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Circular RNA HECTD1 knockdown inhibits transforming growth factor-beta/ 
small mothers against decapentaplegic (TGF-β/Smad) signaling to reduce 
hypertrophic scar fibrosis
Xiaojing Ge *, Yute Sun *, Youzhi Tang*, Jing Lin, Fang Zhou, Gang Yao , and Xin Su

Department of Plastic and Burn Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China

ABSTRACT
Scars are nearly impossible to avoid after a skin injury, but despite advancements in the 
treatment modalities, they remain a clinical problem, especially hypertrophic scars (HS). 
Many studies include the mechanism of formation and inhibition of HS, but it is not fully 
understood yet. Circular RNA HECTD1 (circHECTD1), for the first time, has been found to 
have roles in HS physiology. We determined the relative circHECTD1 levels in HS fibrous cells 
and tissues by RT-qPCR. Afterward, the effect of circHECTD1 knockdown on the proliferation, 
migration, invasion, fibrosis, and Transforming Growth Factor-beta/small mothers against 
decapentaplegic (TGF-β/Smad) signaling was studied using CCK-8, wound healing, 
Transwell, and western blot assays. After the role of circHECTD1 was clarified, its targeted 
micro RNA (miR) was predicted using the Starbase database, and we constructed a miR-142- 
3p mimic to study the details of its regulation mechanism. We used the TargetScan database 
to predict the downstream target high mobility group box 1 (HMGB1) of miR-142-3p, and 
the luciferase report assay verified the binding, and then its effect was determined by RT- 
qPCR. circHECTD1 is highly expressed in HS tissues and human skin hypertrophic scar 
fibroblasts (HSF); its loss of function inhibits cell proliferation, migration, invasion, fibrosis, 
and TGF-β/Smad signaling. However, miR-142-3p inhibitor reverses the effect of circHECTD1 
on all the above-mentioned aspects, including HMGB1 expression. In conclusion, circHECTD1 
knockdown interrupts TGF-β/Smad signaling through miR-142-3p/HMGB1 and suppresses 
scar fibrosis.
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Introduction

Hypertrophic scar (HS) is a post-traumatic fibrous 
tissue with excessively growing scars accompanied by 
dark red/purple coloration, itching, or pain, which 
raises physical and psychological discomfort in 
patients [1]. Fibroblasts are cells activated in this pro-
cess of wound healing, that migrate from the edge of 
the wound toward the center and transdifferentiate 
into myofibroblasts. Then, a mass of extracellular 
matrix (ECM) is synthesized, forming HS [2].

Transforming Growth Factor beta 1 (TGF-β1) is 
a cytokine involved in HS pathogenesis. TGF-β 
receptor types I (TGF-βR1) and II (TGF-βR2) are 
dominant signaling molecules [3]. In wound healing, 
high TGF-β1 promotes tissue regeneration, and 
a gradual increase of TGF-β1 activates a variety of 
intracellular signals, such as small mothers against 
decapentaplegic (Smad) and mitogen-activated pro-
tein kinase (MAPK) pathways. The activation of 
these pathways sets off a cascade of reactions and 
stimulates TGF-β1 release, which leads to 
a continuous autocrine positive feedback loop. This 
causes the overproduction of matrix proteins, which 
results in fibrosis [4–6]. TGF-β signaling is involved 
in the formation of HSs [3,7]. Hence, inhibition of 
TGF-β signaling may affect HS physiology.

Until 2010, circular RNAs (circRNAs) were 
deemed to be a by-product of splicing [8–10]. Due 
to the progress of RNA high-throughput sequen-
cing, circRNAs were found to be widespread with 
a variety of biological functions [11–16], such as 
protein translation. Nevertheless, our knowledge 
of circRNA may remain limited. circHECTD1, 
a circRNA, is known to promote pulmonary fibro-
sis [17,18], and its role in scar fibrosis is not 
completely elucidated. According to previous 
research, it participates in activating astrocytes by 
binding with micro RNA (miR)-142-3p [19]. It 
happens that miR-142-3p has been found to 
engage in the process of fibrosis and inhibit 
TGF-β signaling [20,21].

