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Abstract

Transcriptional regulation depends upon the binding of transcription factor (TF) proteins to DNA in a sequence-dependent
manner. Although many experimental methods address the interaction between DNA and proteins, they generally do not
comprehensively and accurately assess the full binding repertoire (the complete set of sequences that might be bound with
at least moderate strength). Here, we develop and evaluate through simulation an experimental approach that allows
simultaneous high-throughput quantitative analysis of TF binding affinity to thousands of potential DNA ligands. Tens of
thousands of putative binding targets can be mixed with a TF, and both the pre-bound and bound target pools sequenced.
A hierarchical Bayesian Markov chain Monte Carlo approach determines posterior estimates for the dissociation constants,
sequence-specific binding energies, and free TF concentrations. A unique feature of our approach is that dissociation
constants are jointly estimated from their inferred degree of binding and from a model of binding energetics, depending on
how many sequence reads are available and the explanatory power of the energy model. Careful experimental design is
necessary to obtain accurate results over a wide range of dissociation constants. This approach, which we call Simultaneous
Ultra high-throughput Ligand Dissociation EXperiment (SULDEX), is theoretically capable of rapid and accurate elucidation
of an entire TF-binding repertoire.
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Introduction

Transcription is one of the most important control points for

gene expression and is regulated in eukaryotes through multiple

layers of control [1]. Sequence-specific DNA binding transcription

factors (TFs) bind to specific genomic sites in promoters and en-

hancers, recruit additional proteins to achieve opening of ch-

romatin, and ultimately assemble and activate RNA polymerase II

pre-initiation complexes. Such transcription factor binding sites

(TFBS) are essential to organismal function, yet there are subs-

tantial limitations in our current ability to predict the location and

function of these elements [2–8]. In addition, mutations in re-

gulatory sequences can easily alter transcription rates [9,10],

leading to the evolution of novel phenotypes, but the effects of

TFBS mutations on transcription are generally unpredictable.

This unpredictability exists partly because measuring TF-TFBS

binding affinities in a high-throughput way remains problematic

[11], and the number of large and accurate binding datasets

remains few [12,13]. To better understand the functional role of

TF and TFBS interactions that contribute to altering gene regu-

lation, methods capable of estimating such effects in a probabilistic

and high-throughput manner are an important area of research.

Here we focus on developing and testing a method that can be

applied in a high-throughput fashion to estimate the binding

affinities of TFs to their cognate TFBSs. Transcription is a process

driven by the biophysics of these interactions, and thus they are

often viewed as a necessary component to understanding tran-

scription and biological networks [11,14–24]. Our aim is that this

Bayesian method should work for both strong and moderate

binding relationships while taking into account the biophysical

properties of these interactions.

A number of approaches have been developed to characterize

details of how TFs bind to their cognate TFBSs. Established

methods like SELEX and its high-throughput extensions [25] are,

however, biased towards the highest affinity TFBSs. Other me-

thods, relying on technologies such as electrophoretic mobility shift

assays (EMSA), luciferase constructs, and proximity ligation ana-

lysis are labor-intensive or low throughput, and are typically used

only to examine the affinity of variants of a known consensus

binding site [26–29]. While protein-DNA binding microarrays

(PBM) are a quite useful high-throughput technology that assesses

binding of transcription factors to double-stranded DNA micro-

arrays [22,30–33] [31–33], PBMs make mostly qualitative

measurements [18–24]. PBMs are also highly susceptible to

inaccuracies due to loss of weakly bound material [11], while more

accurate microfluidic devices [11] rely on specialized equipment.

Other popular methods utilize chromatin immunoprecipitation

(ChIP) followed by microarrays (ChIP-chip) to provide low
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resolution information on in vivo transcription factor occupancy,

and this approach has been successfully employed for most of the

known yeast TFs [34,35] using microarrays of all intergenic

regions. Higher resolution methods are now available based on

ChIP followed by high density tiling arrays [36], by sequencing of

DNA using paired-end diTAG, ChIP-PET, [37] or by direct next

generation sequencing of ChIP products, [38,39]. Limitations of

ChIP-based methods are, however, that condition-specific protein

binding can result in low enrichment and that it can be difficult to

distinguish direct from indirect binding [22].

To generalize and extend characterization of measurement-

based estimates of TF and TFBS affinities, position weight ma-

trices (PWMs) have been used to summarize binding preferences

so that new sequences can be scored for their potential to bind a

specific TF. The PWM is based on nucleotide frequencies at each

position, assuming each position contributes independently to the

overall binding energy of the DNA-protein complex [40]. This

approximation is correct when the TF is at extremely low con-

centration. The seminal work of Berg and von Hippel [41] related

biophysical models of binding to the information content of the

nucleotide frequencies used to construct the PWMs. Since then,

biophysical models for DNA-protein interactions have been used

to estimate binding affinities for a TF to genomic sequences given

a PWM [42–46]. Several methods have been developed to es-

timate the energy terms in the biophysical model directly through

high-throughput studies such as ChIP-chip and PBM [13,47–50].

Many of the earlier methods assume low protein concentration

[48,50] for estimation or saturated occupancy [47]. More recently

the BayesPI [49] and BEEML [13] methods have introduced

models without these constraints.

In this paper, we introduce what we call a ‘‘Simultaneous Ultra-

high throughput Ligand Dissociation Experiment’’, or SULDEX.

To evaluate dissociation constants, this approach utilizes high-

throughput sequencing to count the relative numbers of short

synthetic duplex DNA segments (ds-oligos) in solution before and

after binding to a transcription factor. The goal of SULDEX is to:

1) simultaneously measure the relative binding abilities of large

numbers of ds-oligos; 2) construct a biophysical binding model that

can predict the energies of binding (and therefore the dissociation

constants); and 3) integrate individual count-based binding esti-

mates with model-based predictions informed by the entire reper-

toire; this allows better predictions of binding affinities when the

frequencies of particular ds-oligos are low (either before or after

binding). The SULDEX method is a Bayesian approach in which

we apply Markov chain Monte Carlo (MCMC) methodology to

obtain full posterior distributions of our unknown quantities.

SULDEX is comparable to two recently introduced techniques,

Bind-n-Seq [12] and HT-SELEX [13], which utilize similar

information. In contrast to SULDEX, the Bind-n-Seq approach

[12] is designed to obtain approximate binding motifs that were

previously unknown. As we demonstrate below, the Bind-n-Seq

experimental design leads to data with undesirable qualities in

terms of accurately measuring dissociation constants or binding

energies. HT-SELEX [13] has more similar goals to ours, but is a

maximum likelihood approach, and does not allow flexible asse-

ssment of binding model accuracy in the way that SULDEX does.

Also, in contrast to these existing approaches, we incorporate into

our method a means of predicting ds-oligo frequencies in the pre-

bound solution. This is often critical for accurate results as these

frequencies can easily vary by many orders of magnitude, even in

cases where the nucleotide synthesis was designed to create equal

ds-oligo frequencies. Furthermore, our method allows incorpora-

tion of multiple reference ds-oligos with known binding energies to

obtain accurate dissociation constants in the absence of a good

energy model. We evaluate the utility of our method using data

simulated for ds-oligos with known dissociation constants for the

Leu3 and ArcA transcription factors [26,28], and Zif268 data from

a Bind-n-Seq experiment [12]. Our results suggest that our Bay-

esian method can be used to accurately and precisely predict TF-

TFBS binding affinities across a broad range of binding specifi-

cities. In addition to developing and testing our method, we pro-

vide extended focus on the interaction of experimental design with

theoretical considerations.

Methods

Transcription factor binding
The binding interaction between a transcription factor, TF , and

a specific DNA sequence, Si, can be described by

TFzSi /?
ki

a

ki
d

TF.Si, ð1Þ

where TF.Si is the complex of TF bound to Si, and ki
a and ki

d are

sequence-dependent rate constants of association of the compo-

nents and dissociation of the complex, respectively (also sometimes

known respectively as ki
on and ki

off ). If ½TF�, ½Si�, and ½TF.Si� are

the concentrations in solution of TF , Si, and TF.Si, respectively,

then at equilibrium, ki
a½TF�½Si�~ki

d ½TF.Si� by definition. If we

define the equilibrium constant Ki
D:ki

d=ki
a, the proportion of the

sequence that is bound at any point in time is given by

wi:
½TF.Si�

½Si�z½TF.Si�
~

½TF�
Ki

Dz½TF� ð2Þ

This relationship is at the basis of most methods for determining

Ki
D. The Ki

D can be related to the standard free energies of bind-

ing, DGi, using the relationship DGi~RT ln Ki
D, where R is the

ideal gas constant and T is the temperature (0K ). We note that this

formula can be rearranged to derive a ‘‘chemical potential’’, as in

[13,47,51], but this is not necessary. Also, we do not assume that

there is an unvarying non-specific binding component that is not

specific to the sequence, as in [13].

In the SULDEX protocol, many sequences are mixed together

in solution, and rather than measuring the proportion of a specific

sequence bound, one measures the relative proportion of different

sequences in both the pre-bound (v0
i ) and the bound mixtures

(vb
i ). Thus, if ½S0

i � is the concentration of sequence Si in the

absence of transcription factors, and ½S0
i �~½Si�z½TF.Si� in the

presence of a transcription factor, then we can estimate

v0
i ~½S0

i �
.P

S0
j

h i
and vb

i ~½TF.Si�
�P
½TF.Sj�, by sequencing

and counting ds-oligos in the respective fractions. Note that we

assume here (as is necessary in most experiments) that the

frequencies in the bound fraction will not be affected by the

purification process. This is probably a good assumption for strong

binders, but will become problematic for weaker binders, for

which ki
d (known in this context as ki

off ) can be relatively large. We

leave detailed consideration of this problem for future research.

