issued in details to

solve our problems. Afterwards, results are given in Section 3. We then discuss proper-

ties of the proposed scheme in Section 4. Finally the conclusion is given in Section 5.

Methods
The MR-measurement of the maximal systolic and distal vessel-diameter of the CCA

with additional blood pressure information leaded to local compliance of the arterial

wall. After the approval of the local ethics committee in accordance to the Declaration

of Helsinki, 12 participants in the TEFR09-project of the German Research Foundation

(DFG-Project GZ: SCHU 2514/1-1, AOBJ: 565344) have been collected for vascular
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studies based on MR image sequences. One MRI sequence of one subject was

randomly chosen from these 12 subjects for the validation of the novel detection

algorithm of the CCA lumen presented in this study.

To acquire the vascular MRI sequences, a mobile 1.5-T MR imager (Siemens -

Avanto™, Model Mob. MRI 02.05, Siemens Ltd., Erlangen, Germany) and a custom-

designed four-channel phased dual mode neck matrix coil with 4 integrated preamplifiers

(Siemens Ltd.) were used. The movement artifact was minimized via using a dedicated

head restraint system (head coil, Siemens Ltd.) to fix the head and neck in a comfortable

position (patient position: supine, head to feet).

After an initial coronal localizer, three fast localizers (triplanar TRUFI: “true fast ima-

ging with steady state precision"; Siemens Ltd.) were used to identify the axial perpen-

dicular acquisition location at the right CCA 10 mm inferior the carotid bifurcation.

Contrast media could not be used in this study because the athletes did not accept it.

To increase the spatial resolution of the measurement (cross section view of CCA) a

T2*-weighted gradient-spoiled gradient-echo cine-sequence (FLASH: “fast low angle shot”,

Siemens Ltd.) with prospective two dimensional ECG gating (cardiac triggering) was used.

Parameters were set to be: flip angle 15°, echo time 5.41 ms, repetition time 34.74 ms,

slice thickness 6 mm, field of view 289 cm2, matrix size 320×320, pixel size 0.53125 mm

ISO, pixel bandwidth 250, number of images per sequence: 50 images for one RR-cycle.

The imaging acquisition time was approximately 5 minutes for each sequence.

2.1 Carotid artery position detection

The carotid artery position detection is the first procedure because it can reduce the

following computation time. This procedure detects only the rough artery’s center

position but not the artery boundary. Here we propose an easily implemented but fast

algorithm to perform this work.

To identify the carotid artery we firstly analyze its features. Normally some large vessels

can be seen in MR images including carotid arteries, internal jugular veins, and external

jugular veins (see Figure 1). Among them two most largest vessels are carotid artery and

internal jugular vein. The internal jugular vein is often larger than the carotid artery, but

only in a supine position because of the filling at a lower pressure. Another exception is

having an abnormal hypoplastic situation. This is however not the case in our subjects.

The other differentiation is that the cross-sectional view on the common carotid is always

round with the exception of plaques in the artery lumen. Moreover, the vessel lumen in

MR images has a larger intensity. This is because blood in vessels shows higher signal

intensity in the T2-weighted FLASH-sequences. Due to the blood flow there is also a

phase shifting. These are reasons for a higher intensity of vessel lumen in contrast to dark

vessel wall. These three features (area size, shape, and intensity) are useful information in

the identification of the carotid artery.

The first feature we utilize is the intensity to identify vessel lumen from other tissues.

The image contains foreground (the subject) and background. The background is the

dark area surrounding the subject. The foreground contains mussels, vessels, bones, air

chambers and other tissues or organs. Among them the air chamber is dark so it is

easily to be excluded like the background. The rest is to identify vessels from other tis-

sues. Since the vessel lumens are lighter than the other, we are able to classify them

using the intensity as a feature. Let R denote the raw image. The Otsu’s thresholding
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technique [10] is applied in two stages. The first stage is to segment the foreground

(excluding the air chambers) out of the image. The extracted foreground is then seg-

mented via Otsu’s technique again in the second stage. After this process some vessel

lumens are able to be segmented, however, with some noises in it. The first stage can

be formulated as follows.

