
1.  Introduction
COVID-19 continues to pose a considerable threat to the global public health and economy. We also see a resur-
gence of COVID-19 cases in the early winter of 2021–2022, with the epidemic trajectories varying in different 
parts of the world. Most scientists agree that it is near-impossible to eliminate the virus worldwide in 2022 or 
even beyond, but the future impacts will depend on the duration of the immune response after vaccination or 
recovery from infection, social mixing patterns now and in the future, and what preventative measures we put in 
place (Scudellari, 2020).

Similar to other endemic human coronaviruses, the transmission of COVID-19 are associated with various 
factors, including but not limiting to climatic factors (Alam & Sultana, 2021; McClymont & Hu, 2021), such as 
temperature, humidity (Adhikari et al., 2020; Fu et al., 2020), air pollution (Zheng et al., 2021), UV radiation 
(Karapiperis et al., 2020) and wind speed (Islam et al., 2020); demographic variables such as population size 
(Baker et al., 2020), density (Metelmann et al., 2021), age structure (Monod et al., 2021); socio-economic factors 
such as GDP (Sarmadi et al., 2020). These factors not only determine how SARS-CoV2 spread in the pandemic 
but also how effective each country's response is against the virus (Arsalan et al., 2020). Furthermore, we have 
seen that the timing and intensity of intervention actions against COVID-19 have varied considerably across 
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countries, and mobility patterns (Cartenì et  al.,  2020; Li et  al.,  2021) were also associated with COVID-19 
spread. To date, the published literature accessing the associations between transmissibility of SARS-CoV-2 
and the climatic determinants, demographic factors and disease control variables either conducted analysis at 
national scales (Zheng et al., 2021), focused on meteorological factors (Sera et al., 2021), or ignored the temporal 
heterogeneity in transmission across countries (Metelmann et al., 2021). In addition, there is a scarcity of studies 
that compare and quantify the relative importance of different groups of factors in determining the variation of 
SARS-CoV-2 transmission. Moreover, since the epidemic trajectories differed by countries, it is important to 
understand the differences in the association between mobility and transmissibility of SARS-CoV-2.

In this study, we built a comprehensive statistical framework where the potential factors affecting COVID-19 
transmission, as long as the data are accessible, are carefully accounted for. The spatiotemporal randomness in 
transmission, and the country-level random effects of population mobility are also included. The overall aim 
is  to develop a statistical model in order to analytically determine and assess the relative contribution of climatic, 
demographic and disease control attributes to explain the variation of COVID-19 transmission across the world. 
The findings of this work could provide decision-makers new insights to coordinate global suppression efforts 
and resources against COVID-19.

2.  Materials and Methods
2.1.  Data Resource

We used a data set provided by Bhoopchand et al. (2020), which consolidates country-level COVID-19 data from 
multiple sources, and contains metadata on infection cases, tests, non-pharmaceutical interventions, mobility 
statistics, weather patterns, among many others, for up to 170 countries.

2.2.  Data Processing

We removed the countries and days having missing values for the variables that we needed, a data set for 87 
countries was eventually retained. This data set covers approximately the first half of 2020, and data on climatic 
variables are averaged across a list of representative major cities, a weighted average was then computed propor-
tionally to population size associated with individual data points. Greater details can be found on Bhoopchand 
et al. (2020). The extent of transmission greatly varied across the study countries worldwide, as shown by the 
colorful dots on Figure 1. Our study area covers 87 countries across six continents excluding Antarctica. Euro-
pean countries have a good amount of data, so that most of them were retained in our data set. The Chinese 
mainland is not included in the data set, since it uses a different standard to measure the population mobility.