We know that

vb
i ~v0

i wi

.X
j
v0

j wj , ð3Þ

so by substituting this into Eqn. 2 and re-arranging, we can see

that if y~
P

j v0
j wj and ½TF� were known precisely, then the Ki

D
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could be estimated as

Ki
D~
½TF� 1-wið Þ

wi

~
½TF� 1-vb

i y
�

v0
i

� �
vb

i y
�

v0
i

: ð4Þ

It is worth pausing here to note that the probability of binding, wi,

can in theory also be predicted using a partition function, as

discussed by Stormo and colleagues [13]. In this context, Equation

3 has the same form as Equation 6 in that work, in which it is

viewed as an application of Bayes’ Theorem. We do not believe,

however, that these two equations are exactly equivalent. One

important difference is that here (as discussed in detail later) we

model ½TF� as a free (unknown) parameter. This allows us to avoid

the issue of predicting ½TF� from first principles based on binding

energies, conformations, and concentrations of the entire ensemble

of sequences in the mix. This also leads to a second important

difference, which is that given a known or inferred free ½TF�, the

probability that each sequence is bound does not depend on the

other wi. Another way of putting this is that the wi only affect each

other through their effect on ½TF�. As a consequence, our

Equation 3 should not be viewed as an application of Bayes’

Theorem, but rather a statement of physical transformation such

that the relative frequencies of molecules in the bound fraction will

depend upon their relative frequencies in the pre-bound fraction

multiplied by their probability of binding to the transcription

factor, given the concentration of transcription factor available in

solution at equilibrium. Furthermore, since this results in relative

frequencies, the result of Equation 3 is a relative proportion among

the sequences that have been chosen to be compared. In other

words, vb
i is not a posterior probability, but is instead formally a

proportion among sequences considered, and the comparator

sequences j in Equation 3 and elsewhere may be summed over any

desired subset of the sequences that were in the solutions.

In theory, v0
i and vb

i could be estimated as v̂v0
i ~ci=

P
cj and

v̂vb
i ~bi=

P
bj , where the ci are the counts in the pre-bound

fraction, and the bi are the counts in the TF-bound fraction. Then,

given two known reference Kr
D, the two unknowns, ½TF� and y,

could be determined by solving the two ds-oligo-specific versions

of Eqn. 3 (i.e., two equations with two unknowns). All of the

unknown Ki
D could subsequently be estimated using these values.

In practice, however, it is preferable to take into account the

uncertainty in v0
i and vb

i . We chose to estimate all parameters

using Markov chain Monte Carlo estimation under a Bayesian

graphical model, described below, which can directly incorporate

parameter uncertainty and allow that uncertainty to propagate

properly through the conditional relationships. To reduce vari-

ance, it is also recommended that the reference sequences should

be represented at a high frequency in the pre-bound fraction, and

should be strong binders, so that they are highly represented in

both the bound and pre-bound fractions. To produce exact re-

ference dissociation constants in the basic binding model, at least

two reference sequences are required. We note that with the in-

corporation of the energy model below, it is not strictly necessary

to include reference sequences with known dissociation constants

(as demonstrated by Stormo and colleagues[13]), although without

reference dissociation constants only relative binding energies

(DDGs) are produced. However, since our goal is to allow the

results to depend more heavily on the count-based estimates of

dissociation constants (or binding energies) than on the energy

model (described below) in cases where the energy model appears

to be unreliable, we have included reference sequences in all the

analyses presented here, and highly recommend at least two

whenever it is possible.

A Bayesian graphical model for basic binding estimation
The goal of Markov chain Monte Carlo (MCMC) estimation is

to estimate the posterior density P(hjD)!P(Djh)P(h), where h are

the free parameters of a generative model and D is the data. In the

basic binding model (BBM), the data are the set of pre-bound

counts C~ cif g and bound counts B~ bif g, as well as a set of at

least two (Rw~2) known reference dissociation constants KR
D

(Figure 1). The parameters are the transcription factor concen-

tration in the bound solution ½TF�, y~
P

j v0
j wj , the set of pre-

bound ds-oligo frequencies V0~ v0
i

� �
, the set of bound ds-oligo

frequencies Vb~ vb
i

� �
, the set of binding probabilities W~ wi

� �
,

the set of dissociation constants KD = {Ki
D} (not including the

reference dissociation constants KR
D ), and the set of binding

energies DG~ DGi

� �
. As frequency vectors, V0 and Vb are

constrained by
P

v0
i ~1, 0v~v0

i v~1,
P

vb
i ~1, and 0v~

vb
i v~1. Due to the dependencies described above and depicted

in Figure 1, the sets V0, Vb, W, KD and DG, as well as the

parameter ½TF�, can all be calculated as functions of one another,

and there is considerable potential leeway in choosing which

parameters are free and which are not. In all implementations of

the BBM presented here, we have chosen to model V0, ½TF�, and

DG as free parameters, and calculated the remaining parameters

as functions of these free parameters. We also note that it would

not be difficult to include uncertainty about the reference

constants (Figure 1), but we have not implemented this here.

The probabilities of the observed ds-oligo counts in the pre-

bound and bound fractions are based on multinomials of the

parametric frequencies of each ds-oligo in solution,

C*Multi V0, nC

� �
and B*Multi Vb, nB

� �
, ð5Þ

where nC~
P

i

ci and nB~
P

i

bi. The log of the likelihood,

Figure 1. Graphical representation of the basic binding model
(BBM). Observed variables (the pre-bound counts, C, the bound counts,
B, and the reference dissociation constants, KR

D ) are in filled circles, and

unobserved variables (i.e., parameters V0, Vb, W, y, ½TF�, DG and KD)
are in hollow circles. Probabilistic dependencies and their directions are
shown with solid arrows, while deterministic dependencies are shown
with dashed arrows. There is some flexibility in the graphical model as to
which parameters are free and which are dependent on the others. In the
implementations presented here, V0, ½TF�, and DG (thick bordered
circles) were allowed to vary in the MCMC analyses, while
Vb, W, y, and KD were calculated from the other parameters.
doi:10.1371/journal.pone.0026105.g001
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P(Djh), in the BBM is thus

log L~log
Xn

i

ci!

 !
z
Xn

i

ci!ð Þlog v0
i

� �
{log ci!ð Þz

log
X

i

bi!

 !
z
Xn

i

bi log vb
i

� �
{log bi!ð Þ:

ð6Þ

As is clear from Figure 1, Equations 2 and 3, and our choice of free

parameters, the vb
i are calculated as functions of V0, DG, ½TF�,

KR
D , and V0.

We note that in this simple model, the main data-based con-

fostraints on Vb (other than the pre-bound and bound counts) arise

from the set of known reference dissociation constants KR
D that

directly affect only the two vb
i corresponding to the reference

sequences. The only further constraint on the system is that the

free transcription factor concentration in the bound fraction must

be less than the total transcription factor concentration, if it is

known from, for example, the amount of transcription factor

added to the solution (i.e., TF½ �ƒ TF0
� �

: TF½ �z
P

TF.Si½ �). It

would be straightforward, however, to add further boundary

constraints or specify prior knowledge of any of the parameters

(whether free or not). For example, the proportion of transcription

factor in the unbound and bound fractions might be quantified,

there might be error estimates on the reference dissociation cons-

tants, and some of the free energies of binding might have been

previously predicted in some fashion (see below).

A generative model of binding energy
It is reasonable to expect that in many cases the accuracy of

estimating the frequency of the ds-oligos in the bound solution will

be low (due to low counts). The accuracy of many of the calculated

Ki
D may also be low because they are much smaller than ½TF�, and

therefore the probability of binding is close to 1.0 (see Equation 2).

The accuracy of the Ki
D estimates will also be low if the Ki

D are

much greater than ½TF�, and therefore the probability of binding is

close to zero. One potential way to improve the situation is to build a

generative model of binding energies. It is also of general interest to

better understand how binding energies are formed based on

independent position effects and interactions among positions.

The general model we will consider to generate an energy-based

DGE
i for a specific sequence Si (Figure 2) includes positional

energy terms relative to the optimal binding energy (DGE
opt); these

positional terms are independent (el
i ) or interactive (e.g., em,n

i ), and

the energy is given by:

DGi&DGE
i zei~DGE

optz
XL

l~1

el
iz
XL{1

m~1

XL

n~mz1

em,n
i z:::zei: ð7Þ

Here, el
i is an abbreviated way of indicating the position l-specific

energy of the specific nucleotide (G, A, C, or T) that is found at

position l in sequence Si. The independent position-specific energy

terms are all zero (for the optimal sequence) or positive (since no

sequence-specific binding energies can be lower than the opti-

mum), and there are therefore up to 3L different independent

energy term parameters. The abbreviation is similar for the pair-

wise terms, and the ellipses indicate the possibility of higher-order

energy terms, although these were not implemented here. The

interactive energy terms would be presumed to be zero unless

otherwise justified, and constrained such that no sequence has a

lower energy than DGE
opt. We use an indicator matrix, I , that

controls the inclusion of individual energy terms in the model

according to their posterior justification using a reversible jump

Markov Chain (discussed in more detail below). We note that in

the current implementation, the prior is uniform on each possible

model. This may be more rigid than is desirable, and it may be a

productive area for future research to consider other parameters,

for example by including a hyperparameter on the probability that

individual energy terms should be included.

In the examples here, we also include a random variable term,

ei, which allows for possible sequence-specific error in the gener-

ative energy model. Because the individual sequence-specific esti-

mates are included as part of the GEM, this error term allows an

automatic transition from the energy model predictions to the

BBM predictions if the GEM is inaccurate or if the pre-bound and

bound counts are especially accurate for a particular sequence.

