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Objective: To investigate the imaging and biodistribution of a novel zirconium-89

(89Zr)-labeled mouse anti-cd20 monoclonal antibody (mAb) in control and experimental

autoimmune encephalomyelitis (EAE) mice following subcutaneous (s. c.) and

intravenous (i.v.) administration.

Background: Anti-cd20-mediated B-cell depletion using mAbs is a promising

therapy for multiple sclerosis. Recombinant human myelin oligodendrocyte glycoprotein

(rhMOG)-induced EAE involves B-cell-mediated inflammation and demyelination in mice.

Design/Methods: C57BL/6J mice (n = 39) were EAE-induced using rhMOG. On Day

14 post EAE induction, 89Zr-labeled-anti-cd20mAbwas injected in control and EAEmice

in the right lower flank (s.c.) or tail vein (i.v.). Positron emission tomography/computed

tomography (PET/CT) imaging and gamma counting (ex vivo) were performed on Days

1, 3, and 7 to quantify tracer accumulation in the major organs, lymphatics, and central

nervous system (CNS). A preliminary study was conducted in healthy mice to elucidate

full and early kinetics of the tracer that were subsequently applied in the EAE and control

mice study.

Results: 89Zr-labeled anti-cd20 mAb was effectively absorbed from s.c. and i.v.

injection sites and distributed to all major organs in the EAE and control mice. There

was a good correlation between in vivo PET/CT data and ex vivo quantification

of biodistribution of the tracer. From gamma counting studies, initial tracer uptake

within the lymphatic system was found to be higher in the draining lymph nodes

(inguinal or subiliac and sciatic) following s.c. vs. i.v. administration; within the CNS a

significantly higher tracer uptake was observed at 24 h in the cerebellum, cerebrum,

and thoracic spinal cord (p < 0.05 for all) following s.c. vs. i.v. administration.

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2019.02437
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2019.02437&domain=pdf&date_stamp=2019-10-18
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:r.bhalla@uq.edu.au
mailto:d.reutens@uq.edu.au
https://doi.org/10.3389/fimmu.2019.02437
https://www.frontiersin.org/articles/10.3389/fimmu.2019.02437/full
http://loop.frontiersin.org/people/823626/overview
http://loop.frontiersin.org/people/682671/overview
http://loop.frontiersin.org/people/754249/overview
http://loop.frontiersin.org/people/112868/overview


Migotto et al. MANGOfa Study

Conclusions: The preclinical data suggest that initial tracer uptake was significantly

higher in the draining lymph nodes (subiliac and sciatic) and parts of CNS (the cerebellum

and cerebrum) when administered s.c. compared with i.v in EAE mice.

Keywords: radiolabeling, positron emission tomography imaging, monoclonal antibody, neuroimaging,

biodistribution, experimental autoimmune encephalomyelitis, subcutaneous, intravenous

INTRODUCTION

Multiple sclerosis (MS) is an inflammatory, demyelinating
autoimmune disease of the central nervous system (CNS) that
typically affects the brain and spinal cord (1). Inflammation in
early MS pathogenesis is primarily mediated by activated B cells
with secondary involvement of T cells (2–8). B cells are produced
in the bone marrow, activated in secondary lymphoid organs
such as lymph nodes (LNs) and the spleen (5), and play an
important role in recognizing and presenting autoantigens to T
cells that are involved in MS pathogenesis (4, 9). In addition,
presence of B- and T-cell rich tertiary lymphoid structures in
the meninges of patients with MS suggest involvement of B-
and T-cell interactions that eventually contribute to sustained
inflammation in the CNS (10). B cells regulate the activation and
differentiation of myeloid antigen-presenting cells and T cells by
secretion of distinct pro- and anti-inflammatory cytokines (9,
11). Besides differentiating into autoantibody-producing plasma
cells (12), activated B cells express high levels of costimulatory
molecules (13) promoting pro-inflammatory differentiation of
responding T cells (14), which is likely to contribute directly to
development and progression of MS.

CD20 is a surface antigen that is expressed on most B-
cell subsets, except pro-B cells, and plasma cells (5, 8). Anti-
CD20 therapies selectively deplete CD20+ B cells to reduce
inflammation via 3 major mechanisms: complement-dependent
cytotoxicity (CDC), antibody-dependent cellular cytotoxicity,
and direct cell death pathways (4, 8, 15). Anti-CD20 monoclonal
antibodies (mAbs) targeting CD20+ B cells have shown
promising results in patients with relapsing-remitting MS (16–
18). Use of high-dose intravenous (i.v.) anti-CD20 therapies
have shown to achieve maximal long-term B-cell depletion
but with slow cellular recovery time (18–20). For mAb-based
immunotherapy, subcutaneous (s.c.) administration is preferred
over the i.v. route because s.c. route offers unrestricted drainage
from the interstitial space allowing mAbs to be absorbed
through the lymphatic system (21–23), achieve high localized
concentrations in LNs more rapidly (23, 24) and effectively target
LNs, where autoreactive B cells interact with autoreactive T
cells (2).

