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Abstract

Objective.—Current brain stimulation paradigms are largely empirical rather than theoretical. An 

opportunity exists to improve upon their modest effectiveness in closed-loop control strategies 

with the development of theoretically grounded, model-based designs.

Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence.

dsb@seas.upenn.edu . 

Supplementary material for this article is available https://doi.org/10.1088/1741-2552/ab7a4e

HHS Public Access
Author manuscript
J Neural Eng. Author manuscript; available in PMC 2021 August 05.

Published in final edited form as:
J Neural Eng. ; 17(2): 026009. doi:10.1088/1741-2552/ab7a4e.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://doi.org/10.1088/1741-2552/ab7a4e


Approach.—Inspired by this need, here we couple experimental data and mathematical modeling 

with a control-theoretic strategy for seizure termination. We begin by exercising a dynamical 

systems approach to model seizures (n = 94) recorded using intracranial EEG (iEEG) from 21 

patients with medication-resistant, localization-related epilepsy.

Main results.—Although each patient’s seizures displayed unique spatial and temporal patterns, 

their evolution can be parsimoniously characterized by the same model form. Idiosyncracies of the 

model can inform individualized intervention strategies, specifically in iEEG samples with well-

localized seizure onset zones. Temporal fluctuations in the spatial profiles of the oscillatory modes 

show that seizure onset marks a transition into a regime in which the underlying system supports 

prolonged rhythmic and focal activity. Based on these observations, we propose a control-theoretic 

strategy that aims to stabilize ictal activity using static output feedback for linear time-invariant 

switching systems. Finally, we demonstrate in silico that our proposed strategy allows us to 

dampen the emerging focal oscillatory sources using only a small set of electrodes.

Significance.—Our integrative study informs the development of modulation and control 

algorithms for neurostimulation that could improve the effectiveness of implantable, closed-loop 

anti-epileptic devices.

Keywords

intracranial electrocorticography (iEEG); closed-loop stimulation; multivariate time-series 
analysis; dynamical stability analysis; eigenvalue-eigenvector structure

1. Introduction

Understanding the dynamic neurophysiology that generates and propagates seizures is 

critical for preventing them, limiting their spread, and possibly arresting 

epileptogenesis[1].Perhaps the most immediate therapeutic application of this knowledge 

lies in the development of more effective implantable neurodevices [2], by informing 

patient-specific algorithms to modulate brain dynamics and abort seizures [3–5]. Ideally, 

these algorithms would dictate both when and where to deliver an intervention in the brain 

or connected structures. Effective stimulation protocols could improve quality of life for the 

nearly 1% of the world’s population affected by epilepsy [6], and dramatically for the 1/3 of 

these patients who are resistant to medication. Advances in stimulation are likely to come 

from engineering and control theory [7, 8], and it is surprising that little of it has been 

applied to current devices. This disconnect between theory and application is largely due to 

the relatively modest technical capabilities of early implantable devices, with their limited 

computational power, small channel count, and narrow recording bandwidth [2, 9]. However, 

these limitations are all being steadily overcome. Newer rechargeable versions of 

neurostimulation devices are currently in animal testing, and a host of established and newly 

formed companies, including Medtronic, NeuroPace, Neuralink, Blackfynn, and Neurotech 

Pharmaceuticals, Inc, are hard at work developing new, vastly more capable closed-loop 

devices for neural control and repair [10, 11]. Ultimately their success may critically depend 

on building a deeper understanding of the types of dynamical states that separate normal 

from pathological function.
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A natural language in which to understand normal and pathological neural states is 

dynamical systems theory. Efforts to connect seizure physiology to dynamical systems 

theory are not new, and include work by Schindler et al and Rummel et al, who 

characterized the dynamical stability of the spatiotemporal correlation structure of 

intracranial EEG (iEEG) recordings over the peri–ictal period [8,12]. Modeling the 

dynamics of epileptic networks from iEEG is particularly challenging because epileptiform 

activity manifests across a broad range of spatiotemporal scales and displays marked inter-

channel dependencies. Further challenges are posed by the tremendous patient heterogeneity 

in many features of the epilepsy syndrome and of the particular seizures[13–15]. 

Understanding specific biological phenotypes, therefore, requires the ability to assess 

interactions between different channels across different timescales, and generate testable 

causal models of seizure generation, propagation, and termination. Prior work demonstrates 

the utility of autoregressive models to identify seizures based on different features of system 

dynamics [16–18]. As an example, Franaszczuk and Bergey [18] argued that the goodness of 

fit of these models highlights the reduced complexity of the ictal onset regime, marking the 

transition from a less ordered state to a state of high regional synchronization. More recently, 

Mullen, Worrell [16] applied a multivariate eigendecomposition to analyze the time-varying 

principal oscillation patterns (or eigenmodes) of independent and spatially fixed sources of 

iEEG during two temporally proximate ictal samples. The group reported distinct shifts in 

characteristic frequency and damping time of a small subset of the most dynamically 

important eigenmodes before, during, and following seizures. Multivariate autoregressive 

models and related effective connectivity measures such as the adaptive directed transfer 

function (DTF) have also been used to model seizure propagation and improve identification 

of the seizure onset zone [19–26]. Moreover, it has also been shown that similar linear 

models can be successfully deployed to explain and predict the response of brain tissue to 

direct external electrical stimulation [27].