Therefore, circHECTD1 inhibition of TGF-β 
signaling by binding to miR-142-3p needs to be 
verified through experiments. Lee et al. found that 
high mobility group box 1 (HMGB1) promotes 
skin fibrosis, and can promote TGF-β signaling 
[22]. To determine how miRNA-142-3p affects 
TGF-β signaling, we used the TargetScan database 

to predict the target HMGB1. We evaluated 
whether miR-142-3p can inhibit the expression of 
TGF-β by blocking HMGB1 expression. Together, 
this study aimed to reveal the role and the 
mechanism of circHECTD1 in scar fibrosis.

Methods and materials

This study was approved by the Ethics Committee 
of The First Affiliated Hospital of Nanjing Medical 
University. Informed, written consent was taken 
from each participant.

Tissue samples

HS fibrous skin samples were collected from 
patients who underwent plastic surgery in our 
hospital. Meanwhile, the patients’ normal skin 
samples were obtained during the surgery. The 
skin tissue samples were treated as previously 
described [23]. Briefly, the samples were treated 
with chloramphenicol and then washed with 
PBS. Then they were digested with 2 mg/ml 
sterile composite collagenase (Merck KGaA, 
Germany) at 4°C overnight, filtered through 
a 200-mesh filter, centrifuged at 1,500 rpm for 
15 min. Then, 10% DMEM (Gibco) was added 
to the precipitate and mixed well, then trans-
ferred onto petri dishes for culture.

Cell culture

When cells reached 90% confluence, they were 
passaged. The cells were digested with 0.25% tryp-
sin (Thermo Fisher Scientific), the cell suspension 
was centrifuged at 1,500 rpm for 5 min. Then 
DMEM containing 10% FBS (Thermo Fisher 
Scientific) was added to the pellet, and the cells 
were counted and passaged at 1:4. Human skin 
fibroblasts (HDF) and human skin HS fibroblasts 
(HSF) were maintained in an incubator with 5% 
CO2 at 37°C as previously described [24]. The cells 
used in the experiment were 3–6 generations.

Real-Time Quantitative Reverse Transcription 
PCR (RT-qPCR)

RT-qPCR was carried out as previously described 
[25]. Briefly, total RNA from fibroblasts or skin 
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samples was isolated using TRIzol® reagent 
(Invitrogen). Complementary DNA was primed 
using a Sensiscript RT kit (Takara Biotechnology, 
Osaka, Japan) followed by QuantiTect SYBR 
Green PCR Kit (Qiagen) for RT-qPCR. The 
2−ΔΔCt method [26] was used with normalization 
using β-actin or U6. Primers are listed in Table 1.

Cell transfection

Fibroblasts were plated into 6-well plates until they 
reached 70–80% confluence before transfection. 
Small interfering(si)RNA-CircHECTD1, miR-142- 
3p mimic, miR-142-3p inhibitor (GenePharma, 
Shanghai, China), and their controls were trans-
fected into HSF cells with Lipofectamine® 2000 
reagent (Thermo Fisher Scientific) as previously 
indicated [3].

Cell Counting Kit-8 (CCK-8)

The CCK-8 assay was performed to determine cell 
proliferation as previously described [27]. Briefly, 
fibroblasts from different groups were seeded in 
a 96-well plate and cultured for 24, 48, 72, and 
96 h at 37°C, before the CCK-8 solution (AbMole, 
China) was added. Then the fibroblasts were cul-
tured for another hour followed by the measure of 
absorbance using a microplate reader (450 nm; 
Thermo Fisher Scientific).

Wound healing assay

This assay was performed to determine cell migra-
tion as previously described [28]. Briefly, fibro-
blasts from different groups were placed in 6-well 
plates and incubated at 37°C to reach ~90% con-
fluence. A tip was used to make a scratch. PBS was 
used to clear the scratched-off fibroblasts. 
Fibroblasts were photographed at 0 and 24 h 
under an inverted microscope (Olympus, Tokyo, 
Japan). The closure area of the wound was ana-
lyzed using Image J 1.52 v software (National 
Institutes of Health).