Ofatumumab, the first fully human investigational anti-CD20
mAb, has shown potent effector activity (6, 25) at monthly
low-dose s.c. administration (26, 27). Ofatumumab binds to
a distinct non-continuous CD20 epitope, giving rise to a low
off-rate and high avidity resulting in a highly efficient CDC
activity. Currently, two Phase 3 trials of ofatumumab are
ongoing in patients with relapsing MS (28–30). In preclinical
studies, administration of low-dose s.c. vs. high-dose i.v.
anti-CD20 therapy showed a similar depletion of CD20+ B

cells in circulation and in LNs (26, 31, 32). However, the
functional impact of the route of administration (s.c. vs. i.v.)
on immune surveillance is not fully elucidated. To understand
the relationship between mAb biodistribution as a function of
route of administration, a murine experimental autoimmune
encephalomyelitis (EAE) model, an induced autoimmune-
mediated inflammatory CNS disease and an accepted model
of MS was used (33, 34). Using this model, imaging and
biodistribution of a novel zirconium-89 (89Zr)-labeled mouse
anti-CD20 mAb (89Zr-labeled anti-CD20 mAb) in the whole
body, lymphatic compartments and CNS of EAE and control
mice following s.c. and i.v. administration was investigated.

MATERIALS AND METHODS

Experimental Design and Animal Models
Female C57BL/6 mice, aged 12–15 weeks and weighing 21–
22 g at baseline, were housed in an animal facility at the
Center for Advanced Imaging (Brisbane, Australia) under
controlled light (12 h light/dark cycle) and temperature (22–
24◦C) conditions and provided with food and water as required.
Animal experiments were performed using protocols developed
at La Trobe University (Melbourne, Australia, AEC#15-90)
and translated to the Center for Advanced Imaging with
approval from an institutional animal ethics committee (AEC
# CAI/233/16). Before the study was performed in the EAE-
variant mouse model, a pilot study was conducted in healthy
mice to investigate the effect of the route of administration and
to elucidate full and early kinetics of the tracer biodistribution
following s.c. (n = 3–6) and i.v. (n = 3–8) injection. The
details on experimental design and results for healthy mice are
provided in the Supplementary Material. The healthy mice data
provided insights to meaningful time points to monitor tracer
biodistribution which were subsequently applied in the EAE and
control mice study.

On Day 14 post induction, the 89Zr-labeled anti-CD20 mAb
was administered in EAE and control (sham-injected) mice
between 1.5 and 2 MBq in 0.9% saline as either an s.c. right
lower flank injection (104–160 µL) or i.v. tail vein injection
(110–150 µL) (Figure 1). The injection syringe was filled with
approximately 120 µL of the 89Zr-labeled anti-CD20 mAb
(tracer) and the activity in the syringe was measured using
a dose calibrator (CRC-25 PET Radioisotope Dose Calibrator,
Capintec Inc., Florham Park, NJ, USA). The activity remaining
in the syringe after injection was measured using the same
dose calibrator and the total volume injected in each mouse
was calculated. Activity concentrations were then expressed as a
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FIGURE 1 | Study design. aC57BL/6 mice post-EAE induction who had reached the peak of the disease on Days 14–15. bControl mice were sham-injected (i.e.,

subjected to the same procedure as EAE-induced mice, except that rhMOG was replaced with saline). cWhole body clearance and biodistribution of the tracer were

assessed by PET/CT imaging. dOrgans excised from a subset of mice (n = 7–9) and assessed for biodistribution of the tracer by gamma counting. EAE, experimental

autoimmune encephalomyelitis; MBq, megaBecquerel; n, number of mice; PET/CT, positron emission tomography/computed tomography; rhMOG, recombinant

human myelin oligodendrocyte glycoprotein.

percent of the decay-corrected injected activity per cm3 of tissue,
approximated as percentage injected dose per gram (% ID/g).