R1(x, y) =
{

R(x, y), if R(x, y) > T1

−1, otherwise
for all (x,y) (1)

where T1 is the threshold obtained by Otsu’s method. The background is marked by -1

which will be ignored in the second stage. The second stage is formulated as follows.

R2(x, y) =
{

R1 (x, y), if R1(x, y) > T2,(R1(x, y) �= −1)
−1, otherwise

, for all (x,y) (2)

where T2 is the threshold obtained by Otsu’s method which is a value between the

gray value of the vessel lumen and other tissues. Notably the computation of T2 is

based on the precondition of ignoring the background marked as -1 in the first stage.

After this process vessel lumens are segmented out.

The resultant image contains noises needed to be removed. The binary morphologi-

cal opening operation with a structure element is then applied to filter the noise and

cut possible connections between the internal jugular vein and the carotid artery. The

filtration is formulated as

R3 = R2
os (3)

where ‘s’ is the structure element with a disk shape (radius is 1). More clearly, it has

a central pixel (the reference point) and the four-neighborhood pixels.

Afterwards, the rest features (area size and shape) are utilized to identify the carotid

artery from other vessels. This process is divided into left and right parts. Assume we

are processing one part of them, two largest areas are chosen and they are the internal

jugular vein and the carotid artery. Their boundary points are obtained by using a sim-

ple Sobel operation [11]. Afterwards, the PCA (principal component analysis [12]) is

applied to get the major axis and minor axis. The length ratio of these two axes is a

feature to indicate if the shape is round. Via this scheme, we are able to identify the

carotid artery from other vessels. Once its center position is estimated, a region of

interest (ROI) denoted as Rs is extracted from the source image R to the following pro-

cedures while artery center centered at Rs. The size of region (Rs) depends on the pixel

size of MR images and the anatomic knowledge how large the carotid artery can be.

This can be calculated in prior.

Figure 1 One of the MR images contains the carotid arteries we interest. The carotid arteries are the
ones near internal jugular veins which are round having a lighter intensity.
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2.2 Carotid artery boundary detection

2.2.1 Directional gradient

The results obtained by the method addressed in Section 2.1 do not offer accurate

artery boundaries. This is because the Otsu’s thresholding technique never offers good

results in case that the intensity is not consistent for each object (here the carotid

artery) to be measured. Especially it is possible that the morphological opening opera-

tion shrinks the artery’s actual size. Therefore, we propose a method to detect the

accurate artery boundary. Since the artery boundary has intensity different to its

surrounding area, the gray level gradient is useful information. However, the internal

jugular vein is very close to the artery in images so that it makes the boundary detec-

tion difficult if we consider only the intensity gradient only. This case is worse if the

intensity gradient on the vein boundary is stronger than that on the artery boundary.

We therefore take the direction into consideration and name this gradient to be direc-

tional gradient. In literatures we do not find any similar publication except the direc-

tional gradient vector flow in [13]. Our consideration is that: since the artery lumen is

brighter than its surrounding areas, gradients resulted from bright pixels to dark pixels

are of interest. If the artery center is known, then the directional gradient can

be found that is parallel to the radiation lines centered from the artery. Actually the

directional gradient is a special case of multi-directional gradient.

Figure 2 depicts the geometric construction of a directional gradient. Consider the

point we are processing is p(x, y) Î Rs, a unit vector (⇀v) connecting p and the artery

center point is computed. The whole space where ⇀

v might be located is divided into

eight regions, i.e. the angle resolution is 45 degrees. The gray levels surrounding p(x, y)

are denoted as from g1 to g8. Since the y-axis in image is from top to down, we define

Region 1 to be the area where 0 ≤ θ ≤ π

4
, where θ is the angle between ⇀

v and the x-

axis, (-π ≤ θ ≤ π ). If ⇀

v is located in Region 1, the calculation of the directional gradient

considers only two gray-level pairs (g4, g5) and (g8, g1) as follows:

e(x, y) = (tg5 + (1 − t)g4) − (tg1 + (1 − t)g8) (4a)

Figure 2 The geometric definition for calculating the directional gradient.
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where t = 4θ/π . If ⇀

v is located in Region 1’ (-π ≤ θ ≤ - 3π/4), the formula can be

rewritten as:

e′(x, y) = (tg1 + (1 − t)g8) − (tg5 + (1 − t)g4) (4b)

Where t = 4(θ + π)/π. The calculations when ⇀

v is located in other regions are simi-

lar. Via this scheme an edge map representing the gradient intensity can be obtained

and denoted as Re. Notably, we are looking for gradients resulted from bright pixels to

dark pixels. Therefore, the edge map we look for is a minimal value. The negative gra-

dient denotes the boundary gray level changing from bright pixel to dark pixel along

vector ⇀

v which is we want. Via this way, the positive gradient resulted from the jugular

vein very close to carotid artery will not affect the searching of the artery boundary.