A key challenge facing these and other studies that attempt to use dynamical systems theory 

to better understand seizure activity in humans is the marked variability in clinical 

presentation. Here we address this challenge by examining data from a particular subset of 

epilepsy patients who present challenges to current medical practice. Specifically, we chose 

individuals with medically refractory localization-related epilepsy of neocortical origin, who 

underwent presurgical evaluation with intracranial EEG recordings. These patients are 

typically implanted with intracranial electrodes in tertiary epilepsy centers prior to surgical 

intervention, but have, on average, a 40% chance of seizure freedom with surgery. This is a 

group that is most appropriate for treatment with implanted neurostimulation devices, which 

offer great potential for therapeutic benefit with much lower morbidity than resective or 

ablative surgery.

Although seizure onsets are qualitatively different across patients, we will demonstrate that 

ictal onset activity in our patient sample manifests as the emergence of prolonged focal 

oscillatory eigenmodes in seizure samples with good localization of the seizure onset 

zone(SOZ).In fact, prior evidence suggests that the presence of observed low-voltage high-

frequency activity(LVHF),and sharp rhythmic activity are some of the most reliable 

hallmarks of the SOZ [28, 29]. Importantly, recent evidence suggests that oscillations in the 

local field potentials (LFPs) captured by iEEG electrodes following seizure onset, are not 
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only a sign of synchronized activity of the neural population at the ictal core, but also 

causally contribute to synchronized population activity via ephaptic coupling (for a review 

see [30]). Together, these observations suggest that disrupting LFP oscillations following the 

seizure onset provides a viable target for seizure intervention. We leverage this fact in 

positing a dynamical systems model and associated seizure control strategy that is 

deployable prospectively, in real-time epilepsy control devices.

Recently, we developed a closed-loop actuation strategy for static output feedback control 

for linear time-invariant switching systems [31]. Based on our preliminary results as well as 

other reports of anomalous excursions of frequency and dynamical stability (i.e. dampening) 

of the oscillatory eigenmodes [16], we conjectured that spectral control of cortical activity is 

a promising early seizure intervention strategy [31]. One of the limitations of our spectral 

control algorithm is that it is agnostic to changes in the spatial profile of the underlying 

system. Nevertheless, its success hinges heavily on our ability to accurately model the 

epileptic sources. In this paper, we explicitly model the system in a manner that directly 

captures the interplay between brain regions sampled by different electrodes during the peri–

ictal period. Specifically, we leverage the information contained in the contribution of 

different channels at spatiotemporal frequencies that reflect seizure dynamics using 

multivariate autoregression. We demonstrate that the oscillatory modes of the system change 

in their spatial profiles in a manner that is time-locked to spectral fluctuations occurring at 

seizure onset, specifically for those seizures that have a clearly localized focus. These results 

suggest that information regarding the spatial profile of the system and its temporal 

fluctuations could inform seizure intervention strategies both spatially and temporally in 

real-time.

Building on the evidence provided by our observations, we make the case that the ictal onset 

regime provides a critical window for deploying our proposed spectral control algorithm 

[31] to dampen focal oscillations in a targeted manner. The theory predicts that external 

control of the LFP could terminate the seizure by disrupting the electrical field oscillations 

that causally drive the synchronization at the ictal core through ephaptic coupling [30] or 

alternatively, reduce the likelihood of seizure spread by focal dampening. Finally and with 

the aim of offering a proof-of-principle demonstration, we provide synthetic examples 

modeled from the iEEG to show that the static feedback gains afforded by our strategy can 

successfully increase the damping rate of focal ictal oscillations in an ideal closed-loop 

switching system. Broadly, our approach provides a compact mathematical representation 

that can be quickly quantified and optimized for stimulation control, which can inform the 

development of closed-loop implantable therapeutic devices [32–35].

2. Materials and methods

2.1. Description of experimental data

In this study, we analyzed recordings from twenty-one subjects undergoing presurgical 

evaluation for medically refractory epilepsy of neocortical origin. These subjects underwent 

implantation of subdural electrodes to localize their epileptic networks after a noninvasive 

presurgical evaluation suggested a focal, surgically amenable epilepsy. The evaluation was 

performed in accordance with the National Association of Epilepsy Centers (NAEC) 
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standards, with video-scalp EEG acquired in the epilepsy monitoring unit (EMU), high 

resolution structural and functional MRI, positron emission tomography (PET), ictal single 

photon emission tomography (SPECT), and neuropsychological testing. All data had 

previously been de-identified and made publicly available via the International Epilepsy 

Electrophysiology Portal (IEEG Portal) [36]. Patients exhibited a broad range of etiology, 

type, and severity of epilepsy, providing a rich, representative dataset for assessing seizure 

dynamics in this population. Table 1 describes the clinical characteristics of these subjects, 

who were evaluated at the Hospital of the University of Pennsylvania and the Mayo Clinic, 

Rochester.