EAE Induction
Healthy C57BL/6 mice (15 weeks old) were immunized
subcutaneously at the base of the tail with a total of 300 µg
recombinant human myelin oligodendrocyte glycoprotein
(rhMOG), [extracellular domain (1–125) produced by
SinoBiologics in Escherichia Coli and was supplied by Novartis
Institute for BioMedical Research Switzerland], emulsified in
incomplete Freund’s adjuvant, supplemented with 4 mg/mL
of Mycobacterium tuberculosis. The mice received an intra-
peritoneal injection of 150 ng of toxic protein from Bordetella
pertussis in saline at the time of immunization and 48 h later.
The control mice were subjected to the same procedure as the
EAE-induced mice, except that rhMOG was replaced with saline
(sham-injected). EAE induction was performed in a total of
39 EAE mice and 18 control mice. The mice were weighed
and examined daily for clinical signs of EAE using standard
scoring (0, no paralysis; 1, loss of tail tone; 2, hind limb weakness
or paresis; 3, hind limb paralysis; 4, hind limb paralysis and
forelimb paresis; 5, moribund or deceased).

Synthesis and Radiolabeling of the
Anti-CD20 mAb
The anti-CD20 antibody was conjugated to p-
isothiocyanatobenzyl-desferrioxamine (DFO-NCS) by
performing the reaction in a carbonate-bicarbonate buffer
(pH 9.2). This provided a simpler way to conjugate the
desferrioxamine (DFO) compared with a previous method (35)
by avoiding the need to adjust the pH of the reaction mixture.
The efficiency of radiolabeling the anti-CD20-antibody-DFO

conjugate with 89Zr was increased to >90% by continuous
shaking and incubating the reaction at 37◦C. Use of a spin
cartridge further facilitated fast purification and increased the
radiochemical concentration, enabling more animals to be
screened per production of the tracer. For more details please see
Supplementary Material.

Distribution of the 89Zr-Labeled Anti-CD20
mAb
The difference in uptake and biodistribution profiles of the tracer
were assessed using positron emission tomography/computed
tomography (PET/CT) imaging (Inveon, Siemens, Erlangen
Germany) and gamma counting (Wizard 2480 Automated
Gamma Counter, Perkin Elmer, Waltham MA, USA) after s.c.
and i.v. injections in EAE and control mice on Day 1 (early time
point), and Days 3 and 7 (later time points). The whole body
clearance of the tracer, expressed as a percentage of the injected
dose remaining in the whole body, following s.c. and i.v. injection
in control and EAE mice (n = 5–9 mice per time point) was
assessed. In vivo PET/CT imaging was used to assess in vivo
biodistribution of the tracer following s.c. injection (EAE, n =

5–9 mice per time point; control, n = 3–6 mice per time point)
and i.v. injection (EAE, n = 3–4 mice per time point; control, n
= 1–2 mice per time point). Gamma counting of organs excised
from a subset of mice (n = 7–9 mice per time point) was used
to measure in vivo biodistribution of the tracer following s.c.
injection (EAE, n= 9mice per time point; control, n= 7mice per
time point) and i.v. injection (EAE, n= 3–4 mice per time point;
control, n = 1–3 mice per time point). For gamma counting
studies, mice were sacrificed by cervical dislocation and samples
of blood and tissues were obtained, weighed, and counted along
with a standard solution of the injected dose in a gamma counter.
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FIGURE 2 | The EAE mean clinical score and percent change in weight in EAE and control mice at various time points (n = 39). Data presented as mean ± SD. EAE,

experimental autoimmune encephalomyelitis; i.v., intravenous; s.c., subcutaneous; SD, standard deviation.

In addition to major organs, tissues collected included LNs from
both the upper and lower body (involving both superficial and
deep LNs), and CNS compartments (spinal cord regions and
brain regions). CNS dissection was carried out on fresh mouse
brain, noting that cerebrum (cerebral cortex) contains both gray
and white matter (36).

Statistical Analysis
The PET sinograms were reconstructed with FBP (filtered back-
projection) and an ordered-subset expectation maximization
(OSEM2D) algorithm was then analyzed using the Inveon
Research Workplace Software (IRW 4.1, Siemens, Erlangen,
Germany). This allows fusion of CT and PET images and
definition of regions of interest (ROI). Three-dimensional ROI
were placed within the whole body, as well as all the organs of
interest such as the liver, spleen, and kidneys, using morphologic
CT information to delineate organs. In biodistribution and
imaging studies, the correlation between tracer uptake in the
lymphatic tissue between the groups (EAE and control mice) and
within the groups was assessed using single factor analysis of
variance (ANOVA), two-factor ANOVA and one-way ANOVA.
P-values less than alpha (α = 0.05) were considered significant.
CNS biodistribution in EAE and control mice was compared
using a χ squared test of independence to examine the
relationship between tracer uptake within the CNS and EAE
disease state. χ2 values greater than χ

2
crit = 3.84 and p-values less

than alpha (α = 0.05) were considered significant. Comparisons
between the s.c. and i.v. routes of administration of the tracer
and its subsequent biodistribution and accumulation in different
organs, lymphatics and CNS was analyzed using a Student’s t-
test. All data are expressed as mean± standard error of the mean
(SEM), unless otherwise specified.