We assembled a set of covariates that potentially explain variation in global COVID-19 transmission and classify 
them into three broad categories: climatic, demographic and disease-control related. Below is a full list of the 
covariates that we considered as candidate explanatory variables. Factor descriptions can be reviewed on https://
rs-delve.github.io/data_software/global-dataset.html. Further details on the retained covariates data, including 
the correlation among the covariates, are given in the Support Information. The weekly average values were then 
calculated for all the variables and for each country, where the first week starts on the first Monday in 2020 (the 
weeks are defined as ISO week, and calculated with R package “aweek”). By taking such smoothing for climatic 
variables, we are aware that this might mask the true effects of climatic factors at finer scales, since the regional 
climate varies significantly within large countries like Australia and America. The number of confirmed cases 
is the outcome variable, and the number of tests is assumed to offset the effect of under-reporting of confirmed 
cases. The number of confirmed cases in a previous period is included as a covariate to compensate for the effects 
of any missing factors. In the raw data set, there are other non-pharmaceutical variables that can be classified 
into disease control measures, but they are statistically significant correlated with the variables we retained. For 
example, we remove relative humidity due to its high correlation (cor ≈ 0.86) with temperature. We also removed 
intervention stringency index due to its high correlation (cor  ≈  −0.72) with population mobility, less model 
fit improvement than population mobility, and itself is an aggregation of other variables including debt relief, 
heath  investment and contact tracing. The variables we eventually considered in the data analysis include:

1.	 �Response variable: number of confirmed cases
2.	 �Climatic variables: temperature, wind speed, UV radiation;
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3.	 �Demographic variables: population size, population density, population median age;
4.	 �Disease control measures: number of COVID-19 tests, population mobility restriction (Google COVID-19 

Community Mobility, data stream “retail and recreation”), debt relief (larger debt relief index means that 
government freeze more financial obligations, e.g., stopping loan repayments, preventing services like water 
from stopping, or banning evictions), health investment (short term spending on healthcare system, e.g., 
hospitals, masks, etc), contact tracing;

5.	 �Temporal variables: number of days since the first case confirmed, number of confirmed cases in previous 
week.

To prevent the effect of one factor dominating the others, and our interest is the relative effects instead of abso-
lute effects, therefore, all covariates are standardized to be on the same scale (have a mean of 0 and a standard 
deviation of 1). In addition, it is worth mentioning that some factors might have lagged effect on confirmed cases. 
Therefore, we also considered 1 week and 2 weeks lagged population mobility, contact tracing, debt relief, health 
investment, as well as lagged climatic factors in the model. The response variable, weekly average number of 
cases, is base 10 logarithmic transformed to be closer to Gaussian distribution. Gaussian distribution assumption 
is made for the response variable instead of Poisson or Negative-binomial distribution (usually used for count 
numbers) due to the high auto-correlation, low mean and high variance in response. In addition, we found that the 
geometric shape of posterior likelihood with Poisson and Neg-binomial are extremely challenging for sampling 
probably due to light tails and thus potentially leads to an incomplete exploration of the target distribution and 
model convergence problems.

2.3.  Data Analysis

A mixed-effect statistical model is constructed in this study. In addition to the fixed effects mentioned in 
Section 2.2, we also add country-level random intercepts and random slopes on the number of days since the 

Figure 1.  Mapped locations of all 87 countries examined. Dot color indicates the value of log-transformed accumulative number of cases within the study period (vary 
from country to country, from 6 to 21 weeks). A base 10 log-transformation was conducted in order to better graphically visualize the countries with small number of 
cases. Darker and larger dots indicating more confirmed cases. Dots are centered on the capital of each country.
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first case confirmed, and on the quadratic number of days, to account for the temporal correlation between 
observations in a given country and capture the various curvilinear patterns in transmission trajectories among 
the countries (see Figure S3 in Supporting Information  S1). Random effects of population mobility are also 
included to see if country-specific effect of population mobility on COVID-19 transmission exists. Temperature 
can also be assumed to random effect, but it is correlated with time (number of days since first confirmed case) 
and contribute less in model fit improvement than the latter, therefore, it is assumed to be fixed effect instead. 
Besides, in order to account for time-varying volatility and temporal auto-correlation in the response variable, 
three assumptions on the types of errors are tested: (a) Gaussian i.i.d distributed; (b) autoregressive conditional 
heteroscedasticity process with one lag (ARCH(1) (Bollerslev, 1986); (c) autoregressive conditional heterosce-
dasticity process with two lags (ARCH(2)). Let ϵt denotes the error terms at time point t in a given country, and 
σt is the corresponding standard deviation. In a ARCH(q) model, the series 𝐴𝐴 𝐴𝐴

2

𝑡𝑡
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𝜎𝜎
2

𝑡𝑡
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where parameter α0 > 0, αi ≥ 0, i ≥ 0, and q is the length of ARCH lags. When the parameters α1 to αq are set to 
0, the errors reduce to be Gaussian distributed with variance α0.