This variable is modeled as a normal distribution centered around

zero and with variance s2
E . This is equivalent to stating that for the

generative energy model (GEM),

DGi*N(DGE
i ,s2

E): ð8Þ

Thus, s2
E is a free parameter in the model that determines how

much the GEM controls the range of credible sequence-specific

energies (as opposed to control based on the observed sequence

frequencies in the two solutions). We note that if only the additive

portion of this model were used, the result would be similar to

PWM scores only under the additional constraint of very low

concentration of transcription factor [47,52]. The log of the

likelihood, P(Djh), in the GEM is thus calculated as

log L~log
Xn

i

ci!

 !
z
Xn

i

ci!ð Þ log v0
i

� �
{log ci!ð Þz

log
X

i

bi!

 !
z
Xn

i

bi log vb
i

� �
{log bi!ð Þ{

log sE

ffiffiffiffiffiffi
2p
p
 �

{
DGi{DGE

i

� �2

2s2
E

:

ð10Þ

Figure 2. Graphical representation of the generative energy
model (GEM). As in Figure 1, unobserved variables (i.e., parameters
I , E, DG, DGE , DGE

opt, sE and KD) are in hollow circles, and probabi-
listic dependencies and their directions are shown with solid arrows,
while deterministic dependencies are shown with dashed arrows. The
Basic Binding Model (Figure 1) is linked as shown. As in Figure 1, the
free parameters (E, DG, DGE

opt, and sE) are shown with thick-bordered
circles, as is the model indicator matrix, I . The dependent parameters
calculated from the free parameters in the GEM are (DGE , and KD), and
the other parameters (not shown) are the same as described in Figure 1.
doi:10.1371/journal.pone.0026105.g002
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As shown in Figure 1 and 2, ½TF�, V0 and DG are still freely

variable in the GEM. There are, however, two new free para-

meters in the GEM, s2
E and DGE

opt, along with the new set of free

energy parameters, E, and the freely variable indicator matrix I
that controls inclusion of the various energy parameters in the

family of GEM models. The dependent vb
i parameters in the

likelihood calculations for the GEM model (Equation 10) are thus

calculated using these new free parameters as well.

A generative sequence model
In many instances, an experiment may be run in which there

are too many ds-oligos synthesized relative to the amount of

sequencing carried out, so that the accuracy of estimating the

frequency of the ds-oligos in the pre-bound solution is low. In such

instances, it may be advisable to build a Markov model of ds-oligo

synthesis based on dinucleotide or higher polynucleotide observed

frequencies in the pre-bound ds-oligo mix. We used a simple

generative sequence model (GSM) whereby, if the ds-oligo was of

length L and the polynucleotide size was length K , the GSM-

predicted count, cGSM
i , for a particular ds-oligo sequence Si was

cGSM
i ~nC � p0

i P
L

k~Kz1
p ak

i jPk{1
i

� �
, ð11Þ

where p0
i is the probability (in the entire data set) that a ds-oligo

will start with the polynucleotide of length K observed at the start

of Si, ak
i is the nucleotide observed at position k in Si, Pk{1

i is the

polynucleotide P of length K ending at position k{1 in Si, and

p ak
i jPk{1

i

� �
is the probability of ak

i being observed in the data

immefodiately following the observation of Pk{1
i . As before,

nC~
P

i

ci is the sum frequency of all observed full-length ds-oligo

counts in the pre-bound fraction. The frequency p0
i is included to

take into account any beginning terminus bias in the sequence

generation probabilities. The graphical representation of this

model (Figure 3) therefore contains two input vectors that

determine the sequence: the set of frequencies for all polynucle-

otides of length K at the starting position P0~ p0
� �

; and

PA,K~ p akjPk{1
� �� �

, the set of probabilities for each nucleotide

given that it is preceded by a particular polynucleotide of length K .

We note that we are treating these frequencies here as highly ac-

curate estimates and not accounting for uncertainty in the esti-

mates; the uncertainty should be negligible as long as K is small

enough that the number of possible polynucleotides is much less

than the total ds-oligo counts (i.e., K4
vvnC ). As will be clear in

the results section, we did not utilize this model in any likelihood

analyses in the current study based on our estimate of the lack of

applicability of the model to current datasets. Instead, we evalu-

ated the predictive utility of the model and used it to generate

sequences for simulation of a full SULDEX study. However, the

SULDEX program is designed to use CGSM in place of C as

needed, or in place of V0 directly (foregoing the multinomial and

not treating the v0
i as free parameters) if CGSM is believed to have

negligible error.

Markov chain Monte Carlo estimation
MCMC runs used the Metropolis-Hastings algorithm [53]

acceptance ratio:

a(h,h0)~min 1,
p(h’jD)p(h’)q(h0,h)

p(hjD)p(h)q(h,h0)

� 

, ð13Þ

where q(hx,hy) is the proposal density, or the probability of

proposing a move to parameter set hy given a current state of hx.

Symmetric (Gaussian) proposals were used throughout, so that the

proposal ratios always cancelled out. Flat, non-informative priors

were also used throughout, making the prior ratio also cancel. The

acceptance ratio was therefore simply the ratio of likelihoods

between the current and proposed parameter states, thus making

the posterior distribution equivalent to the likelihood surface.

Proposal widths were tuned prior to each analysis, yielding an

acceptance ratio close to the optimal value of 0.45 for

unidimensional proposals [54] or around 0.234 for multidimen-

sional proposals [55]. Analyses were run several times so that the

ratio of within- to between-chain variances could be used to

measure convergence (although in practice, running chains for

100,000 generations and excluding the first 10,000 as burn-in was

generally adequate).

Reversible jumps in model space
In GEMs, site-specific energy terms are set to zero (that is, they

do not modify the optimum position-specific energy) unless there is

strong evidence that a particular nucleotide at a position makes the

binding worse. The vector of all energy terms is E~ el
i ,e

m,n
i

� �
. It is

clear that only a limited number of interactive energy terms may

be used in conjunction with the additive energy terms in order to

avoid problems with non-identifiability of parameters. Here, we

consider only the usage of the additive energy terms, and constrain

all interactive energy terms to be zero. We also use an indicator

matrix, I , which tracks whether an element of E is constrained to

equal zero in the current state of the model. When implementing

the energy model, energy terms are added or removed (made

equal to zero) using Green’s reversible jump MCMC (RJMCMC)

approach [56], which is generally used to switch between

parameter spaces with different dimension sizes. All dimensional

jumps increase or decrease the number of terms in E (and thus the

dimension of the parameter space) by one, and these moves begin

by either randomly sampling the value of a new energy term from

a uniform distribution from 0 to width w, e’*U(0,w), or

collapsing an energy parameter term to zero. However, since

these proposals may not be good samples near the optimum for the

new dimension, we use a technique called ‘‘proposal reallocation’’

[57], in which we perform k fixed-dimension MCMC steps

Figure 3. Graphical representation of the generative sequence
model GSM. Symbols and arrows are as in Figure 1. The pre-bound
counts, CK , are given a superscript K to indicate that they are counts
for the shorter ds-oligos need for the GSM of size K . The parameter set
includes the various polynucleotide probabilities used in the GSM
(P0 and PA,K ) as well as the new predicted counts, CGSM

i . In the
SULDEX program, the GSM can be linked to the BBM (Figure 1) using
CGSM

i in place of C or V0 , although that was not done in the analyses
presented here due to problems with the available datasets.
doi:10.1371/journal.pone.0026105.g003
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through parameter space (h1,h2,:::,hk) satisfying detailed balance

with respect to p(Djh)p hð Þ. The final state hk is then used for the

decision to accept or reject the move to the new dimensional

space, and we use a k that is large enough (based on empirical

tests) that q(hx,hy) is assumed to be independent of hx, i.e., that

q(hx,hy)*p(Djhy)p hyð Þ. Note that we are thereby essentially

using an arbitrary implicit prior ratio of 1:1 for the two

hypotheses, and that the ratio of time spent in any two adjacent

dimensional spaces will be equal to the Bayes Factor between

those spaces.

Accuracy of the generative sequence model
For a given dataset, we evaluated the accuracy of the GSM for

each polynucleotide of length K and ds-oligo length L by com-

paring its predictions for frequencies of each ds-oligo i (�vvGSM
i,K,L ) to

their observed values. The observed values can be considered

precise estimators for comparison (i.e., v0
i,L&v̂v0

i,L) only in cases

where the ds-oligos all have high counts, and in practice we could

not go above ds-oligo length 7 for the GSM accuracy analysis. To

evaluate estimator accuracy we used the root mean square error

(RMSE), where RMSEK ,L~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i

�vvGSM
i,K ,L{v̂v0

i,L


 �2
s

, which in-

cludes both bias and variance in the estimates as they deviate

from the true value.

SULDEX Simulations using existing control data sets
Two existing sets of data containing moderate numbers of KDs

were used for simulation analyses, 43 Leu3 [26], and 46 ArcA

binding sites [28], with two reference sequences chosen for each

data set. We also used the Zif268 Bind-n-Seq data (at 5 nM initial

transcription factor concentration), including only the 436 ds-oligos

that were within two nucleotide differences from the consensus

binding site (GCGTGGGCGT). We used the top three best binders

(GCGTGGGCGG and GCGTGGGAGG and the consensus) as

reference KDs (0.25728988, 0.579150579, and 0.15026296 nM,

respectively). To determine the effectiveness of the SULDEX

procedure in obtaining accurate dissociation constants and energy

models, datasets were simulated based on known (or presumed)

dissociation constants, mimicking the steps in a real SULDEX

experiment. For simulations of the Leu3 and ArcA data, sequences

were generated at equal frequencies. To avoid expected generation

frequencies of zero for the Zif268 sequences, they were generated at

frequencies equal to 0.8 times the observed frequency plus 0.2 times

the frequencies obtained from a GSM with polynucleotide length 7.