Immunofluorescence assay

This assay was performed as previously described 
[29]. Briefly, fibroblasts were seeded in 6-well plates 
and incubated at 37°C to reach ~90% confluence. 
Then they were subjected to 4% formaldehyde for 
immobilization. Next, 0.1% Triton X-100 was added 
and fibroblasts were permeabilized for 15 min. The 
fibroblasts were blocked with 5% BSA (Merck 
KGaA, Germany) for 30 min, and α-SMA antibody 
(Thermo Fisher Scientific) overnight at 4°C, fol-
lowed by FITC-labeled Goat anti-rabbit secondary 
antibody (Thermo Fisher Scientific) for 1 h. 
Counterstaining with DAPI was continued for 
5 min for the nuclei, and images were obtained 
under a fluorescence microscope (Nikon, Japan).

Transwell assay

This assay was performed to determine cell invasion as 
previously described [30]. Briefly, fibroblasts in 
serum-free DMEM were seeded into the upper cham-
ber which was pre-coated with Matrigel (Merck 
KGaA, Germany), while a medium containing 10% 
FBS was loaded into the lower chamber. Fibroblasts on 
the lower side, that crossed the membrane, were first 
treated with 4% formaldehyde after 24 h-incubation. 
Next, 0.1% crystal violet solution was applied for dye-
ing. Five arbitrary fields were selected, and the number 
of fibroblasts was counted under an inverted 
microscope.

Table 1. Sequences of the primers.
Gene Sequence

CircHECTD1 F:5’-ACGGTTGTACGCAAGGTTGA-3’
R:5’-GGCGCTCTCTCATGATCTCC-3’

Collagen I F:5’-GTGCTAAAGGTGCCAATGGT-3’
R:5’-ACCAGGTTCACCGCTGTTAC-3’

Collagen II F:5’-CACACTCAAGTCCCTCAACAA-3’
R:5’-AGTAGTCTCCACTCTTCCACTC-3’

a-SMA F:5’-TGTTCCAGCCATCCTTCATC-3’
R:5’-GCAATGCCAGGGTACATAGT-3’

HMGB1 F:5’-CAGAACAGAAATACATCTCAGGGC-3’
R:5’-TCGTGCACCGAAAGTTTCAA-3’

β-actin F:5’-CGGGAAATCGTGCGTGAC-3’
R:5’-CAGGAAGGAAGGCTGGAAG-3’

miR-142-3p F:5’-CTGTGTAGTGTTTCCTACTTTA-3’
R:5’-GTGCAGGGTCCGAGGT-3’

U6 F:5’-CTCGCTTCGGCAGCACA-3’
R:5’-AACGCTTCACGAATTTGCGT-3’
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Western blotting

Total protein was extracted from the cultured fibro-
blasts and homogenized in RIPA lysis buffer 
(Solarbio, Beijing, China). Total protein was quanti-
fied using the BCA method (Beyotime, Shanghai, 
China). Protein samples were then separated 
through SDS-PAGE and shifted onto PVDF mem-
branes (Solarbio, Beijing, China). These membranes 
were first blocked with 5% nonfat milk, then washed 
with TBST. These blots were kept into respective 
antibodies (1:1,000 diluted (anti-collagen I, anti- 
collagen II, anti-α-SMA, anti-TGF-β, anti- 
p-SMAD2, anti-p-SMAD3, anti-SMAD2, anti- 
SMAD3); Thermo Fisher Scientific) at 4°C over-
night. They were cut in strips, which were incubated 
with an HRP-conjugated anti-rabbit antibody 
(1:20,000 diluted; Thermo Fisher Scientific) at 
room temperature for 1 h. To visualize proteins, 
the BeyoECL Plus kit (Beyotime, Shanghai, China) 
was used. Image J 1.52 v software was applied to 
measure the gray values as previously indicated [31].

Nuclear and cytoplasmic separation

The nuclear fraction of fibroblasts was extracted as 
previously indicated [32] using a PARISTM kit 
(Ambion, USA). Cultured fibroblasts were washed 
once in PBS and subjected to lysis buffer in an ice 
bath for 15 min. The sample was centrifuged and the 
supernatant was collected. Otherwise, the pellet was 
lysed in nuclei lysis buffer (Saint, Shanghai, China) in 
an ice bath for 20 min. The extract was collected after 
centrifugation. U6 and GAPDH were used as the 
controls.