The statistical model formulated above (full model) is one of the models we implemented with the data set. There 
is no R package ready to be used for fitting such a model with such a complex structure (mixed effects together 
with ARCH errors), we instead define the model with R package TMB (Kristensen et  al.,  2016), which was 
developed for fitting linear, non-linear and complex statistical latent variable models. The model is formulated in 
C++ to have greater flexibility. We used marginal AIC (mAIC) based on information theory to assess the data 
support for the candidate models. Following Cao et al. (2019), we constructed the candidate models by adding the 
covariates to the model one by one, retaining the covariate if mAIC value was lowered, otherwise the covariate 
was removed from the model. The fixed effects entered into the model before random effects, and either lagged 
factors or non-lagged factors were kept in the model, depending on how much they improve model fit. The best 
model with the lowest mAIC value was selected through two-way mAIC comparison. To avoid the impact of the 
order that the variables entered into the model, we adjusted the selected model by adding or removing variables 
from it. By checking the model fit of such neighbor models (Table S1 in Supporting Information S1), we are 
certain that the selected model was the best one among the candidate models we have tested. The estimates of the 
parameters in each model, together with their standard errors were provided by the package.

We did several sets of prespecified secondary analyses to gain more insights into the results. For comparison 
purpose, we also used backward elimination, as an alternative method to conduct model selection. It turned out 
that the selected model and parameter estimates by the two methods are close. The details are given in Support-
ing Information. Additionally, we also fitted a model where the outcome variable is the daily growth rate of 
confirmed cases, as did in Kronfeld-Schor et  al.  (2021), but no statistically significant factors were detected 
except for population mobility (see Supporting Information S1 for details).

3.  Results
Compared with the saturated model with a full set of covariates, the selected model removed humidity, wind 
speed, GDP, population density, and healthcare investment from the saturated model, since they did not improve 
the model fit (see model N3, model N4, N7, N15 and model N16, N17, N18 in Table S1 in Supporting Infor-
mation S1). Furthermore, all of the random effects turned out to improve the model fit, and the model reports 
Gaussian i.i.d errors. The selected mixed-effect model is given by:
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where i (i = 1, 2, …, 1476) indicates all of the data points in our analyzed data set and j is the index for the 
country, j = 1, 2, …, 87. In this model, random intercept, random slope of days, quadratic days and mobility for 
country j are denoted by 𝐴𝐴 𝐴𝐴

(0)

𝑗𝑗(𝑖𝑖)
 , 𝐴𝐴 𝐴𝐴

(days)
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𝑗𝑗(𝑖𝑖)
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𝑗𝑗(𝑖𝑖)
 and they are assumed to be normal distributed with variance 

being 𝐴𝐴 𝐴𝐴
2

intercept
 , 𝐴𝐴 𝐴𝐴

2

days
 , 𝐴𝐴 𝐴𝐴

2

days_sq
 , 𝐴𝐴 𝐴𝐴

2

mobility
 respectively. The meaning of other parameters can be seen in Table 1.

Table 1 gives a summary of the estimates of parameters retained in the selected model. The effects of the covari-
ates could be compared through the parameter estimates since all of the covariates are standardized. The positive 
estimates of βUV (0.047 ± 0.013), βpopulation (0.204 ± 0.081), βnewtests (0.125 ± 0.058) and βdebtrelief (0.029 ± 0.018) 
suggest positive association between the number of confirmed cases and UV level, population size, number of 
new tests and debt relief. The negative estimated effects of temperature (−0.058 ± 0.028), median age of popula-
tion (−0.127 ± 0.076), population mobility (−0.128 ± 0.015) and contact tracing (−0.051 ± 0.02) imply negative 
associations with weekly reported number of cases. Lagged effects are not detected for the covariates (model N1, 
N2, N10, N11, N13, N14, and N16, N17 in Supporting Information report worse model fit).