The accuracy of parameter estimates (K̂Ki
D) from the posterior means

were then evaluated using the root mean square error (RMSE) of

their logs, RMSE~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i

ln K̂Ki
D{ln Ki

D

� �2
r

. The protein concentra-

tion and the total copy number were varied in these simulations to

determine what effect these experimental conditions have on the

accuracy of the outcomes, and thus to guide experimental design.

For the Leu3 and ArcA data, each ½TF� was categorized into low,

medium, and high when its value was, respectively, lower than the

lowest KD, close to the lowest KD, or in the middle of KD

distributions of the target sequences.

Results

In this study, we introduce multiple models for use in analyzing

the results from SULDEX experiments. The first is the basic

binding model (BBM), which can be used in situations where

enough data has been collected such that most ds-oligo counts in

the pre-bound and bound fractions are large enough to allow their

frequencies to be estimated fairly accurately. We fit this model

with the likelihood function given in Equation 6. The other two

model classes are designed as extensions of the BBM. The gener-

ative sequence model (GSM) is designed to provide replacement

estimates of counts in situations where many (or most) of the

observed counts in the pre-bound fraction are zero or so small that

they are estimated poorly. Such situations typically occur when

there are exceptionally large numbers of sequences (e.g., 410 or 420

for length 10 or 20 random ds-oligos, respectively). As described

below, however, we find that for available large-scale datasets

neither the original counts nor this model are adequate, and so the

GSM (Equation 11) was used only to generate synthetic datasets

for testing the effectiveness of Bayesian analysis in determining

parameters for the other models. Finally, we introduce the gener-

ative energy model (GEM) to provide better estimates in situations

where some or many of the bound counts are not accurately

determined. The GEM is actually not a single model, but a family

of models in which various free energy parameter terms are turned

on and off (included or removed from the model) during the course

of the reversible jump Markov chain Monte Carlo analysis. We fit

this model with the likelihood function given in Equation 10. The

SULDEX program for implementing these analyses is freely avail-

able at the authors’ web site, www.EvolutionaryGenomics.com.

We begin the results with an analysis of experimental design con-

siderations and the effectiveness of the GSM, followed by imple-

mentation and testing of the BBM and GEM on the small Leu3

and ArcA datasets, followed by testing of a full GEM-based

SULDEX analysis of 10 mers simulated based on GSM count

predictions from the Zif268 Bind-n-Seq 20 mer dataset.

Experimental Design
An important consideration for experimental design is the syn-

thesis of the ds-oligos that will be made into double-stranded

targets and then bound to a transcription factor. This leads to

several questions: What is the preferable target structure? What

should the relative frequencies of different ds-oligos be? and what

part of the binding site should be targeted with variation? SUL-

DEX ds-oligos may contain primer regions for sequencing, vari-

able sequence tags (or ‘‘barcodes’’) to distinguish different experi-

ments, and variable (experimental) and constant parts in the

binding site and flanking region to prevent differential binding

depending on which sequence tag is used. There is an inherent

tradeoff between the goal of analyzing many sequences at once

and the goal of obtaining accurate results. As accurate estimation

of dissociation constants depends on accurate estimation of the

pre-bound target frequencies, for a given number of sequence

counts, including more ds-oligos in an experiment will lower the

average number of sequence counts per ds-oligo. Furthermore,

when many ds-oligos are included in the mixture, the variation in

realized ds-oligo concentrations will mean that some ds-oligos are

at much lower concentrations compared to others. For example, in

the Zif268 data [12], hexamer (length 6) counts vary by 384 fold.

In the HT-SELEX data [13], the expected ratio between the

highest and lowest count 10 mer ds-oligo is over 1 billion.

This simple result has serious implications for designing experi-

ments with satisfactory accuracy. One way to address this is to

limit the number of ds-oligos per experiment. We can consider

that if each ds-oligo we care about is sequenced 100 times in the

pre-bound fraction, the standard deviation (std) of the count is

10% of its expectation (according to a Poisson assumption). Thus,

we might want to sequence such ds-oligos 100–1000 times. It may

be currently reasonable to expect 65 million reads in a single lane

of Illumina HiSeq sequencing, meaning that one could reasonably

target 65,000 different ds-oligos, hoping that with an average

expectation of 1000 counts, a large fraction would be sequenced
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100 times or more. For random ds-oligos, this means that only 8

sites should be varied (leading to 65,536 different ds-oligos). Al-

though this may work for some studies, it may be unsatisfactory for

others, and we suggest two alternatives to allow the entire binding

site sequence repertoire to be evaluated at once. The first sugges-

tion is to make smaller numbers of variants, and then mix them.

For example, if five sites at a time were randomized in a 10 mer,

and this was repeated 15 times over with a careful assortment of

sites each time, then all pairwise deviations from the consensus

sequence might be reasonably sampled in the mixture of these 15

syntheses containing 15,360 different ds-oligos. The second sug-

gestion is to synthesize 50:50 nucleotide mixtures at each site,

focusing on those variants at each site that are thought to be

relevant to binding the transcription factor in question. This is

similar to a previously proposed approach for sampling ancestral

sequences [58].

In cases where there are too many variants to get accurate

relative frequencies in the pre-bound fraction, it is possible to use a

predictive model. A simple model is to use the mononucleotide

frequencies to predict ds-oligo frequencies, assuming that there is

no higher-order interactive effect, as in [13]. A preliminary

analysis of the Bind-n-Seq data [12] indicated that this simple

model was not satisfactory, as demonstrated by the observation

that the frequencies of many ds-oligos are substantially different

depending on which direction they are considered. This is also

true of the HT-SELEX data. We therefore developed an order

and context-dependent generative sequence model (GSM) to in-

clude higher-order interactions using polynucleotides of varying

length to predict subsequent sequences (see Methods).

It is straightforward to test the predictive accuracy of this GSM

on shorter ds-oligos since the frequencies of short ds-oligos can be

accurately measured by direct count. For the Bind-n-Seq data

[12], the average predicted error for counts of 5 mer sequences is

1.96%, which is accurate enough to compare to GSM estimates.

Using the observed values as a reference, the GSM with polynu-

cleotide lengths of 1, 2, and 3 had RMSEs of 71.1%, 40.5%, and

22.1%, respectively. This indicates strongly that GSMs with longer

polynucleotide dependencies are preferable, and thus that the

longest polynucleotide that can be accurately measured (based on

the predicted accuracy of the observed polynucleotide frequencies

in a dataset) should be used. Although these predicted error rates

are somewhat disappointing, the errors in predictions of 10 mer

frequencies are likely to be considerably higher. Our sense is that

there are other more complex trends in the data that may allow

greater predictive accuracy, but that a greater number of indepen-

dent synthesis datasets are required to determine if these trends are

general and thus worth computationally pursuing.

The second step in SULDEX is to incubate the ds-oligo mixture

with a transcription factor of interest. The concentration of free

transcription factor in solution is the most important consideration

in determining the outcome of the experiments (i.e., the accuracy

of estimating binding energies or dissociation constants of interest).

Unfortunately, this is difficult to predict ahead of time, as it

depends on the concentrations and binding energies of all the

sequences in solution, which are of course unknown at the outset.

In cases where most of the sequences in the mixture are of interest

(i.e., if variation in the mixture is targeted to be similar to the

known binding motif), one can simply add different amounts of

protein (holding the amount of sequence mixture constant), and

from EMSA estimate the total ds-oligo content in the unbound

and bound regions of tthe electrophoretic gel. An intermediate

starting protein concentration can then be chosen in which

approximately half of the DNA is in the bound fraction. Another

possibility is to co-immunoprecipitate sequences bound to a

transcription factor to measure the relative frequencies of the

reference sequences in the pre-bound and bound solutions using

quantitative PCR [59] or high-throughput sequencing.

Analysis of the generative energy model with Leu3 and
ArcA data

To demonstrate the utility of the GEM analyses, we simulated

SULDEX sequencing experiments using pre-existing datasets of

known dissociation constants for the transcription factors Leu3

and ArcA. Since the original data sets include dissociation

constants for less than 50 distinct sequences, we could not

generate enough information to evaluate interaction terms.

Therefore, only independent position-specific (additive) energy

components were included in analyzing these simulations. In

general, it is unclear how accurately a simple additive GEM will

estimate binding energies. As described below, additive GEMs

estimated from the ArcA dataset predicted binding energies

extremely well, although this was not true for the Leu3 dataset.

The point of the GEM is to leverage the information about

binding energies in the data set as a whole, to improve binding

energy predictions for individual ds-oligos. If the GEM accurately

represents the determinants of binding energy, then less sequenc-

ing may be required to achieve good results. An accurate GEM

will therefore be particularly helpful for predicting binding

energies for ds-oligos that are sequenced at low frequency, or that

bind poorly, and are thus under-represented in the data. This

insight motivated the inclusion of an error term (s2
E ) to account for

inaccuracies in the energy model (see Methods). This error term is

estimated along with the rest of the model, allowing an automatic

transition from the energy model predictions to the basic binding

model predictions when either the GEM is inaccurate or when

large pre-bound and bound counts allow KDs to be accurately

predicted by the BBM alone. When the counts get large, the model

effectively factors apart into two subcomponents: a multinomial

model in which all dissociation constants are entirely determined

by the pre- and post-binding counts (and the reference dissociation

constants), and an energy model that attempts to reproduce those

nearly-certain dissociation constants in terms of a combination of

energy parameters and error terms.