Luciferase reporter assay

Fibroblasts were seeded in the 24-well plates. 
CircHECTD1 wild-type and mutant-type lucifer-
ase vectors were co-transfected with miR-142-3p 
mimic using Lipofectamine® 2000 reagent. 
Similarly, HMGB1 vectors were constructed. The 
Luciferase Reporter Gene Assay kit (Beyotime, 
Shanghai, China) was used in accordance with 
the instruction manual. The relative luciferase 
activity was measured after 48 h and normalized 
to Renilla luciferase activity as previously 
described [33].

Database and statistical analysis

The Starbase database [34] was used to predict the 
binding of circHECTD1 to miR-142-3p. The miR- 
142-3p target, HMGB1, was predicted based on 
the TargetScan database [35]. Experimental data 
were analyzed with GraphPad 7.0 software and 
displayed as mean ± SD of three replicates. 
Student’s t-test (two groups), one-way ANOVA 
followed by Tukey’s post-hoc test (multiple groups) 
were used to evaluate differences. Results were 
considered of statistical significance if p < 0.05.

Results

The present study aimed to reveal the role and the 
mechanism of circHECTD1 in scar fibrosis. 
circHECTD1 was found to be highly expressed in 
HS tissues and HSF; its loss of function inhibited 
cell proliferation, migration, invasion, fibrosis, and 
TGF-β/Smad signaling. Moreover, miR-142-3p 
inhibitor reversed the effect of circHECTD1 on 
all the above-mentioned aspects, including 
HMGB1 expression. In conclusion, circHECTD1 
knockdown interrupted TGF-β/Smad signaling 
through miR-142-3p/HMGB1 and suppressed 
scar fibrosis.

The expression of circHECTD1 in cells and human 
tissues

We evaluated the mRNA expression of collagen 
I, collagen II, and α-SMA in all tissue samples 
by RT-qPCR. The levels of all three proteins in 
HSF were markedly higher than those in HDF. 
circHECTD1 was also higher in HSF 
(Figure 1(a)). Protein expression in HS fibrous 
skin tissue samples was compared with healthy 
skin samples. The result shows that these pro-
teins in scar fibrous skin tissue were significantly 
higher than in normal skin (Figure 1(b)).

circHECTD1 knockdown inhibits proliferation, 
migration, invasion, and fibrosis

RT-qPCR was applied to assess the degree of 
circHECTD1 knockdown in HSF. Compared with 
siRNA-NC, the expression of circHECTD1 in 
siRNA-circHECTD1 transfected cells decreased 
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Figure 1. circHECTD1 expression in cells and human tissues. (a) Expression of collagen I, collagen II, α-SMA mRNAs, and circHECTD1 
in HDF and HSF detected by RT-qPCR. ***P < 0.001 versus HDF; n = 3. (b) Expression of collagen I, collagen II, α-SMA mRNA, and 
circHECTD1 in normal skin tissues and HS fibrous skin tissues was detected by RT-qPCR. ***P < 0.001 versus normal; n = 10.

Figure 2. circHECTD1 knockdown inhibits the proliferation, migration and invasion of HSF. (a) Knockdown in HSF detected by RT- 
qPCR. ***P < 0.001 versus siRNA-NC; n = 3. (b) Proliferation expressed as OD value using CCK8 assay. *P < 0.05, ***P < 0.001 versus 
24 h; n = 3. (c) Cell migration and (d) invasion detected by wound healing and Transwell assay, respectively. ***P < 0.001 versus 
siRNA-NC; n = 3.
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(Figure 2(a)). Therefore, these cells transfected 
with siRNA-circHECTD1 were employed in the 
following experiments. The proliferation of con-
trol, siRNA-NC, and siRNA-circHECTD1 was 
examined using a CCK8 assay. The values at 24, 
48, 72, 96 h in all groups are displayed in a line 
chart. The result indicated that circHECTD1 
knockdown inhibited the proliferation of HSF 
(Figure 2(b)). Afterward, the migration ability of 
the three groups was assessed with wound healing, 
along with Transwell assay for invasion ability, 
which both decreased in the siRNA-circHECTD1 
group (Figure 2(c,d)). Moreover, RT-qPCR and 
western blotting were used to determine collagen 
I, collagen II, and α-SMA mRNA and protein 
expression. In the three groups, they all showed 
a decrease in the siRNA-circHECTD1 group 
(Figure 3(a,b)). Meanwhile, immunofluorescence 
was also used to evaluate the expression of α- 