Afterwards, positive values in Re are set to zeros and the Otsu’s thresholding technique

is applied again to find a threshold value. The binarisation technique is applied to

Re: values under the threshold are set to ones. The resultant binary image is denoted

as Rb.

2.3 Circle model and dynamic programming

The round shape information of artery is important. It is used to avoid possible errors

caused by local noises. These errors include the heterogeneous gradient obtained in the

artery lumen and at the boundary. To alleviate this problem we apply Hough transform

[14] to detect round objects in Rb. The Hough transform is a feature extraction techni-

que used in image analysis, computer vision, and digital image processing. There are

three variables to be determined, i.e., the circle center position (x and y coordinates) and

the radius. Although the radius of artery is unknown in advance, its range of variance

can be estimated. Therefore, we have to calculate its Hough transform by varying the

radius from r1 to rn Î N. After transformations each radius obtains an accumulator

matrix. We search the maximum value in each accumulator matrix and find out the one

which has the maximum value among all accumulator matrices. The corresponding

radius and position is the artery’s radius and center position, respectively.

Although the artery lumen is in general round, however, it is not the case from the

pixel’s view point. In addition, not all artery lumen is pure round during the heart beat

cycle. Some of them are elliptic. A fine tuning is then necessary to obtain a sub-pixel

accuracy. For this reason, we propose a method to identify the artery boundary based

on a circle model.

Dynamic programming is a method of solving complex problems by breaking them

down into simpler steps used in mathematics and computer science [15]. It is applic-

able in image processing to solve optimal problems such as finding a minimum (or

maximum) with some given constraints[16,17]. However, the limitation of using this

technique in images is that it cannot solve the closed form contour. One solution is to

transform the image from Cartesian coordinate to polar coordinate [18] and then

apply dynamic programming on the polar coordinate. Note that this procedure applies

only on a region of interest (ROI). However, two preconditions have to be satisfied:

1) the rough center position is known; 2) the contour has a star-like shape. Our pro-

blem meets these two preconditions.

The dynamic programming is issued in details as follows. In Section 2.2.1 we have

obtained the directional gradient Re. Let M and N denote the number of rows and
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columns of Re, respectively. Normalization is applied on Re so that values range from

to -1 to 1, i.e. -1 ≤ Re ≤ 1. Since the center of Re is the artery center, we transform Re

to polar representation and denote it as Rp. The x-axis of Rp represents angle 0 ≤ θ ≤

2π and the y-axis represents the distance to the center point in Re. Notably, θ = 2π

represents the start point copied to the end of the matrix Rp to convince the continuity

between the start and end point. Dynamic programming is then searching a curve from

left to right Rp in which represents the artery boundary. Some features are taken into

considerations.

1) Curve continuity: A variable for continuity is considered. Let dr denote the max-

imal range that nodes in column x - 1 are allowed to jump onto the next column x

in either up or down directions. Therefore, each node has maximum (2dr + 1) pos-

sible link paths to its previous column. If dr is set larger, the curve’s roughness and

the computation time are both increased. The smoothness of the curve is quanti-

fied by j = yx-1 - yx which is embedded into the cost function.

2) Circle model: The circle model having a known radius is embedded into the

structure to guide the dynamic programming. This is based on the fact that the

artery boundary is near round and the radius is estimated by Hough transform in

prior. A Gaussian model is used to generate the strength how strong the dynamic

programming is guided by the circle model. Let r denote the known circle radius,

the strength is formulated as − 1√
2πσ

exp(−(y − r)2

2σ 2
), where s is a variable con-

trolling the strength of guide. If s is getting smaller, the Gaussian has a thin but

sharp shape and the circle model has a larger effect on the result, i.e. it is a more

circle-like boundary. If s is getting larger, the Gaussian term vanishes and it works

like a normal dynamic programming without the circle model. Since y and r are

both integers, a look-up table can be set to reduce the computation time.