As expected, binding predictions were more accurate (had lower

log KD RMSEs) as the average number of sequence counts was

increased (Figure 4). The results for Leu3 GEM analyses indicate

that the error term improved predictions, since the RMSEs are

mostly well below the value obtained when the error term was

excluded (0.4). Although the GEM analytical predictions are not

quite as accurate as the BBM predictions for Leu3, the error term

allows the GEM to mostly reflect the accuracy inherent in the high

counts and not the less accurate predictions of the energy model.

For the experiments with Leu3 at a concentration of 50 nM, for

which the BBM had the lowest accuracy among the Leu3 runs,

there are some conditions for which the GEM analyses had slightly

less error than the BBM analyses alone (Figure 4). Under these

conditions (the highest transcription factor concentrations), many

of the strong and moderate binders are almost completely bound

(not shown), and it is therefore hard for the BBM to accurately

distinguish the relative magnitude of their dissociation constants.

For the ArcA data, the GEM provides an improvement over the

BBM in almost all cases. While the BBM RMSEs get substantially

worse when the free transcription factor is high (Figure 4; note the

differing scales on the graphs), the GEM RMSEs are similar for all

but the lowest counts. The difference between the two methods is

most notable in the results for the 1 mM (1000 nM) concentration

of transcription factor. Evaluation of the errors as a function of KD

(Figures S1a and S2a) indicate that most of the error reductions
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come from the best or the worst binding ds-oligos under conditions

where they are poorly estimated by the BBM. It is also worth

noting that for ArcA, with its relatively accurate GEM, increases in

the amount of sequencing only slightly alter the RMSEs under the

GEM, and the variance of the error estimates are slightly narrower

(Figure S2b). In contrast, the error terms for the Leu3 GEMs

become considerably larger with increases in the amount of total

sequence counts collected (Figure S1b). One way to view this is

that as more counts accumulate, the BBM estimators become

more accurate and thereby better expose the inaccuracy of the

Leu3 GEM estimates. Thus, the change in the error estimate with

increased sequencing seems to serve as an indicator of the reli-

ability of the GEM.

Relationship between posterior energy model terms and
binding site consensus

Leu3 binds to a palindromic consensus site (CCGgtacCGG) as a

homodimer to regulate genes involved in branched-chain amino

acid metabolism [60]. There are 10 positions in the palindromic

binding site, but since only 43 variants with known dissociation

constants were available for the simulation analysis, there is a great

deal of missing data. Positions 2 and 9, for example, do not vary,

and there are only two variants each at positions 3, 8 and 10. In

the original experiment [26], variants with mutations at positions 2

and 9 were too deleterious to Leu3 binding to be observed. An

examination of the posterior mean binding energy estimates for

the intermediate binding conditions ( TF½ �= 10 nM) and moderate

counts (average 10 per ds-oligo) indicates that a number of

positions have only marginal differences between the optimal

variant and the next-best variant (Table 1). At position 3, for

example, the mean posterior position-specific energy difference

between G and T is only 0.03 energy units, and at position 7 the

difference between C and T is only 0.04. In contrast, the nucle-

otide T at position 1 is the most deleterious variant, with 1.9

Figure 4. Comparison of the Basic Binding Model (BBM) and Generative Energy Model (GEM). The BBM results are shown in blue, and the
GEM results in red. Data were synthesized based on the Leu3 (a) and ArcA (b) dissociation constant data sets. In silico sequences were equilibrated,
resulting in 1 nM, 10 nM, or 50 nM free ½TF � for Leu3, and 1 nM, 100 nM, or 1000 nM for ArcA. Values are the RMSE across all log KD estimates, and
error bars shown are for four replicates. Average reads (counts) per ds-oligo sequence ranged from 1 to 100.
doi:10.1371/journal.pone.0026105.g004

Table 1. Posterior distribution of position-specific energy
terms for Leu3, ½TF�= 10 nM, average counts = 10).

A C G T

Position mean std mean std mean std mean std

1 - - 0.00* 0.01 0.32 0.21 1.88 0.46

2 - - 0.00* 0.00 - - - -

3 - - - - 0.02* 0.05 0.05 0.10

4 0.91 0.45 0.15 0.19 0.04* 0.10 0.19 0.22

5 0.42 0.15 0.58 0.20 0.80 0.26 0.00* 0.01

6 0.01* 0.03 1.22 0.30 0.33 0.36 0.61 0.18

7 0.57 0.25 0.25* 0.16 0.71 0.51 0.29 0.47

8 0.28 0.27 0.02* 0.07 - - - -

9 - - - - 0.00* 0.00 - -

10 - - 0.92 0.35 0.00* 0.01 - -

The lowest energy term at each position is in boldface, and the mean for the
consensus sequence is indicated with a *. Variants that were not tested in the
analysis have a dash.
doi:10.1371/journal.pone.0026105.t001
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additional energy units difference from C, which is the optimal

nucleotide at this position.

One of the features of our modeling approach is that Markov

chains are run over different models that include varying numbers

of parameters. For example, an energy term might not be required

if the corresponding variant is energetically indistinguishable from

the optimal binding variant. In general for Leu3, a mean posterior

energy difference of about 0.6 or greater is associated with a

posterior probability of .0.95 that an energy term is required (i.e.,

that having that nucleotide at that position worsens the energy of

Leu3 binding enough that an energy term is required to dis-

tinguish it from the optimal variant; Figure 5). As expected, the

lowest energy terms at each position generally match the con-

sensus (Table 1).

ArcA binds as a symmetric dimer to a tandem-repeated 15-

position consensus site (GTTAccattATGTTA) to regulate genes

involved in oxygen response [28]. There were 46 sequences

available with known dissociation constants, and out of the 136

possible single nucleotide variants, only four were not represented

in these 46 sequences (Table 2). Results (Table 2 and Figure 5)

are similar to those from Leu3, with the lowest energy variant

usually matching the consensus, with some variants only slightly

different from the lowest energy variant (e.g., C versus G at

position 6), and with some variants being extremely deleterious

(e.g., C at position 1).

Simulating a more complete SULDEX experiment
A more complete SULDEX experiment would include most or

all of the ds-oligos that are likely to be specifically bound by a

transcription factor, unlike for the Leu3 and ArcA data sets, which

each have dissociation constants for fewer than 50 binding sites.

Furthermore, for the Leu3 and ArcA simulations we assumed

equal pre-bound frequencies, even though it is more realistic to

expect variation in the relative frequencies of the different ds-oligos

in the pre-bound fraction. We therefore tested our method on a

more complete SULDEX experiment simulation that incorporat-

ed these factors. The best available dataset for this purpose, that

we are aware of, is the Zif268 data from the Bind-n-Seq experi-

ment [12]. The Bind-n-Seq dataset, however, presents a major

practical difficulty in that the Zif268 binding sites (length 10) are

located within random 21 mers, meaning that the local context for

any putative binding site varies in every instance. The efficiency of

ds-oligo synthesis itself can vary with local sequence context, some-

times resulting in dramatically unequal frequencies (as discussed

above). Additionally, the probability that a target site is bound may

vary with sequence context, and the transcription factor may even

bind to different locations on a long ds-oligo. Thus, the probability

of binding a sequence must be summed over all binding locations,

and 10 mer frequency distributions may not directly reflect bind-

ing probabilities due to interference caused by binding at other

locations. Because of these problems, one cannot expect that the

true Zif268 dissociation constants values can necessarily be accur-

ately determined from this dataset. Nevertheless, SULDEX ana-

lysis of these data can provide a large set of reasonable parameter

values for simulating a dataset for the purpose of testing the

method. We therefore performed such an analysis, and then

simulated binding using the ‘‘known’’ dissociation constant values.

The first step of the simulation is the synthesis of pre-bound

10 mers at different background frequencies. Some of the frequen-

Figure 5. Posterior probability of position-specific energy terms in Leu3 and ArcA. The posterior probability for each nucleotide at each
position is shown in the order A (black), C (red), G (green), and T (blue). Gray dots are shown for nucleotides for which no information was available in
the data, and black dots are shown over the nucleotide used at a site where no variation was available at that site. The consensus sequence is shown
above the probability bar corresponding to the consensus nucleotide. Capital letters indicate a strongly preferred consensus nucleotide at a position,
while lower case letters indicate a more indeterminate consensus nucleotide. Conditions are specified in Tables 1 and 2.
doi:10.1371/journal.pone.0026105.g005
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cies in the Zif268 dataset could be used directly, but many pre-

bound counts in the Zif268 dataset were low or zero. We therefore

generated pre-bound sequences using a generative model (GSM;

see Methods), which predicts frequencies for all ds-oligos. The next

step is to simulate binding of the 10 mers according to their

‘‘known’’ binding affinities based on energy terms derived from the

preliminary SULDEX analysis of the Zif268 data. For results

below, we synthesized and analyzed 10 mers differing from the

consensus by two nucleotides or fewer. Simulations were run

at four transcription factor concentrations (0.1, 1.0, 10.0, and

100.0 nM) with an average of 1000, 200, 100, or 20 sequence

reads per ds-oligo in the pre-bound and/or bound solutions.

Bound frequencies were obtained by multiplying the pre-bound

frequency by the probability of binding calculated as in Equation

2, using the GEM to obtain the binding energies and thus the KDs.

Simulations were replicated three times for each condition to

obtain means and variance of all estimators, and were evaluated

using the basic method alone (BBM), and using the basic plus

GEM method, both including three known reference KDs.