SMA. The fluorescence of the siRNA- 
circHECTD1 group was obviously weaker than 
the negative control group (Figure 3(c)). Since α- 
SMA is a differentiation marker, the result indi-
cates that knockdown with circHECTD1 inhibits 
HSF fibrosis.

circHECTD1 knockdown inhibits the expression of 
TGF-β/SMAD

TGF-β signaling pathway involves phosphorylation of 
SMADs. Roberts et al. found that TGF-β plays an 
important role in mediating wound healing and scar 
formation through SMAD3 [36]. Therefore, to inves-
tigate the role of circHECTD1 in TGF-β/SMAD sig-
naling, TGF-β, p-Smad2, p-Smad3, Smad2, Smad3 
were determined using western blotting. 
circHECTD1 knockdown decreased the expressions 
of TGF-β, p-Smad2, p-Smad3, while Smad2 and 

Figure 3. circHECTD1 knockdown inhibits the fibrosis and the expression of TGF-β/SMAD. (a) Collagen I, collagen II, and α-SMA 
mRNA expression in the three groups detected by RT-qPCR, and (b) western blot. (c) α-SMA expression detected by immunofluor-
escence. (d) TGF-β, p-SMAD2, p-SMAD3, SMAD2, SMAD3 expression detected by western blot. ***P < 0.001 versus siRNA-NC; n = 3.
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Smad3 remained unvaried (Figure 3(d)). This indi-
cates that circHECTD1 knockdown could inhibit the 
expression of TGF-β/SMAD signaling in HSF.

circHECTD1 knockdown promotes miR-142-3p 
expression

We found circHECTD1 expression to be higher 
in the cytoplasm (Figure 4(a)). The Starbase 
database was used to predict the targeted binding 
of circHECTD1 to miR-142-3p (Figure 4(b)). 
First, miR-142-3p expression was evaluated 
using RT-qPCR. The expression of the mimic 
group was found to be higher in contrast with 
the NC group (Figure 4(c)). In addition, lucifer-
ase activity of circHECTD1 wild-type in the miR- 
142-3p mimic group was decreased in compar-
ison with that in the miR-142-3p NC group, and 
the mutant-type had no significant change 
(Figure 4(d)). This shows that circHECTD1 

targets miR-142-3p, and the expression levels of 
miR-142-3p in these three groups were deter-
mined. As expected, miR-142-3p expression in 
the siRNA-circHECTD1 group was markedly 
higher (Figure 4(e)).

miR-142-3p inhibitor reverses the effect of 
circHECTD1 knockdown on proliferation, 
invasion, and migration

HSFs were transfected with miR-142-3p inhibitor, 
and RT-qPCR result revealed that the expression 
of miR-142-3p in siRNA-circHECTD1 group with 
miR-142-3p inhibitor decreased (Figure 5(a)). 
Subsequently, the result of the CCK8 assay indi-
cated that miR-142-3p inhibitor reversed the inhi-
bitory effect of siRNA-circHECTD1 on 
proliferation (Figure 5(b)). Moreover, wound heal-
ing and Transwell assays showed that the addition 
of miR-142-3p inhibitor reversed the inhibition of 

Figure 4. circHECTD1 interferes with miR-142-3p, promoting its expression. (a) circHECTD1 expression in the cytoplasm and nucleus. 
(b) circHECTD1-miR-142-3p binding predicted by Starbase database. (c) miR-142-3p expression detected by RT-qPCR. ***P < 0.001 
versus miR-NC; n = 3. (d) circHECTD1-miR-142-3p binding detected by luciferase reporter assay. ***P < 0.001 versus wt-circHECTD1 
+ miR-142-3p NC; n = 3. (e) miR-142-3p expression detected by RT-qPCR in the three groups. ***P < 0.001 versus siRNA-NC; n = 3.
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migration and invasion, respectively, caused by 
siRNA-circHECTD1 (Figure 5(c–f)).

miR-142-3p inhibitor reverses the effect of 
circHECTD1 knockdown on fibrosis and 
expression of TGF-β/SMAD signaling