RESULTS

Clinical Profiling of the EAE Model: Clinical
Onset and Peak of the Disease
EAE-induced mice experienced weight loss 9–10 days after EAE
induction and ambulatory difficulties started to appear from 10
to 12 days post induction, with low to moderately severe clinical
scores (0.5–3.0) and 100% disease incidence. The peak of the
disease was observed at 13–15 days post induction, with mean
clinical scores of 2.5 ± 0.6 on 14–15 days post induction, which
gradually dropped to 1.7 ± 0.3 at 21 days post induction. The
mean percent change in body weight was 18% at 17 days post
induction which was in line with the clinical scores observed
(Figure 2). Control mice did not experience weight loss or any
clinical score throughout the experiment.

Biodistribution of the 89Zr-Labeled
Anti-CD20 mAb in EAE and Control Mice
Following S.C. and I.V. Administration
Whole Body Clearance
In EAE mice, the proportion of the tracer remaining in the

whole body at Day 7 following s.c. injection (58.5 ± 5.4%) was

comparable to that observed following i.v. injection (49.9± 8.6%)
(Figure 3). A similar trend was observed in control mice with the
proportion of the tracer remaining in the whole body following
s.c. and i.v. injection being similar at Day 7 (55.3± 2.5% and 56.5
± 0.3%, respectively).

PET/CT Imaging
The distribution of the tracer following s.c. and i.v. injection was
measured on Days 1, 3, and 7. In control mice, tracer uptake
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FIGURE 3 | Whole body clearance of the 89Zr-labeled anti-CD20 mAb following s.c. and i.v. injection in control and EAE mice (n = 5–9 mice per time point) measured

using PET/CT. Data presented as mean ± SEM. i.v., intravenous; mAb, monoclonal antibody; n, number of mice; s.c., subcutaneous; SEM, standard error of the

mean 89Zr, Zirconium-89.

following s.c. injection at Day 7 was highest in the liver followed
by the kidney (Figure 4A), while in EAE mice it was highest in
the spleen and liver (Figure 4B). Tracer uptake in the remaining
peripheral organs (heart, kidneys, bladder, and gut) on Day 7
was slightly higher in the control mice compared with the EAE
mice. Following i.v. injection, tracer accumulation on Day 7 was
highest in the spleen and liver in control (Figure 4C) and EAE
mice (Figure 4D). In both EAE and control mice, the initial
exposure (Day 1) of the tracer following i.v. injection was highest
in the heart, spleen and liver and gradually decreased by Day 7.
Composite PET/CT images of control and EAE mice following
s.c. and i.v. injections are shown in Figures 4E,F.

Gamma Counting

Overall distribution
Gamma counting of organs from a subset of mice was conducted
on Days 1, 3, and 7 after injection of the tracer. Following
s.c. injection, higher accumulation of the tracer was observed
in blood, the spleen and liver, which was consistent between
EAE and control mice up to Day 7 (Figures 5A,B). Following
i.v. injection, a high tracer accumulation was observed in the
spleen, blood, and liver on Day 1 that was sustained up to
Day 7 in the spleen and liver in both EAE and control mice
(Figures 5C,D). Tracer uptake in peripheral tissues and all major
organs was similar between EAE and control mice, except for
mammary tissue, where the initial tracer exposure was higher in
EAE mice than controls. Gamma counting analysis in the EAE
model showed high tracer accumulation in the spleen following
s.c. and i.v. injection, respectively. Comparing s.c. with i.v. routes
of administration, the accumulation of the tracer in all the major
organs including the spleen, kidneys, lungs, heart, liver, blood,
and mammary tissue showed no significant difference.