In the MCMC analysis, pre-bound frequencies and ½TF �were

treated as free parameters (subject to the constraints of the model)

and posterior estimates of all parameters were compared to their

true (simulated) values. When an average of 1000 sequence reads

(counts) per ds-oligo were used, the mean KD estimators for both

models were generally accurate for a variety of transcription factor

concentrations (Figure 6). One caveat is that the basic binding

model required inclusion of a reference ds-oligo with high KD

(100 nM) to obtain remotely accurate KD estimates when the

transcription factor concentration was high (½TF �= 100 nM). In

contrast, the energy model does not, and even the very lowest KDs

are estimated poorly (Figure 6a, ½TF �= 100 nM). Furthermore,

the KD estimates were slightly worse for the basic binding method

at the lowest and highest transcription factor concentrations. The

transcription factor concentration estimates were accurate as well

(data not shown). In general, the individual KD estimates were

worst for ds-oligos that have very low counts in the pre-bound

and/or bound fractions.

As described in the previous section, the energy model is ex-

pected to provide a greater benefit when more counts in the pre-

bound or bound fraction are low. This prediction is borne out by

the simulations with reduced sequencing per ds-oligo (Figure 7 and

8). The GEM has better accuracy, particularly for ds-oligos with

high KD values (Figure 9), indicating that it provides a better

estimator by sharing information across sequences according to

the GEM. The effect is even more pronounced when the pre-

bound ds-oligos are sequenced in higher numbers, but the bound

ds-oligos are not. The GEM energy terms themselves are also

estimated accurately as long as the pre-bound sequencing is high

(Figure 10), although some of the largest energy terms are esti-

mated less accurately than the others. This is to be expected, since

the high-energy terms lead to ds-oligos with weak binding proper-

ties for which the strength of binding can only be approximately

estimated.

Discussion

The core principle applied in this study is that in solution and at

equilibrium, the proportion of a particular TFBS sequence that is

bound to a transcription factor (the probability of binding) is

determined by the dissociation constant between the sequence and

transcription factor, and the concentration of free transcription

factor. Therefore, if one knows the relative frequencies of different

sequences in a mixture prior to binding, one can predict the re-

lative frequencies of those sequences that are bound to the tran-

scription factor. A difficulty arises, in that the free concentration of

transcription factor is generally unknown, and if the equilibrium

constants are also unknown then there are more unknowns than

data points (i.e., ds-oligo sequence counts in the bound solution).

This problem can be easily solved by including at least two

reference sequences with known dissociation constants in the basic

(BBM) system, and if an energy model (GEM) is used, only one

reference sequence is required. To ensure accuracy, it is also best if

the counts for the reference sequences are relatively high. Al-

though one could first solve for the unknowns using the reference

sequence data, we have chosen to use a flexible Bayesian approach

that can account for errors and uncertainty in all data points and

allows inclusion of as many reference sequences as are available.

One of the main benefits of the Bayesian approach is that it can

incorporate information from multiple sources, all with varying

degrees of uncertainty. In the simple graphical system that does

not model the binding energy (Figure 1), the sources of infor-

mation are the counts of sequences before the transcription factor

is bound (C) and the counts in the fraction bound to the trans-

cription factor (B). It is assumed that these counts are random

draws from a multinomial based on the true underlying pro-

portions of the sequences in the two solutions, respectively V0 and

Vb. These counts thus constrain the reasonable range of values for

the underlying proportions, with higher counts constraining the

proportions more than lower counts. The ds-oligo proportions in

the bound solution containing transcription factor are modified

from the pre-bound proportions based on the sequence-specific

probability of binding the transcription factor. The reference

sequences, with known dissociation constants, allow the informa-

tion about the proportions of sequences in the two solutions to be

translated back into information about the dissociation constants,

and thus the binding energy of each sequence i through the

relationship DGi~RT ln Ki
D (see Methods for details). Inclusion of

at least two reference sequences ensures the identifiability of all

unknown parameters.

Table 2. Posterior distribution of position-specific energy
terms for ArcA, ½TF�= 100 nM, average counts = 20).

A C G T

Position mean std mean std mean std mean std

1 1.42 0.31 2.32 0.19 0.00 0.00 1.05 0.28

2 1.49 0.32 2.11 0.46 - - 0.00 0.00

3 0.52 0.31 2.18 0.51 0.46 0.29 0.00 0.02

4 0.00 0.01 2.27 0.43 0.74 0.30 1.74 0.39

5 0.25 0.20 0.01 0.05 0.77 0.36 0.40 0.35

6 0.35 0.14 0.06 0.13 0.13 0.18 0.32 0.28

7 0.09 0.15 0.22 0.24 0.12 0.18 0.51 0.09

8 0.24 0.19 0.17 0.23 0.51 0.33 0.03 0.08

9 0.07 0.10 0.19 0.22 0.21 0.22 0.05 0.10

10 0.02 0.06 0.64 0.32 0.53 0.32 0.27 0.14

11 1.02 0.27 0.66 0.33 1.02 0.30 0.01 0.05

12 - - - - 0.00 0.00 - -

13 2.24 0.51 1.72 0.37 2.08 0.41 0.00 0.00

14 0.10 0.15 1.83 0.39 0.16 0.20 0.03 0.06

15 0.00 0.01 1.70 0.40 0.75 0.31 1.13 0.32

Notation is the same as in Table 1.
doi:10.1371/journal.pone.0026105.t002
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Figure 6. Accuracy of KD estimates for Zif268 simulation. Means and standard deviation estimates from the posterior distribution are shown
for a single representative simulation replicate for each condition. In these simulations, there were 1000 counts per ds-oligo on average in both the
pre-bound and bound solutions, and ½TF � was 0.1, 1.0, 10, or 100 nM. For the Basic (BBM) model (a), but not the GEM (b) model, a reference ds-oligo
with a larger KD was required for ½TF �= 100 nm (c.f., Figure S1). Only the 89 high affinity ds-oligos with KDv200 nM are shown (out of 436 total ds-
oligos).
doi:10.1371/journal.pone.0026105.g006

Figure 7. Accuracy of Zif268 KD estimates with fewer counts in both solutions. Results are displayed as in Figure 6. The ½TF � was 1.0 nM
and there were 200, 100, or 20 sequence counts per ds-oligo in both the both the pre-bound and bound solutions (labeled as ‘‘pre-bound, bound’’ in
the different sub-figures).
doi:10.1371/journal.pone.0026105.g007
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Figure 8. Accuracy of Zif268 KD estimates with fewer counts in bound solution only. Results are displayed as in Figure 6. The ½TF � was
1.0 nM, and there were 1000 counts per ds-oligo in the pre-bound solutions. There were 200, 100, or 20 sequence counts per ds-oligo in the bound
solutions. Pre-bound and bound solution concentration are labeled in the different sub-figures as in Figure 7.
doi:10.1371/journal.pone.0026105.g008

Figure 9. Relationship of BBM and GEM coefficients of variation for Zif268 simulations. Coefficients of variation (CVs, standard deviations
over the means) were calculated from the posteriors using the same data as shown in Figure 7. The dashed line indicates equal CVs for the BBM and
GEM estimators.
doi:10.1371/journal.pone.0026105.g009
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An interesting illustration of the flexibility of our Bayesian

approach is our use of ‘‘generative energy models’’ (GEMs). With

these models, information is communicated across ds-oligo se-

quences to predict the binding energy. In GEMs, the binding

energy is considered to be composed of independent position-

specific energy components, as well as interaction energy com-

ponents [13]. The energy model may not be perfectly accurate,

however, and the error term for the energy model allows for

automated weighting of the accuracy of the energy-based pre-

dictions and the relative frequency-based predictions in coming to

a joint posterior prediction of each sequence-specific dissociation

constant. This weighting allows an easy switch from a basic

method that relies on reference ds-oligos with known KDs and the

counts alone, if they are high enough, to the GEM portion of the

model, if the error in the GEM portion is low enough.

There are similarities between the GEM and a position weight

matrix (PWM) model using binding energies since both are

(typically) estimated using independent energy contributions for

each position [40]. The main difference is that in PWM estima-

tion, the free TF concentration is assumed to be low. If this

assumption is inaccurate the PWM will return an incorrect energy

model. Therefore, an advantage of approaches such as ours that

allow ½TF� to vary, and to be estimated in the model-fitting process

(see also [13]), is that a more accurate energy model can be deter-

mined without restrictive assumptions. In addition, our method

also contrasts with PWM fitting in the use of reversible jumps

between models of different dimensions to allow simultaneous

estimates of the parameters of interest (the binding energies) while

only including those energy components that are statistically well-

justified.

We have also proposed a separate ‘‘generative sequence mo-

del’’, or GSM, which allows us to use the frequencies of shorter

sub-sequences (polynucleotides) to model the frequency of se-

quences in solution prior to binding. This is useful in cases (such as

the Zif268 Bind-n-Seq data) where there are so many pre-bound

sequences that most of them individually have extremely low

frequencies and are therefore difficult to count. For example, as we

showed for the Bind-n-Seq data [12], the relative frequencies of

their ‘‘randomly’’-generated ds-oligos of even 8 bp in length can

differ by many orders of magnitude. The range of frequencies for

longer ds-oligos is even greater, and thus if accuracy is a concern it

may be impossible to obtain sufficient coverage of all ds-oligos in a

highly complex mixture. The sequencing requirements for accur-

ate frequency estimates can easily be far beyond the capacity of

even the best modern high-throughput sequencers. The GSM

ameliorates this problem to some extent by providing improved

frequency estimators for ds-oligos with low sequence counts, and

may be further improved by discovering and incorporating other

general rules to predict frequency variation. In the meantime,

careful experimental design to reduce the number of sequences in

the mixture and focus on particular experimental questions is also

important if accuracy is a concern.