As mentioned in the last section, curvilinear temporal patterns of transmission dynamics are observed in most 
of the study countries (see the blue curves in Figure S3 in Supporting Information S1, implying that a quadratic 
coefficient of days should be considered). In addition, the curvilinear patterns in the study countries show signif-
icant differences, so that country-level random slopes on the quadratic days are included. Figure 2b displays the 
estimated random effects on quadratic days for each study country. The positive effect implies convex curve in 
transmission dynamics, for example, the log-transformed weekly confirmed cases in Luxembourg (the upper 
right plot, black dots are observations, blue line is the estimated value and gray band is the corresponding 95% 
confidence interval). In contrast, the negative effect suggests concave pattern, as shown for Belarus in the lower 
right corner. Thus, the estimated random temporal effects allow us to describe the country-specific transmission 
patterns without looking at the data. The heterogeneity in the transmission patterns (up-down or down-up, e.g.,) 
likely reflects differences in the interventions each country has implemented.

The selected model also reports a significant variance of random slopes on population mobility (𝐴𝐴 𝐴𝐴𝐴
2

mobility
 equals 

to 0.034 ± 0.01). By adding the estimated fixed slope of mobility to the estimated random slope for each coun-
try respectively, we can see from Figure 2a that, most of the study countries report statistically non-significant 

Parameter Estimate ± s.d. Description

𝐴𝐴 𝛽𝛽0  2.1 ± 0.075 Fixed intercept

𝐴𝐴 𝛽𝛽temp  −0.058 ± 0.028 Effect of temperature

𝐴𝐴 𝛽𝛽uv  0.047 ± 0.013 Effect of UV radiation

𝐴𝐴 𝛽𝛽populations  0.204 ± 0.081 Effect of population size

𝐴𝐴 𝛽𝛽mage  −0.127 ± 0.076 Effect of population medium age

𝐴𝐴 𝛽𝛽newtests  0.125 ± 0.058 Effect of number of new tests

𝐴𝐴 𝛽𝛽mobility  −0.128 ± 0.015 Effect of population mobility

𝐴𝐴 𝛽𝛽contatracing  −0.051 ± 0.02 Effect of contact tracing

𝐴𝐴 𝛽𝛽debtrelief  0.029 ± 0.018 Effect of debt relief

𝐴𝐴 𝛽𝛽pweekcases  0.232 ± 0.017 Effect of no. cases of previous week

𝐴𝐴 𝛽𝛽days  0.296 ± 0.042 Fixed temporal effect

𝐴𝐴 𝐴𝐴𝐴
2

intercept
  0.47 ± 0.077 Variance of country-level random intercepts

𝐴𝐴 𝐴𝐴𝐴
2

days
  0.11 ± 0.021 Variance of country-level random slopes on days

(number of days since first case confirmed)

𝐴𝐴 𝐴𝐴𝐴
2

days_sq
  0.043 ± 0.008 Variance of country-level random slopes on quadratic days

𝐴𝐴 𝐴𝐴𝐴
2

mobility
  0.034 ± 0.01 Variance of country-level random slopes on population mobility

𝐴𝐴 𝐴𝐴𝐴
2

noise
  0.035 ± 0.0015 Variance of Gaussian noise

Table 1 
Estimates of the Parameters in the Selected Model
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Figure 2.  Plot (a) shows the estimated random slopes on population mobility for each study country. The two boxes on the 
right present the data on population mobility, number of weekly cases and cross correlation between mobility and cases for 
Nepal and Belarus respectively. Plot (b) displays the estimated random slopes on quadratic days (the number of days since 
first confirmed case) for each study country. The two boxes on the right indicate the log-transformed weekly number of cases 
for Luxembourg and Belarus respectively.
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effects, indicating by the horizontal bars (95% confidence interval) for the 87 countries. Only Nepal and South 
Africa show a statistically positive effect of population mobility on transmission, whereas Belarus, Croatia, and a 
few other countries report negative effects of mobility. We also present the data on population mobility, number 
of weekly cases and cross correlation between mobility and cases for Nepal and Belarus respectively, as can be 
seen on the right of Figure 2a, to convey an intuition that why opposite effects of mobility are reported for differ-
ent countries. Such difference likely reflects the heterogeneities in the relative reductions in mobility required to 
achieve COVID-19 control across the countries.

The pie charts in Figure 3 graphically display the proportion of explained variance by each component in the 
selected model. The left pie chart shows collective proportions of explained variance from all the components in 
the model, and the right pie chart focus on the fixed effects in the selected model. The explained variation by each 
component in the selected model is estimated with the third measure introduced in Xu (2003), which is based 
on the Kullback-Leibler information gain and proposed by Kent (1983). More details on variance decomposition 
method used in this study can be found in Supporting Information.