Lymphatic tissue
Following s.c. injection, the highest accumulation of the tracer
was observed on Day 7 in the subiliac LN (also known as inguinal
LN) that drains the s.c. injection site in both EAE and control

mice (Figures 6A,B). Across all the time points in EAE mice, the
ranges of tracer uptake in the subiliac LN was 11–59% ID/g (vs.
10–65% ID/g in control), 7–51% ID/g (vs. 6–33% ID/g in control)
in the iliac LN, 6–39% ID/g (vs. 2–46 % ID/g in control) in the
sciatic LN and 4–26% ID/g (vs. 5–30% ID/g in control) in the
mandibular LN. No significant association was observed between
LN tracer uptake in EAE vs. control mice after s.c. administration
as assessed by ANOVA. For each LN and across all time points,
both within and between EAE and control mice, the F values were
consistently greater than Fcrit (4.60, the lowest value) and the p-
values were greater than alpha (0.05), indicating no difference
between EAE and control mice after s.c. administration.

Following i.v. injection, the tracer uptake in both control and
EAEmice onDay 7 was highest in the iliac and sciatic LNs, closest
to the i.v. injection site (Figures 6C,D). Across all the time points
in EAE mice, the ranges of tracer uptake in iliac LN was 7–38%
ID/g (vs. 8–31% ID/g in control), sciatic LN was 2–29% ID/g (vs.
4–26% ID/g in control), mandibular LN was 6–17% ID/g (vs.
9–17% ID/g in control), subiliac LN was 4–16% ID/g (vs. 4–9%
ID/g in control) and deep cervical LN was 0–14% ID/g (vs. 0–
6% ID/g in control). Analysis of variance revealed no significant
association between tracer uptake and EAE mice. Following i.v.
injection, the tracer accumulation across all time points for each
LN as presented by the F values were consistently greater than
Fcrit (5.31) and p-values were greater than alpha (0.05) indicating
no difference between EAE and control mice except for in the
deep cervical LN which was significant in EAE vs. control mice
(p < 0.01 and F = 14.45). When comparing s.c. and i.v. routes,
significant uptake of the tracer was observed on Day 1 in the
draining LNs i.e., in subiliac LN following s.c. injection (t-test,
p = 0.0067). However, this difference was no longer significant
by Days 3 and 7.

Central nervous system
In EAE mice, high initial tracer uptake following s.c. injection
was observed in the lumbar spinal cord with 2.3% ID/g (vs.
0.0% ID/g in control) that increased to 3.2% ID/g on Day 3
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FIGURE 4 | Comparison of PET/CT in vivo biodistribution (A–D) and in vivo imaging (E,F) of the 89Zr-labeled anti-CD20-mAb in control and EAE mice following s.c.

and i.v. injection. (A) Biodistribution of the tracer following s.c. injection in control mice (n = 3–6). (B) Biodistribution of the tracer following s.c. injection in EAE mice (n

= 3–9). (C) Biodistribution of the tracer following i.v. injection in control mice (n = 1–2)#. (D) Biodistribution of the tracer following i.v. injection in EAE mice (n = 3–4).

(E) In vivo imaging following s.c. injection of the tracer in control and EAE mice. (F) In vivo imaging following i.v. injection of the tracer in control and EAE mice. Data

presented as mean ± SEM. #Sample size was very low (n = 1 or 2) to calculate the SEM values. % ID/g, percentage injected dose per gram; EAE, Experimental

Autoimmune Encephalomyelitis; i.v., intravenous; mAb, monoclonal antibody; n, number of mice; PET/CT, positron emission tomography/computed tomography; s.c.,

subcutaneous; SEM, standard error of the mean; 89Zr, Zirconium-89.
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FIGURE 5 | Comparison of gamma counter biodistribution of the 89Zr-labeled anti-CD20 mAb in control and EAE mice following s.c. (A,B) and i.v. (C,D) injection. (A)

Biodistribution of the tracer following s.c. injection in control mice (n = 7). (B) Biodistribution of the tracer following s.c. injection in EAE mice (n = 9). (C) Biodistribution

of the tracer following i.v. injection in control mice (n = 1–3). (D) Biodistribution of the tracer following i.v. injection in EAE mice (n = 3–4). Data presented as mean ±

SEM. % ID/g, percentage injected dose per gram; EAE, experimental autoimmune encephalomyelitis; i.v., intravenous; LNs, lymph node; mAb, monoclonal antibody;

n, number of mice; s.c., subcutaneous; SEM, standard error of the mean; 89Zr, Zirconium-89.
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FIGURE 6 | Comparison of gamma counter biodistribution of the 89Zr-labeled anti-CD20 mAb in control and EAE mice across specific LNs following s.c. (A,B) and i.v.