3) Directional gradient: The directional gradients are very important information to

detect the artery boundary accurately. Gradients having negative values denote the

carotid artery boundary, while positive gradients denote other boundary which we

treat them as noises. Thus, the boundary detection problem is then transformed to

an optimization problem which searches an optimal contour:

p∗
1p∗

2p∗
3 . . . p∗

N = arg min
{
�N

i=1Rp(pi)|p1p2p3 . . . pN
}
subject to some constraints, where

pi is the point on the i-th column in the matrix Rp, and pk and pk+1 are neighbor-

hood. This optimization function can be reformulated to be suitable for implement-

ing dynamic programming with respect to a cost function formulated as follows.

C
(
x, y

)
j∈(−dr ,dr)

= min C(x − 1, y + j)+

Rp(x, y) + α|j| − 1√
2πσ

exp(−(y − r)2

2σ 2
)

(5)

subject to 2 ≤ x ≤ N, 1 ≤ y ≤ M;

where a is a weighting parameter. The C(x, y) is a two-dimensional cost map. The

global optimization problem is the same to its sub-problem C(x - 1, y), C(x - 2, y), and
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vice versa. We set C(1, y) = Rp(1, y) to be a boundary condition. If dr = 1, the optimal

index j* can be determined by the following equation:

j∗ = arg minj∈(−1,0,1)C(x, y + j). (6)

Therefore, the index can be stored in the coordinate matrix X(x, y) = y + j*. In this

construction, small cost values indicate higher likely boundary information. The posi-

tion with the minimum cost value in the cost map C(x, y) is searched. With a back-

ward search from N to 1 in X, the complete coordinates (p1p2p3...pN ) of the artery

boundary can be determined, which is the optimal solution to this problem. Notably,

the processes addressed in Section 2.3 are applied only on the extracted ROI (Rs, Re,

and Rp) to reduce the computation time tremendously. Results obtained by dynamic

programming are integers. A moving average technique [19] is applied to make the

boundary smoother. In order to reduce the computation time, we simply average the

neighbouring 4 points and the center point. The resultant polar coordinates are then

transformed back to Cartesian coordinates.

2.4 System reliability

The proposed system has been studied for the reliability against different noise levels

and different contrasts.

In order to study the effect on different contrasts, we test one image sequence

with different contrasts. Let [0, gmax] be the contrast resolution of the raw

image. The contrast is degraded by a ratio ranging from 0.9 to 0.5, in a step of

-0.1, and we name them to be 90% contrast to 50% contrast, respectively. There-

fore, the contrast resolution of the 50% contrast will be [0, int(0.5 gmax)] and

vice versa, where int(x) converts a number ‘x’ to be an integer closest to ‘x’ . All

raw images are converted to degraded images based on a given ratio. Thereafter,

the proposed system is applied on these contrast degraded images and the caro-

tid artery cross-sectional lumen area of each image is calculated for the following

comparison. The comparison is performed by calculating their relative signed

errors as follows:

εi = (AManua1(i) − AAutomated(i))/AManua1(i) × 100% (7)

where AAutomated (i) and AManual (i) are areas calculated by the automated and the

manual drawing on image number i, respectively.

To study the system reliability against noise levels, we add artificial white noises

(randomly generated) with a given SNR (signal-to-noise ratio) ranging from 20 dB to

16 dB with a step of -1. The SNR calculation is given as follows:

SNR =
1

M × N

∑N

x=1

∑M

y=1
20 log10

g(x, y)
|n(x, y)| (8)

where M × N denotes the image dimension, g (x, y) and n(x, y) are the intensities of

image and noise at image coordinate (x, y), respectively. The MR image at (x, y) has an

intensity g(x, y)≥0 and the noise intensity might be negative. To calculate the SNR we

define log10
g(x, y)
|n(x, y)| = 0 if g (x, y) = 0 or n (x, y) = 0.
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Results
Figure 3 shows results of the first process: carotid artery position detection. The two

stages Otsu’s thresholding technique can lead to some noises which are removed by

morphological opening operations as shown in Figure 3(b). Afterwards, the round

shape and area size are used as features to distinguish carotid arteries from those ves-

sel lumens. Their corresponding artery centers can be calculated which are used as

reference points in calculating directional gradients.