To verify whether the miR-142-3p inhibitor also 
reverses fibrosis and TGF-β/SMAD signaling, RT- 
qPCR and western blotting were employed to 
determine the expression of collagen I, collagen 
II, and α-SMA, accompanied by immunofluores-
cence for α-SMA. The results demonstrated that 
the expression in the siRNA-circHECTD1 with 
NC group decreased, and the trend reversed 
when miR-142-3p was inhibited (Figure 6(a,b)). 
And the fluorescence of the miR-142-3p inhibitor 
group was greater than the NC group 
(Figure 6(c)). In addition, the expression levels of 

TGF-β and SMADs were assessed using western 
blotting. TGF-β, p-Smad2, and p-Smad3 levels in 
the miR-142-3p inhibitor group were elevated, 
which again activated TGF-β/SMAD signaling 
(Figure 7).

circHECTD1 acts on scar fibrosis through 
miR-142-3p/HMGB1

To verify the direct targets of miR-142-3p, 
TargetScan was run to predict the putative target 
of miR-142-3p. It was found that there was com-
plementarity between miR-142-3p and HMGB1 3’- 
UTR (Figure 8(a)). Therefore, a luciferase reporter 
assay was conducted to affirm if miR-142-3p tar-
gets HMGB1. Luciferase activity in only the wt- 
HMGB1 with miR-142-3p mimic group decreased, 
indicating possible binding between miR-142-3p 
and HMGB1 (Figure 8(b)). Finally, RT-qPCR and 

Figure 5. miR-142-3p inhibitor reverses the effect of circHECTD1 knockdown on proliferation, invasion, and migration. (a) The miR- 
142-3p inhibitor was constructed and its effectiveness checked by RT-qPCR. ***P < 0.001 versus siRNA-circHECTD1 + inhibitor-NC; 
n = 3. (b) Proliferation expressed as OD values using CCK8 assay. **P < 0.01, ***P < 0.001 versus Control; ##P < 0.01, ###P < 0.001 
versus siRNA-circHECTD1 + inhibitor-NC; n = 3. (c) Cell migration and (d) invasion detected by wound healing and Transwell assay, 
respectively. ***P < 0.001 versus Control; #P < 0.05, ###P < 0.001 versus siRNA-circHECTD1 + inhibitor-NC; n = 3.
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western blotting were used to detect the expression 
of HMGB1 to verify whether miR-142-3p inhibitor 
reverses the effect of circHECTD1 knockdown on 
HMGB1 expression. Just as anticipated, HMGB1 
expression decreased in the siRNA-circHECTD1 
group and the reduction was reversed when miR- 
142-3p was inhibited (Figure 8(c)).

Discussion

HS is a fibrotic disease characterized by the activa-
tion and over-proliferation of fibroblasts and is 
often considered a benign skin tumor [37]. It can 
cause continuous itching and pain. In severe cases, 
sequelae, such as organ dysfunction or physical 
deformity may occur, which arises physical and 
psychological burdens [38,39]. Despite treatments, 

such as laser, resection, and compression [40,41], 
it is difficult to completely cure [42]. Establishing 
the mechanism of HS formation requires further 
investigation. Since the excessive abnormal prolif-
eration of fibroblasts majorly contributes to the 
occurrence and development of HS [43–45], inhibit-
ing the proliferation, migration, and invasion of 
HSF could be an effective way to treat HS.

Collagen, an ECM component produced by 
fibroblasts, interacts with integrin receptors to reg-
ulate gene expression, cell proliferation, and even 
differentiation. RT-qPCR results showed that col-
lagen I, collagen II, and α-SMA mRNAs were high 
in HSF. Moreover, human HS fibrous skin tissue 
also showed high expression of these mRNAs.

CircRNAs are widely expressed non-coding 
RNAs, playing vital roles in glioma, liver cancer, 

Figure 6. miR-142-3p inhibitor reverses the effect of circHECTD1 knockdown on fibrosis and TGF-β/SMAD signaling. (a) Collagen I, 
collagen II, and α-SMA mRNA expression detected by western blot, and (b) RT-qPCR. (c) α-SMA expression detected by immuno-
fluorescence. ***P < 0.001 versus Control; #P < 0.05, ##P < 0.01, ###P < 0.001 versus siRNA-circHECTD1 + inhibitor-NC; n = 3.
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gastric cancer, and lung fibrosis. CircHECTD1 can 
promote pulmonary fibrosis in silicosis by regulat-
ing the activation and migration of fibroblasts 
[17]. In healthy human skin tissue and HS, using 

high-throughput RNA sequencing, 11 circRNA 
genes, showing significant differential expression, 
were filtered from 3649 lncRNA genes [46]. We 
found that circHECTD1 was up-regulated in HSF. 