The blue part on the left pie chart indicates that the random effects make largest contribution to accounting for the 
response variance (49.9%), fixed effects contribute 20.5% and unexplained variance 29.6%. The large proportion 
of variance accounted for by random effects reflects the apparently random trajectories of infection dynamics 
across countries. The random temporal effects (aggregation of random effects of days and random effects of quad-
ratic days) can be understood as each country having its own temporal transmission pattern and the proportion 
of variance in the response variable accounted for by random temporal effects is as large as 34.2%. We have seen 
in the last section that some countries report a negative relationship between mobility and infection, other coun-
tries (e.g., Nepal, South Africa) report a positive association, such variation accounts for 4% of the variance in 
global transmission. Among the fixed effects factors shown on the right chart in Figure 3, climate variables only 
explain 1.1% of the variance in global transmission of COVID19, followed by demographic variables (0.59%). 
In contrast, disease control measures explain much higher proportion of the variance (4.42%). It is not surprising 
that the number of confirmed cases in the previous week is the most important fixed effect factor (explain 11.8% 
of the variance), followed by population mobility (4%) and the number of days since first confirmed case (2.6%). 
Temperature and population median age are the least important factors, only explains 0.28% and 0.19% of the 
variance in global transmission respectively.

Figure 3.  The left pie chart denotes collective proportion of variance explained by all the components (fixed effects, random effects, and unexplained variance). The 
right pie chart zooms out the variance explained by each group of factors (climate, demography and disease control measures), together with individual covariate in 
each group.
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4.  Discussion
As of 29 December 2021, over eight billion vaccine doses have been administered in the world (Ritchie 
et al., 2020), but a lot of countries, especially the most European countries, are still experiencing flare-ups in 
COVID-19 infections. As we have shown in this study, half of the variance in global transmission across the coun-
tries can only be accounted for by the spatiotemporal heterogeneity in transmission, making prediction of virus 
transmission patterns across the world in short term challenging. In the early stage of the pandemic, the trans-
missions shows no regional characteristics. The down-up trend in transmission might be spotted in any country, 
regardless of geographic location, including northern-hemisphere countries such as Luxembourg, Switzerland, 
or southern-hemispheric countries, like Australia and New Zealand. The substantial spatiotemporal stochasticity 
and variability across countries in transmission patterns are characterized and quantified by the random country 
effects in our study, turned to account for half of the global variation in transmission.

In this study, we highlight the relative importance of three groups of factor associated with COVID-19 transmis-
sion, in descending order, that are disease control measures (population mobility restrictions, contact tracing, 
new tests and debt relief), climatic factors (temperature and UV radiation) and demographic factors (popula-
tion median age and population size). We also reported positive associations between weekly confirmed infec-
tion cases with UV radiation, population size, number of new tests and debt relief, and negative associations 
with temperature, population median age, population mobility and contact tracing. The overall findings of our 
study are qualitatively in line with the finding in prior studies investigating the impact of various factors that 
influence COVID-19 transmission, as summarized in Supporting Information, although most of these studies 
did not provide effect sizes associated with COVID-19 transmission that allow direct comparison. One excep-
tion is UV radiation, which has been shown to affect COVID-19 transmission though viral inactivation in lab 
study (Ratnesar-Shumate et al., 2020) and been reported to negatively associated with transmission (Carleton 
et al., 2021; Metelmann et al., 2021). While our inconsistent finding (positive association) is likely the result of 
the fact that most of the study countries in the Northern Hemisphere saw an increase in weekly confirmed cases 
when approaching summer, and UV rays get stronger meanwhile. This leads to a positive association between 
infection cases and UV radiation. In contrast, even though temperature is positively correlated with UV radiation 
(cor ≈ 0.51), the estimated effect of temperature turned to be negative. The potential causal pathway between debt 
relief to transmission might be that lower financial obligations (e.g., banning evictions) lead to more social activ-
ities and contacts. Furthermore, even though the role of weather conditions, especially temperature and humidity, 
are recognised to affect the virus activation in lab studies (Morris et al., 2021; Riddell et al., 2020, e.g.,) and in 
modulating the disease transmission in the real world (Mecenas et al., 2020; Majumder & Ray, 2021, e.g.), our 
study has shown that these environmental drivers were not able to curb transmission when the transmissibility is 
high and immunity is low in the early stage of COVID-19 pandemic. We found that non-pharmaceutical inter-
ventions have a stronger impact on transmission over space and time than any environmental driver. Identifying 
seasonality in COVID-19 infections, whether induced by environmental and physiological factors, requires care-
ful investigation on the relative importance of drivers (Kronfeld-Schor et al., 2021) and will be more evident in 
subsequent years (Smit et al., 2020).