Two recently proposed approaches similar to the SULDEX

experimental system, Bind-n-Seq [12] and HT-SELEX [13], also

utilize ds-oligos sequenced before and after binding to a trans-

cription factor. The Bind-n-Seq analysis was designed to quali-

tatively identify binding site preferences, and assumes a simple

PWM model with no attempt to model the biophysical energy

terms or the relationship between the pre-bound and bound

solution counts. As we have noted here, the experimental results

are suboptimal for the purpose of measuring binding energies

primarily because binding sites are created randomly in the

varying context of a much longer random ds-oligonucleotide. This

variable context can affect the probability of ds-oligo synthesis and

Figure 10. Posterior estimates of nucleotide- and position-specific energy terms. The ½TF � was 1.0 nM, and counts per ds-oligo in the pre-
bound and bound solutions were 1000 and 1000, 100 and 100, or 1000 and 100, as labeled on the sub-figures. Results for nucleotide A, T, C, and G
energy terms at each position are color coded black, blue, red, and green, respectively. The mean posterior estimate is shown with a dot, the 95%
credible regions of the estimates are shown with vertical bars, and the true values are shown with horizontal bars.
doi:10.1371/journal.pone.0026105.g010
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the probability of binding, adding noise and bias to the results.

The HT-SELEX approach, in contrast, has a similar aim to the

SULDEX approach, and uses the BEEML program to estimate

transcription factor concentrations and energy terms using a maxi-

mum likelihood approach and a nearly identical biophysical mo-

del. Key advantageous features of our approach include: 1) SUL-

DEX uses a Bayesian approach and MCMC rather than a maxi-

mum likelihood approach, resulting in posterior distributions and

an automatic estimate of uncertainty rather than only a point

estimate. Bayesian and MCMC approaches based on biophysical

models of transcription factor binding have previously been used

to analyze ChIP-chip or PBM data [48,61], and are particularly

useful for parameter-rich models such as these; 2) Unlike HT-

SELEX, SULDEX allows estimation of binding energies directly

from relative frequencies or in combination with an energy model,

and allows incorporation of reference sequences with known

binding energies. Thus, while both approaches include an energy

model error term, in SULDEX this term allows reduced depen-

dence on the energy model assumptions when binding energies are

inferred. Binding energy inference will flexibly depend more on

the energy model for low frequency ds-oligos with insufficient

sequencing to be estimated by the BBM approach alone; 3) SUL-

DEX uses the multinomial distribution to calculate the probabil-

ities of observed counts given underlying ds-oligo frequencies in

solution, while HT-SELEX’s BEEML program uses a Gaussian

approximation. This is most likely to matter when some counts are

small, which will often occur due to the high variance of starting

ds-oligo frequencies. BEEML also uses energy level discretization

to approximate the partition function; 4) We have presented here a

model (GSM) to predict relative ds-oligo frequencies in the pre-

bound fraction, and shown that the simple independent nucleotide

frequency model used in HT-SELEX/BEEML can be highly

inaccurate. The GSM should be further developed to increase

accuracy when data from a larger number of pre-bound ds-oligo

synthesis experiments become available; 5) the SULDEX method

allows simultaneous inference of model complexity and parameter

values by incorporating a reversible jump MCMC approach, thus

avoiding potential problems of model over-specification that can

lead maximum likelihood estimators (such as those in BEEML) to

focus on noise and thus reduce prediction accuracy.

We expect that a future application of this and related approa-

ches will be to allow detailed study of how binding energies are

influenced by nucleotide variation in the binding site. In parti-

cular, the simple additive energy model is insufficient to accurately

predict dissociation constants for many proteins, and interactive

energy terms will therefore be needed. The number of possible

interactive energy terms can be quite large, and their statistical

justification and usefulness should be carefully considered. The

reversible jump MCMC approach applied here can be used for

this purpose and allows detailed biophysical models to be deve-

loped, evaluated, and compared without making a large number of

assumptions. However, to explore interaction terms, it will be

important to implement careful experimental design for generat-

ing data. For the datasets currently available (Bind-n-Seq and HT-

SELEX), we do not believe that the pre-bound frequencies can be

reliably determined, and for the Bind-n-Seq data the binding

probabilities are confounded by variable context and possible

multiple binding opportunities per ds-oligo. Thus, it seems quite

possible that estimation of higher-order interactions in these

datasets could be thoroughly confounded by these other effects.

For example, in our own focused experiments using mitochondrial

transcription factor A protein (mtTFA; unpublished data), which

has moderate sequence specificity [62], we found that its multiple

binding modes and multimers that form on the ds-oligos, as well as

the context of varying sequence well outside the binding site, can

deeply confound interpretation. Experiments that therefore focus

on a sub-sample of possible ds-oligos close to the consensus or

optimal ds-oligo can produce precise estimates of binding energies

without relying on a model, and these may then be used to better

elucidate reasonable model structures.

Characterizing the binding potential of target binding sites for a

transcription factor within a species has immediate benefit for under-

standing transcriptional regulation for a particular system, but ap-

plying this strategy across multiple species may have more widespread

impact. In particular, to understand morphological evolution, it is

necessary to have a clear idea of the relationship between trans-

cription factors, their strength of binding to a wide range of targets,

and how the binding energy relationships change as transcription

factors evolve. Future implementations can also include important

factors such as cooperative binding and interaction with repressors.

We therefore expect that exploiting methods for determining binding

energies across species will lead to substantial impact in other fields

and in understanding to approach questions relating to disease

pathology, evolutionary adaptation, and speciation.

Supporting Information

Figure S1 True versus predicted binding with and
without inclusion of an energy model for Leu3. The

relationship between the true and predicted log KDs are shown in

(a), with results that included the GEM model and an error term

shown with red circles, and results without an energy term (the

BBM model) with blue circles. The posterior distribution of the

respective error terms for the GEM model results are shown in (b).

Results are shown for free ½TF � of 10 nM (labeled a1 and a3, and

b1 and b3) or ½TF �= 50 nM (labeled a2 and a4, and b2 and b4).

Average counts per ds-oligo were also varied, with counts of 10 in

a1 and a3 (and b1 and b3), and counts of 100 in a2 and a4 (and b2

and b4). Dotted lines represent perfectly accurate KD predictions.

(PDF)

Figure S2 True versus predicted binding with and
without inclusion of an energy model for ArcA. Results

shown for ArcA are the same as for Leu3 in Figure S2, except that

free ½TF � was 100 nM or 1000 nM (1 mM).

(PDF)

Author Contributions

Performed the experiments: DDP APJdK HK. Analyzed the data: DDP

APJdK HK KK. Contributed reagents/materials/analysis tools: DDP

MEAC. Wrote the paper: DDP APJdK KJK. Conceived and designed the

study: DDP KJK TAC MEAC. Wrote novel programs to analyze the data:

APJdK HK. Revised the manuscript critically for important intellectual

content: DDP KJK TAC APJdK MEAC.

References

1. Carey M, Smale ST (1999) Transcriptional Regulation in Eukaryotes: Concepts,

Strategies, and Techniques. Cold Spring Harbor: Cold Spring Harbor

Laboratory.

2. Friberg MT (2007) Prediction of transcription factor binding sites using

ChIP-chip and phylogenetic footprinting data. J Bioinform Comput Biol 5:

105–116.

3. Reddy TE, DeLisi C, Shakhnovich BE (2007) Binding site graphs: a new graph

theoretical framework for prediction of transcription factor binding sites. PLoS

Comput Biol 3: e90.

4. Pape UJ, Grossmann S, Hammer S, Sperling S, Vingron M (2006) A new

statistical model to select target sequences bound by transcription factors.

Genome Inform 17: 134–140.

Bayesian Analysis of Protein-DNA Binding Affinity

PLoS ONE | www.plosone.org 14 November 2011 | Volume 6 | Issue 11 | e26105



5. Dai X, He J, Zhao X (2007) A new systematic computational approach to

predicting target genes of transcription factors. Nucleic Acids Res.
6. Chen Y, Blackwell TW, Chen J, Gao J, Lee AW, et al. (2007) Integration of

genome and chromatin structure with gene expression profiles to predict c-MYC

recognition site binding and function. PLoS Comput Biol 3: e63.
7. Ananko EA, Kondrakhin YV, Merkulova TI, Kolchanov NA (2007)

Recognition of interferon-inducible sites, promoters, and enhancers. BMC
Bioinformatics 8: 56.

8. Stepanova M, Lin F, Lin VC (2006) In silico modelling of hormone response

elements. BMC Bioinformatics 7 Suppl 4: S27.
9. Gibson G, Weir B (2005) The quantitative genetics of transcription. Trends

Genet 21: 616–623.
10. Carroll SBGJK, Weatherbee SD (2001) From DNA to Diversity: Molecular

Genetics and the Evolution of Animal Design. MaldenMA: Blackwell Science.
11. Maerkl SJ, Quake SR (2007) A systems approach to measuring the binding

energy landscapes of transcription factors. Science 315: 233–237.

12. Zykovich A, Korf I, Segal DJ (2009) Bind-n-Seq: high-throughput analysis of in
vitro protein-DNA interactions using massively parallel sequencing. Nucleic

Acids Res 37: e151.
13. Zhao Y, Granas D, Stormo GD (2009) Inferring binding energies from selected

binding sites. PLoS Comput Biol 5: e1000590.

14. Lassig M (2007) From biophysics to evolutionary genetics: statistical aspects of
gene regulation. BMC Bioinformatics 8 Suppl 6: S7.