Figure 7. miR-142-3p inhibitor reverses the effect of circHECTD1 knockdown on fibrosis and TGF-β/SMAD signaling. TGF-β, SMADs 
expression detected by western blot. ***P < 0.001 versus control, ##P < 0.01, ###P < 0.001 versus siRNA-circHECTD1 + inhibitor-NC; 
n = 3.

Figure 8. circHECTD1 acts on scar fibrosis through miR-142-3p/HMGB1. (a) TargetScan database shows complementarity between 
miR-142-3p and HMGB1 3’-UTR. (b) miR-142-3p targets HMGB1 verified by luciferase reporter assay. ***P < 0.001 versus wt-HMGB1 
+ miR-142-3p NC; n = 3. (c) HMGB1 expression detected by RT-qPCR and western blot. ***P < 0.001 versus control, ###P < 0.001 
versus siRNA-circHECTD1 + inhibitor-NC; n = 3.
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Thus, using RT-qPCR, western blot, and immuno-
fluorescence, we found that loss of function of 
circHECTD1 could inhibit the proliferation, inva-
sion, and migration of HSF, thus inhibiting 
fibrosis.

TGF-β can directly provoke the generation of 
proteins, such as collagen and fibronectin, and 
adjust their stability by changing the balance 
between matrix metalloproteinases (MMPs) and 
their inhibitors. TGF-β1 was first thought to 
induce the proliferation of normal mouse fibro-
blasts and accelerate the closure of incision 
wounds in mice [47]. It activates Smad family 
proteins by binding to TGF-β1 R. The activated 
Smad proteins transduce the TGF-β1 signal to the 
nucleus and regulate gene expression [48]. 
A previous study indicated that the collagen 
expression in Smad3 knockout rats was declined 
compared with that in the normal rat, and fibrosis 
was slowed down [49]. To find out if circHECTD1 
affects TGF-β/Smad signaling, the expression of 
TGF-β and Smads in transfected HSF was 
assessed. The decline in expression indicated that 
circHECTD1 knockdown inhibited TGF-β/Smad 
signaling. We concluded that CircHECTD1 could 
affect HSF fibrosis and inhibit TGF-β/Smad sig-
naling, however, the specific mechanism is not 
known.

CircRNAs sponge miRNAs by competing for 
miRNA binding sites, thereby reducing the 
expression of targeted mRNAs. Previous 
research has shown that miR-142-3p affects 
lung fibroblasts [50,51]. Exosomes derived 
from macrophages counteract lung fibrosis by 
delivering anti-fibrotic miR-142-3-p to alveolar 
epithelial cells and fibroblasts [52]. Herein, fol-
lowing the confirmation of the association 
between circHECTD1 and miR-142-3p, the exp- 
ression of miR-142-3p following circHECTD1 
knockdown was evaluated. We found that the 
knockdown promoted the expression of miR- 
142-3p, and miR-142-3p inhibitor reversed the 
effects of circHECTD1 knockdown on prolif-
eration, migration, invasion, fibrosis, and sig-
naling. Our results identified with the results of 
the aforementioned investigations that have 
shown miR-142-3p expression inhibits pulmon-
ary fibrosis.

Furthermore, the TargetScan database predicted 
the miR-142-3p target, HMGB1. The prediction was 
certified through a luciferase reporter assay. RT- 
qPCR and western blotting were used to detect 
HMGB1 expression when circHECTD1 knockdown 
alone or with miR-142-3p suppression. Apparently, 
miR-142-3p inhibitor reversed the effect of 
circHECTD1 on HMGB1 expression. Of note, 
whether miR-142-3p is the only target of 
circHECTD1 in scar fibrosis merits further research.

Conclusion

To sum up, loss of circHECTD1 function inhibits 
TGF-β/Smad signaling through miR-142-3p/ 
HMGB1 and suppresses a fibrotic phenotype 
within HS fibroblasts. This article is the first to 
study the role of circHECTD1 in HS, which 
enriches the knowledge of HS pathology.
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