The directional gradient is computed on a ROI (Rs) and the normalized result (Re) is

shown in Figure 4(a). The surrounding gray area having 0 values are not calculated. The

dark area represents negative gradients we need whereas the white area denotes positive

gradient which are noises. Since the positive gradients are very close to the negative gradi-

ents, if the gradient direction is not considered it is almost impossible to distinguish them.

Figure 4(b) shows the binary result (Rb) using a thresholding technique for Hough trans-

form. The Hough transform can determine a radius which will guide the dynamic pro-

gramming in detecting the artery lumen boundary. Figure 4(c) is the polar representation

of Re on the left-hand side (right carotid artery). The dynamic programming searches a

curve from left to right which minimizes the given cost function defined in equation (5).

The detected artery lumen center position is used to predict the center in the next

image. Similarly, the detected artery lumen radius is used to set the size of ROI in the

next image. Here we expend 1.5 times radius from the center to each side (left, right,

up, and down) to define the size of ROI. For the reason of explanation, the ROIs

shown in Figure 4 are larger than 1.5 times.

In order to explore the accuracy of the proposed automated system, the accuracy con-

trol is necessary. For this purpose, an image sequence containing 50 images is used to

compare the manual boundary tracing and the automated identification. The right carotid

artery is chose to compare. The areas are calculated and shown in Figure 5. The averaged

relative error is 2.56% and its standard deviation is 2.10%. The averaged relative unsigned

error is defined as follows:

Eave =
1
N

�N
i=1|εi| (9)

Figure 3 Results of carotid artery position detection. (a) The raw image. (b) The center position of
each detected vessel lumens are marked by ‘+’. The carotid artery (denoted as arrows) is recognized by its
shape and size features.

Cheng et al. BioMedical Engineering OnLine 2011, 10:26
http://www.biomedical-engineering-online.com/content/10/1/26

Page 9 of 16



Figure 4 Results of the carotid artery boundary detection. A. Results of directional gradients. B. Results of
using Otsu’s thresholding technique. C. The ROI (Re) is transformed to the polar representation (Rp)for
dynamic programming. D. Results of circle model guided dynamic programming. (a = 0.3, s = 2, and dr = 1).

Figure 5 The comparison of automated and manual results of the right carotid artery. (1 pixel size =
0.28 mm2).
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where εi has been defined in equation (7), N = 50.

To investigate the system reliability with respect to different contrast resolutions, the

images are degraded. Figure 6 shows the raw image and two degraded images with

70% and 50% contrast. The proposed algorithm is repeated on the degraded images

and the comparison results are shown in Figure 7. In Figure 7, different contrast reso-

lutions do not show significant differences (signed error ranges from -0.58% ± 3.6% to

-1.03% ± 3.75%, unsigned error ranges from 2.56% ± 2.10% to 3.03% ± 2.40% ) in cal-

culating the carotid artery cross-sectional areas. The relative unsigned averaged errors

are almost consistent in different contrast resolutions. The signed error shows that the

automated method produces a larger area than the manual tracing does. However, this

bias is very limited. Figure 8 shows the comparison plot of areas computation with

respect to image number with different conditions. The line having triangle (up) is the

manual drawing. Two automated results made from 100% and 50% contrast images are

superimposed on the result of manual drawing to show the difference. From the plot

there are only limited errors between them. The experiment of 50% contrast has the

largest unsigned error (3.03% ± 2.40%).

Figure 9 shows the comparison (relative error) with respect to different noise levels.

The image having less SNR has larger noise level. From the result we see a tendency

of increasing relative error when the SNR is decreasing. The signed relative error

ranges from -0.53 ± 3.77% to - 1.13% ± 3.49% whereas the unsigned relative error

ranges from 2.56% ± 2.10% to 3.12% ± 2.11% . There is no significant difference

between different noise levels ranging from 16 to 20 dB (SNR).

To compare the error on each image number, the results made by the automated

method applied on raw images and images having 16 dB SNR are superimposed on

the manual drawing result. Each error is very limited and there is no abrupt large

error among them (Figure 10).