15. Marcy Y, Ishoey T, Lasken RS, Stockwell TB, Walenz BP, et al. (2007)
Nanoliter reactors improve multiple displacement amplification of genomes from

single cells. PLoS Genet 3: 1702–1708.
16. Warren LA, Rossi DJ, Schiebinger GR, Weissman IL, Kim SK, et al. (2007)

Transcriptional instability is not a universal attribute of aging. Aging Cell 6:

775–782.
17. Marcy Y, Ouverney C, Bik EM, Losekann T, Ivanova N, et al. (2007) Dissecting

biological ‘‘dark matter’’ with single-cell genetic analysis of rare and uncultivated
TM7 microbes from the human mouth. Proc Natl Acad Sci U S A 104:

11889–11894.

18. Choi Y, Qin Y, Berger MF, Ballow DJ, Bulyk ML, et al. (2007) Microarray
analyses of newborn mouse ovaries lacking Nobox. Biol Reprod 77: 312–319.

19. McCord RP, Berger MF, Philippakis AA, Bulyk ML (2007) Inferring condition-
specific transcription factor function from DNA binding and gene expression

data. Mol Syst Biol 3: 100.
20. Bulyk ML (2007) Protein binding microarrays for the characterization of DNA-

protein interactions. Adv Biochem Eng Biotechnol 104: 65–85.

21. Berger MF, Philippakis AA, Qureshi AM, He FS, Estep PW, 3rd, et al. (2006)
Compact, universal DNA microarrays to comprehensively determine transcrip-

tion-factor binding site specificities. Nat Biotechnol 24: 1429–1435.
22. Bulyk ML (2006) Analysis of sequence specificities of DNA-binding proteins with

protein binding microarrays. Methods Enzymol 410: 279–299.

23. Berger MF, Bulyk ML (2006) Protein binding microarrays (PBMs) for rapid,
high-throughput characterization of the sequence specificities of DNA binding

proteins. Methods Mol Biol 338: 245–260.
24. Bulyk ML (2006) DNA microarray technologies for measuring protein-DNA

interactions. Curr Opin Biotechnol 17: 422–430.
25. Jolma A, Kivioja T, Toivonen J, Cheng L, Wei G, et al. Multiplexed massively

parallel SELEX for characterization of human transcription factor binding

specificities. Genome Res 20: 861–873.
26. Liu X, Clarke ND (2002) Rationalization of gene regulation by a eukaryotic

transcription factor: calculation of regulatory region occupancy from predicted
binding affinities. J Mol Biol 323: 1–8.

27. Hallikas O, Palin K, Sinjushina N, Rautiainen R, Partanen J, et al. (2006)

Genome-wide prediction of mammalian enhancers based on analysis of
transcription-factor binding affinity. Cell 124: 47–59.

28. Wang X, Gao H, Shen Y, Weinstock GM, Zhou J, et al. (2008) A high-
throughput percentage-of-binding strategy to measure binding energies in DNA-

protein interactions: application to genome-scale site discovery. Nucleic Acids

Res 36: 4863–4871.
29. Gustafsdottir SM, Schlingemann J, Rada-Iglesias A, Schallmeiner E, Kamali-

Moghaddam M, et al. (2007) In vitro analysis of DNA-protein interactions by
proximity ligation. Proc Natl Acad Sci U S A 104: 3067–3072.

30. Mukherjee S, Berger MF, Jona G, Wang XS, Muzzey D, et al. (2004) Rapid
analysis of the DNA-binding specificities of transcription factors with DNA

microarrays. Nat Genet 36: 1331–1339.

31. Badis G, Berger MF, Philippakis AA, Talukder S, Gehrke AR, et al. (2009)
Diversity and complexity in DNA recognition by transcription factors. Science

324: 1720–1723.
32. Zhu C, Byers KJ, McCord RP, Shi Z, Berger MF, et al. (2009) High-resolution

DNA-binding specificity analysis of yeast transcription factors. Genome Res 19:

556–566.
33. Warren CL, Kratochvil NC, Hauschild KE, Foister S, Brezinski ML, et al.

(2006) Defining the sequence-recognition profile of DNA-binding molecules.
Proc Natl Acad Sci U S A 103: 867–872.

34. Harbison CT, Gordon DB, Lee TI, Rinaldi NJ, Macisaac KD, et al. (2004)

Transcriptional regulatory code of a eukaryotic genome. Nature 431: 99–104.

35. MacIsaac KD, Wang T, Gordon DB, Gifford DK, Stormo GD, et al. (2006) An

improved map of conserved regulatory sites for Saccharomyces cerevisiae. BMC

Bioinformatics 7: 113.

36. Borneman AR, Zhang ZD, Rozowsky J, Seringhaus MR, Gerstein M, et al.

(2007) Transcription factor binding site identification in yeast: a comparison of

high-density oligonucleotide and PCR-based microarray platforms. Funct Integr

Genomics 7: 335–345.

37. Wei CL, Wu Q, Vega VB, Chiu KP, Ng P, et al. (2006) A global map of p53

transcription-factor binding sites in the human genome. Cell 124: 207–219.

38. Robertson G, Hirst M, Bainbridge M, Bilenky M, Zhao Y, et al. (2007) Genome-

wide profiles of STAT1 DNA association using chromatin immunoprecipitation

and massively parallel sequencing. Nat Methods 4: 651–657.

39. Johnson DS, Mortazavi A, Myers RM, Wold B (2007) Genome-wide mapping of

in vivo protein-DNA interactions. Science 316: 1497–1502.

40. Stormo GD (2000) DNA binding sites: representation and discovery. Bioinfor-

matics 16: 16–23.

41. Berg OG, von Hippel PH (1987) Selection of DNA binding sites by regulatory

proteins. Statistical-mechanical theory and application to operators and

promoters. J Mol Biol 193: 723–750.

42. Granek JA, Clarke ND (2005) Explicit equilibrium modeling of transcription-

factor binding and gene regulation. Genome Biol 6: R87.

43. Manke T, Roider HG, Vingron M (2008) Statistical modeling of transcription

factor binding affinities predicts regulatory interactions. PLoS Comput Biol 4:

e1000039.

44. Roider HG, Kanhere A, Manke T, Vingron M (2007) Predicting transcription

factor affinities to DNA from a biophysical model. Bioinformatics 23: 134–141.

45. He X, Chen CC, Hong F, Fang F, Sinha S, et al. (2009) A biophysical model for

analysis of transcription factor interaction and binding site arrangement from

genome-wide binding data. PLoS One 4: e8155.

46. van Oeffelen L, Cornelis P, Van Delm W, De Ridder F, De Moor B, et al. (2008)

Detecting cis-regulatory binding sites for cooperatively binding proteins. Nucleic

Acids Res 36: e46.

47. Djordjevic M, Sengupta AM, Shraiman BI (2003) A biophysical approach to

transcription factor binding site discovery. Genome Res 13: 2381–2390.

48. Kinney JB, Tkacik G, Callan CG, Jr. (2007) Precise physical models of protein-

DNA interaction from high-throughput data. Proc Natl Acad Sci U S A 104:

501–506.

49. Wang J, Morigen (2009) BayesPI - a new model to study protein-DNA

interactions: a case study of condition-specific protein binding parameters for

Yeast transcription factors. BMC Bioinformatics 10: 345.

50. Foat BC, Morozov AV, Bussemaker HJ (2006) Statistical mechanical modeling

of genome-wide transcription factor occupancy data by MatrixREDUCE.

Bioinformatics 22: e141–149.

51. Gerland U, Moroz JD, Hwa T (2002) Physical constraints and functional

characteristics of transcription factor-DNA interaction. Proc Natl Acad Sci U S A

99: 12015–12020.

52. Stormo GD, Fields DS (1998) Specificity, free energy and information content in

protein-DNA interactions. Trends Biochem Sci 23: 109–113.

53. Hastings WK (1970) Monte Carlo sampling methods using Markov chains and

their applications. Biometrika 57: 97–109.

54. Gelman A (2004) Bayesian data analysis. Boca Raton, Fla.: Chapman & Hall/

CRC. xxv668 p.

55. Roberts GO, Gelman A, Gilks WR (1997) Weak Convergence and Optimal

Scaling of Random Walk Metropolis Algorithms. The Annals of Applied

Probability 7: 110–120.

56. Green PJ (1995) Reversible jump Markov chain Monte Carlo computation and

Bayesian model determination. Biometrika 82: 711–732.

57. Al-Awadhi F, Hurn M, Jennison C (2004) Improving the acceptance rate of

reversible jump MCMC proposals. Statistics & Probability Letters 69: 189–198.

58. Pollock DD, Chang BH (2007) Dealing with Uncertainty in Ancestral Sequence

Reconstruction: Sampling from the Posterior Distribution. In: Liberles DA, ed.

Ancestral Sequence Reconstruction. Oxford: Oxford University Press.

59. Haring M, Offermann S, Danker T, Horst I, Peterhansel C, et al. (2007)

Chromatin immunoprecipitation: optimization, quantitative analysis and data

normalization. Plant Methods 3: 11.

60. Friden P, Schimmel P (1988) LEU3 of Saccharomyces cerevisiae activates

multiple genes for branched-chain amino acid biosynthesis by binding to a

common decanucleotide core sequence. Mol Cell Biol 8: 2690–2697.

61. Foat BC, Morozov AV, Bussemaker HJ (2006) Statistical mechanical modeling

of genome-wide transcription factor occupancy data by MatrixREDUCE.

Bioinformatics 22: e141–149.

62. Gangelhoff TA, Mungalachetty PS, Nix JC, Churchill ME (2009) Structural

analysis and DNA binding of the HMG domains of the human mitochondrial

transcription factor A. Nucleic Acids Res 37: 3153–3164.

Bayesian Analysis of Protein-DNA Binding Affinity

PLoS ONE | www.plosone.org 15 November 2011 | Volume 6 | Issue 11 | e26105