Our study also highlighted country-specific association between weekly number of cases and population mobil-
ity. Interestingly, in the majority of countries with statistically significant effects of mobility, we found clear 
evidence of a negative relationship between transmission and mobility, this likely suggests that the reduction in 
mobility have been insufficient to hold transmission. We also see that the control strategies were insufficient to 
reduce mobility so that both mobility and infections were growing in countries such as Nepal and South Africa 
during the study period. The different effects of mobility might be the result of the substantial heterogeneity 
between countries of mobility thresholds to interrupt transmission, which might reflect socio-cultural differences 
and/or different response to the intervention measures that each country implemented (Nouvellet et al., 2021). 
In addition, the country-level random effects that we included in the analysis not only account for a large portion 
of global transmission variation, but also enable us to straightforwardly depict the country-specific transmission 
trajectory characteristics (up and down, or down and up, e.g.).

Our study had several strengths. First, we assembled a long list of factors that might be associated with COVID-19 
transmission, and the effects of missing variables are compensated by the number of confirmed cases in the 
previous period. Second, the integrated country-level random effects not only characterized the country-specific 
transmission trajectory, but also accounted for half portion of global variation in transmission, leaving only a 
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small portion (29.6%) of variation unexplained. Third, by pooling data from 87 countries across a period of more 
than 6 months, we were able to assess the association between each factor and COVID-19 transmission with 
substantial statistical power, and explore the global spatiotemporal heterogeneity in transmission simultaneously, 
which has been rarely done by previous studies. Finally, we incorporated two secondary analyses (one is using an 
alternative model selection method, another is using daily growth rate of confirmed cases as outcome variable) 
to reflect the statistical uncertainty around the selected model and parameter estimates, and gain more insights 
into the results.

However, our study also must balance between appropriate spatiotemporal resolution (Zeka et al., 2020) and data 
availability. Due to limited data availability, the geographic resolution in this study is at country-level instead of 
finer scales. For example, data on the number of daily new tests are only easily accessible at country-level, but 
it turned out to be an important covariate according to our preliminary analysis, and a similar situation applies 
to other factors, such as population median age. We are aware that this may lead to the result less reliable. We 
hope that the data analysis could be done when city-level data on all the variables are accessible without too 
much efforts for researchers. Dislike other studies where the region-specific R values were calculated for a time 
window and used the estimated R values as the outcome variable, we used weekly number of confirmed cases 
as the response. Even though this allows us to depict the temporal trend of transmission, meanwhile, we neglect 
the biases in the data due to the potential time lag between infection confirmation and data recording. Besides, 
this study analyzes six months of case data during the early stage of the epidemic with quality varying between 
countries, therefore, the interpretation of the estimated effect of climatic factors has to be conservative since the 
seasonality of COVID-19 transmission can only be accurately detected when longer time series data are available.

To date, we have observed that a vaccination programme, even though with a gradual increase in coverage to 
over 70% in some countries, could not fully contain resurgence, creating a chance for new SARS-CoV-2 variants 
to emerge. Additionally, the interaction between SARS-CoV-2 and other seasonal respiratory viruses is rarely 
understood, and seasonal characteristics could not effectively curb transmission in summer. All of these implied 
the important role of mobility restrictions and physical distancing in this pandemic combat, but governments 
must remain vigilant and evidence-informed in the effectiveness of mobility restrictions. Careful evaluation of 
mobility-transmission association should be ongoing in order to modulate prevention policies accordingly. Other 
disease interventions measures, including contact tracing, new tests, masks wearing, are also proved to be effec-
tive in holding transmission and should remain in force regardless of the weather or vaccination coverage. As 
the virus continues to evolve, it will be necessary to repeat our analysis using longer time series data on finer 
geographical scales from genomic surveillance of SARS-CoV-2 to understand the effects of various factors on 
virus transmission after vaccination.
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