(C,D) injection. (A) Biodistribution of the tracer in specific LNs following s.c. injection in control mice (n = 7). (B) Biodistribution of the tracer in specific LNs following

s.c. injection in EAE mice (n = 9). (C) Biodistribution of the tracer in specific LNs following i.v. injection in control mice (n = 1–2)#. (D) Biodistribution of the tracer in

specific LNs following i.v. injection in EAE mice (n = 3–4). Data presented as mean ± SEM. #Sample size was very low (n = 1 or 2) to calculate the SEM values for

Iliac LN, Sciatic LN, mandibular LN on Day 1 and for deep cervical LN on Day 3 following i.v. injection in control mice. A 2-way analysis of variance (ANOVA) test was

applied to detect significant association between tracer uptake and EAE. % ID/g, percentage injected dose per gram; EAE, experimental autoimmune

encephalomyelitis; i.v., intravenous; LLOD, lower limit of detection (less than 3x background signal); LNs, lymph nodes; mAb, monoclonal antibody; n, number of

mice; s.c., subcutaneous; SEM, standard error of the mean; 89Zr, Zirconium-89.
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FIGURE 7 | Comparison of gamma counter biodistribution of the 89Zr-labeled anti-CD20 mAb in control and EAE mice across CNS following s.c. (A,B) and i.v. (C,D)

injection. (A) Biodistribution of the tracer in the CNS following s.c. injection in control mice (n = 4). (B) Biodistribution of the tracer in the CNS following s.c. injection in

EAE mice (n = 9). (C) Biodistribution of the tracer in the CNS following i.v. injection in control mice (n = 1–2)#. (D) Biodistribution of the tracer in CNS following i.v.

injection in EAE mice (n = 4–5). *p < 0.05, using a Chi-squared test of independence (for s.c.: χ
2 [1, N = 39] =6.6–22.5, α = 0.05; i.v.: c2 [1, N = 15] =5.0–16.16, p

< 0.05) to compare CNS biodistribution of the tracer in control and EAE mice, highlighting significant differences in the relationship between CD20 antibody uptake

and EAE. ∧p < 0.05, using single factor ANOVA [F (1) > 4.84; p < 0.05] and independent t-test to compare CD20 antibody uptake in EAE mice following s.c. and i.v.

administration, suggesting regional early preferential CNS uptake in EAE following s.c. administration. Data presented as mean ± SEM. #Sample size was too low (n

= 1 or 2) to calculate the SEM values for lumbar spinal cord, medulla/pons, and cerebellum on Day 1 following i.v. injection in control mice. % ID/g, percentage

injected dose per gram; Ab, antibody; CNS, central nervous system; EAE, experimental autoimmune encephalomyelitis; i.v., intravenous; LLOD, lower Limit of

detection (less than 3x background signal); mAb, monoclonal antibody; N, total number of mice; n, number of mice; s.c., subcutaneous; SEM, standard error of the

mean; 89Zr, Zirconium-89.
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and fell to 2.0% ID/g on Day 7 (Figures 7A,B). The relationship
between tracer uptake and EAE, analyzed using a χ squared test
of independence, was found to be significant for the spinal cord
(cervical, thoracic, lumbar; p < 0.001 for all), cerebellum (p <

0.001), medulla’ pons (p = 0.002), striatum (p = 0.009), and
cerebrum (frontal and posterior areas; p < 0.001 for both) (χ2

[1, n = 39] = 6.6–22.5; p < 0.05). Further analysis to test the
relationship between tracer uptake and EAE disease state (i.e.,
mice with moderate and mild EAE symptoms) did not show a
statistically relevant difference between the 2 groups. Following
i.v. injection, EAE mice showed higher tracer uptake on Day 7 in
the spinal cord (lumbar, 1.3% ID/g; thoracic, 1.2% ID/g; cervical,
0.5% ID/g) vs. controls (0% ID/g for all) (Figures 7C,D). The
relationship between tracer uptake and EAE, analyzed using a
χ squared test of independence, was significant for the lumbar
(p = 0.025) and cervical spinal cord (p = 0.003), striatum (p =

0.025) and olfactory bulb (p < 0.001) (χ2 [1, n = 15] = 5.0–
16.16, p < 0.05). The relationship between tracer uptake within
the CNS and EAE disease states (i.e., in mice with high and low
clinical scores) was not observed. Within the CNS, significantly
higher uptake of the tracer was observed in the thoracic spinal
cord (p= 0.0455), cerebellum (p= 0.0333), and frontal cerebrum
(p = 0.0237) of the brain on Day 1 following s.c. compared with
i.v. administration. However, by Days 3 and 7, these differences
were no longer significant between s.c and i.v. administration. A
comparison of tracer uptake in EAE across all time points for
different routes of administration was significant only for the
cerebellum (p = 0.017) and frontal (p = 0.026) and posterior
cerebrum (p < 0.001) (Chi-squared test of independence; χ2 [1,
n= 37]= 5.0–12.1, p < 0.05).