To summerize the system reliability we use the Bland-Altman plot as shown in Figure

11. The mean of the two measurements (manual drawing and automated method) are

assigned as the abscissa (x-axis); the differences between the two measurements are

assigned as the ordinate. From the result we see their differences are mostly under 4 mm2.

The computer system has Intel® Core™ 2CPU T5600, 1.83 GHz, with 2 GB RAM.

The programs are based on the Matlab platform [20]. The computation time for 50

images processing is around 30 seconds. More results are downloadable under our

website.

Figure 6 Three images with different contrast degradations. A. The raw image. B. A 70% contrast
degraded image. C. A 50% contrast degraded image.
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Discussion
In this study we use a circle model in Hough transform and the dynamic programming

instead of the ellipse Hough transform because of the consideration on the computa-

tion time. Full ellipse detection is rarely performed because it is very slow. It requires a

5 dimensional parameter space - as opposed to 2 for straight line detection and 3 for

Figure 7 Comparison (signed and unsigned relative error) between the manual drawing and the
automated method on different contrast degraded images (from 50% to 100% contrast).

Figure 8 The areas computations of each image are shown. The line having circles is made from 100%
contrast images, i.e., without the contrast degradation. The line having triangle (down) is made from 50%
contrast images. The line having triangle (up) is made by manual drawing.
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circle detection. Although the gradient direction can be taken into consideration to

reduce the computation time [21], it still needs much more time than that in our

design. Moreover, the artery’s shape can be changed if a plaque exists. Our design has

the advantage to detect boundary which is not a circle or an oval.

Figure 9 The comparison (signed and unsigned relative error) between manual drawing and
automated method applied on different noise degraded images. The noise level is represented by
SNR (dB). The 20 dB means the signal intensity is 10 times the noise intensity. The right one without SNR is
the raw image (without artificial noises).

Figure 10 The areas computations of each image are shown. The line having circles is made from raw
images, i.e., without the artificial noises. The line having triangle (down) is made from SNR = 16 dB noise-
degraded images. The line having triangle (up) is made by manual drawing.
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Since our algorithm uses area, shape, and intensity as features to identify the carotid

artery position, the conditions (prerequisites) that the carotid artery is able to be iden-

tified are: 1) there are less or no plaques in the artery; 2) the blood flow maintains in a

level so that the intensity in artery lumen in MRI is distinguishable from neighbouring

tissues. Our subjects are healthy runners, although some are old people, there are less

plaques in the artery lumen. Therefore all carotid artery lumens can be modelled by a

circle model. The blood flow in the carotid artery is different from that in the femoral

artery. It does maintain at a level so that the intensity in the lumen is distinguishable

from the artery wall and other tissue nearby. Therefore, there is no problem to identify

the carotid artery centers using our proposed algorithm.

Regarding the chosen of parameters, there are three parameters in our scheme: a, dr,
and s . Normally, the discontinuity is prevented by setting dr = 1. We suggest the

range of a to be (0,1]. If a becomes smaller, the output curve is more rough. On the

contrary, the curve becomes smooth if a is set near to 1. The standard deviation s is a

control by the circle model. The range we suggest is [0.4, 4]. If s ≤ 0.5, then the out-

put curve is nearly round. If s ≥ 1 then it is able to detect the fine structure such as

plaques in the artery lumen.

Based on the study on different contrast resolutions (from 50% to 100%) and differ-

ent noise levels (SNR ranges from 16 dB to 20 dB), the proposed method has shown

its robustness and reliability against contrast resolution and noise.

Figure 11 The Bland-Altman plot is used to compare the manual tracing and the automatic
identification results. The middle line is the average. The upper and lower lines denote ± 2 standard
deviations.
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Conclusions
In conclusion, we have proposed a fast and robust scheme to detect the carotid artery

boundary in MR image sequences fully automatically. This scheme is divided into two

stages: (1) detect the center of the carotid artery (2) detect the boundary of the carotid

artery. We combine the circle model with the dynamic programming so that the resul-

tant boundary is circle-like shape. The accuracy control shows that the averaged rela-

tive error of the automated results compared to the manual results is 2.56% and the

standard deviation is 2.10%. Via this system we are able to analyze tremendous amount

of images and all results are repeatable.
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