DISCUSSION

The present study investigated differential uptake and
biodistribution profiles of the 89Zr-labeled anti-CD20 antibody
following s.c. and i.v. administration in EAE, control and
healthy mice (Supplementary Material) using PET/CT imaging
and gamma counting. From PET/CT data, the proportion of
tracer remaining in the whole body at Day 7 following s.c.
injection (58.5 ± 5.4%) was found comparable to the proportion
remaining following i.v. injection (49.9 ± 8.6%). Irrespective
of the route of administration, the PET/CT imaging data
showed strong evidence of biodistribution of tracer in all the
major organs, which was further validated by ex vivo gamma
scintillation of tissues. Ex vivo tissue biodistribution analysis
following both s.c. and i.v. injections of the tracer in EAE
mice showed similar patterns of tracer uptake in major organs
when compared with control (sham-injected) and healthy mice.
Overall biodistribution of tracer in the lymphoid organs and CNS
of EAE mice was consistent with both routes of administration,
except for draining LNs and parts of the CNS including the spinal
cord, cerebellum and cerebrum that were significantly higher for
the s.c. vs. i.v. route of administration at early time points.

The lymphatic system plays a crucial role linking the
peripheral immune system and the CNS (37). Evidence suggests

that CNS lymphatics could possibly provide a route for B-
cell trafficking that bypass the peripheral circulation, allowing
for continued B-cell maturation in LNs (37–39). Lymphatics
represent the primary absorptive pathway for macromolecules
such as proteins (>16 kDa molecular mass). Preclinical studies
suggest that LN exposure is proportionally related to the
molecular weight of the protein and dose absorbed by the
lymphatic system (22, 23). Therefore, mAb-based therapies
administered through the s.c route can target B-cell-rich LNs
and can be a potential therapeutic option to treat autoimmune
diseases such as MS. Gamma counting analysis of s.c. EAE mice
at early time points showed higher levels of tracer accumulation
in blood (19.2% ID/g) followed by the spleen (12.1% ID/g),
in contrast i.v. injection showed higher tracer accumulation
in the spleen (16.7% ID/g) followed by blood (11.5% ID/g).
The results with s.c. administration were consistent with earlier
findings that showed mAbs administered subcutaneously enter
the interstitium and follow a decreasing pressure gradient toward
the lymphatics subsequently reaching draining LNs (40) where
autoreactive B cells prime T cells resulting in their activation.
In our study, s.c. administration resulted in high tracer uptake
in the superficial subiliac LNs and deep sciatic LNs compared
with the i.v. administration. Tracer distribution in the deep
iliac LNs in the lower body, superficial mandibular LN, and
deep cervical LNs in the upper body were comparable between
s.c. and i.v. administrations. Similar findings were observed
in previous studies, where s.c. dosing achieves high localized
concentrations of mAbs in LNs more rapidly than i.v. dosing
(22, 23). Specific access to the lymphatics after s.c. administration
has potential utility in targeting delivery of mAbs directly to
the innate immune system and has considerable therapeutic and
pharmacological ramifications.

Cells of the B-cell lineage have been found to persist in the
CNS of MS patients and occupy multiple sub-compartments,
including the cerebrospinal fluid, parenchymal white matter
lesions, and meninges (37). Evidence from somatic mutation
analysis has demonstrated that the same B-cell clones may
occupy all three CNS sub-compartments, raising the central
question as to exactly how and where such clones initially access
the CNS and how they communicate across these CNS sub-
compartments (41). Another major unanswered question is the
timing of the first entry of B cells in the CNS during MS
disease pathophysiology, which could be addressed following
confirmation of the definitive correlation of this CD20 PET signal
with the presence of B cells in the CNS. By injecting the tracer
early in the disease course, it might be possible to determine
the timing of the earliest evidence of the CD20 B-cell subset
in the CNS and the relationship of this timing with clinical
onset (42), but further experiments would be needed to prove
B-cell specificity of our tracer in this animal model, example,
repeating the experiment in the CD-20 deficient mice, using
isotype negative control mAb or by doing blocking studies with
cold antibody. Additionally, it may be possible to determine the
differential effects of anti-CD20 targeting, if any, on the CNS and
lymphoid tissues over the disease trajectory.

This study has, demonstrated an increased uptake of tracer in
the CNS of EAE mice compared with control mice for the first
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time following either s.c. or i.v. administration. Across all time
points, tracer uptake was significantly higher for s.c. compared
to i.v. administration in EAE mice in the cerebellum and frontal
and posterior cerebrum and at early time points this difference
was also observed in the thoracic spinal cord, suggesting early
preferential CNS uptake following s.c. administration. Cerebellar
cortex is a major predilection site for demyelination and the
cortex region is affected independently of white matter lesions in
MS (43). Pathological studies have revealed that in the standard
EAE rodent model of MS, the cortex remain largely unaffected
(44). Interestingly, in our study, a significant uptake of the tracer
in the cerebrum (cortical regions containing both gray and white
matter) was observed following either s.c. or i.v. administration.
This could be explained by the fact that in the standard
EAE model, the disease process is T-cell driven, potentially
resulting in differences in lesion composition and topography
(45). Additionally, it may be of clinical relevance that cortical
inflammation is a transient phenomenon, and that cortical
demyelination is readily compensated by rapid remyelination
in a rat model (44). With chronicity, diffuse inflammation
accumulates throughout the whole brain and is associated with
progressive axonal injury and cortical demyelination leading to
cerebellar dysfunction in MS (46). In this study, the results
highlight that with s.c. administration, tracer could reach
certain parts of CNS more rapidly and may be efficient at
delivering antibodies to the CNS when compared with the i.v.
administration in EAE mice. However, its clinical significance
is uncertain at this stage. Accumulation of the tracer within
multiple CNS regions, including the spinal cord, striatum, pons,
medulla, hippocampus, and cerebrum, suggest that by the peak
of the disease, a CD20 positive population might be established
in these regions of the CNS which are associated with symptoms
commonly identified and regions targeted in MS (47).

Using a spatio-temporal mapping method of EAE disease
(48) in C57BL/6 mice to identify reproducible lesion topography
along the whole of the neuraxis and associated B- and T-cell
infiltration, this study further demonstrated rhMOG-induced
EAE as a successful model of CNS infiltration of B cells. The
results provide additional evidence that neuroinflammation in
the spinal cord and brain of EAE-induced mice could be detected
using this 89Zr-labeled anti-CD20-mAb. This may potentially
offer a sensitive technique for detecting and monitoring
neuroinflammatory lesions and B-cell uptake in the CNS,
particularly the spinal cord of MS patients. The biodistribution
results revealed higher tracer uptake in the brain and spinal cord
of EAE mice in this model of MS. However, further studies are
required to confirm the B-cell specificity of radiolabeled tracers
in MS patients to translate into a practical tool for detecting and
monitoring B cells in disease progression and treatment.

The current data found no correlation between maximum
clinical scores and CNS tracer uptake during EAE progression,
confirming the degree of heterogeneity in immunological
responses. Caravagna et al. recently highlighted the complex in
vivo recruitment of innate immune cells in EAE in multiplex
patterns (49); however, due to the broad analysis conducted in the
present study, such complex changes through disease progression
would not be accurately tracked.

In conclusion, the 89Zr-labeled anti-CD20mAb demonstrated
effective absorption from the injection site and biodistribution
to all major organs was consistent with both routes of
administration in EAE and control mice. PET/CT imaging
confirmed rapid and specific localization of the tracer to
the B-cell compartment. A good correlation was observed
between in vivo PET/CT data and the ex vivo quantification
of biodistribution of the tracer. Initial tracer uptake within the
lymphatics was found to be higher in the draining LNs, with
highest uptake in the subiliac and sciatic LN following s.c.
administration compared with i.v. administration as measured
by gamma counting in EAE mice. The tracer uptake within
the CNS was clearly higher in EAE vs. control mice. Moreover,
the uptake in the lumbar spinal cord was higher following s.c.
vs. i.v administration. The cerebellum and cerebrum counts at
24 h suggest after s.c. administration tracer reached certain parts
of CNS more rapidly and may be more efficiently target these
sites within the CNS when compared with i.v. administration.
The biodistribution studies also suggests that the rhMOG-
induced EAE-variant mouse model successfully illustrates CNS
infiltration of B cells and that neuroinflammation in the spinal
cord and brain of EAE-induced mice could be detected using a
fully validated 89Zr-labeled anti-CD20 mAb.
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