2.2. Intracranial electroencephalography (iEEG) recordings

iEEG signals were recorded and digitized at sampling rates of 512 Hz (Hospital of the 

University of Pennsylvania, Philadelphia, PA) and 500 Hz (Mayo Clinic, Rochester, MN). 

Subdural grid and strip electrodes (Ad Tech Medical Instruments, Racine, WI) were placed 

in locations that were determined by a multidisciplinary team of neurologists, 

neurosurgeons, and radiologist. Electrodes consisted of linear and two-dimensional arrays 

spanning 2.3 mm in diameter with 10 mm inter-contact spacing. Signals were recorded using 

a referential montage with the reference electrode chosen by the clinical team to be distant to 

the site of seizure-onset. Recordings spanned the duration of a patient’s stay in the epilepsy 

monitoring unit (range: 15 d).

A total of 94 seizures were marked by clinical experts (see [37]) and the seizure-onset time 

and localization were defined by the points of ‘earliest electrographic change’ (EEC) and 

‘unequivocal electrographic onset’ (UEO) [38]. Using the EEC, we extracted multi-channel 

iEEG time series from seizure onset to seizure termination, with a buffer of 20 s on each side 

of this time period. Lastly, we extracted a total of 478 (22.7 ± 7.3 segments per patient) 

randomly selected inter-ictal segments (lasting 100 s 

each)fromtracesacquiredmorethan3hbeforeor3h after a seizure. Time series were high-pass 

filtered to maintain information in the frequency range>0.1Hz.

2.3. Clinical assessment of the seizure onset zone and localizing patients

Seizure-onset Zone (SOZ) electrodes are identified clinically on the IEEG according to the 

standard clinical protocol in the Penn Epilepsy Center and Mayo Clinic. The SOZ markings 

are initially made by a board-certified epileptologist on the day of each seizure, and vetted 

and updated weekly at the surgical conference according to a consensus marking of four 

board-certified epileptologists. Finally, SOZ markings on IEEG are then assessed in the 

context of other tests such as MRI, PET scan, MEG, single-phone emission computed 

tomography, and neuropsychological testing for surgical planning. This is the standard 

process of clinical care for epileptic patients in the United States at Level-4 epilepsy centers 

certified by National Association of Epilepsy Centers. Additionally, patients are further 

divided into two groups based on the quality of SOZ localization following the clinical 

assessment of the iEEG by a board-certified epileptologist (F.M).
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2.4. Dynamical stability approach

The iEEG signals can be locally approximated at each time point by a linear system [39]. 

Let x(k) ∈ Rn be the data from n channels, where the i-th entry xi (k) corresponds to the data 

collected by channel i at time k. Then, we obtain

x(k) = Ax(k − 1) + ε(k) (1)

where A is the n × n real matrix that results from fitting the data collected within the interval 

of time [k − τ, k + τ] using a least-squares approach, and where ε(k) is the approximation 

error. As a consequence of the linear approximation, the results will depend on the choice of 

the number n of channels and the size of the time window parameterized by τ. In the Results 

and supplementary materials, we further discuss the impact of these parameters on the 

model.

A significant advantage of using a linear approximation to model the dynamics is that the 

dynamical properties of the underlying process can be locally assessed through the 

eigendecomposition of the matrix A. The n eigenvalue-eigenvector pairs capture linearly 

independent spatiotemporal dynamical processes. Specifically, for each putative 

spatiotemporal process, the eigenvector weights the involvement of each sensor and the 

complex eigenvalue defines the frequency of the oscillatory dynamics. More importantly, the 

stability of the dynamics can be captured by the absolute value of the eigenvalues, which 

forecast the exponential growth or decay along the associated eigenvector.

Specifically, let A = VλVT be the eigendecomposition for a given time point k, where V = 

[v1, ..., vn] and λ = diag(λ1,..., λn) are the matrices of eigenvectors and eigenvalues, 

respectively. The pair (λi, vi) is an eigenvalue paired with the associated eigenvector, and VT 

is the transpose of V. Notice that some eigenvalues are complex numbers, which implies that 

no partial-order can be imposed on the eigendecomposition. Further, note that after T time 

steps, one obtains from equation (1) that x(k) = ATx(0), which implies that x(k) = 

VλVTx(0). Subsequently, by considering a linear combination of the original data z(k) = 

V∗x(k), where <di>zi (k) = vT
i x(k) zi(k) = viTx(k) is a weighted combination described by 

the i-th eigenvector associated with the i-th eigenvalue.

From these definitions, it follows that zi(k) = λi
T zi(0) , and three scenarios are possible: (I) |

λi| < 1 which leads to zi(k) 0 as t ∞; (ii) λi > 1 which implies that zi(k) ∞  as 

t ∞; and λi = 1 where zi(k) = zi(0)  for all times. In (i), the process tends to vanish, and 

we, therefore, refer to these dynamics as asymptotically stable. In (ii), the process tends to 

explode, and we, therefore, refer to these dynamics as unstable. Finally, in (iii), the process 

oscillates between stability and instability, and we, therefore, refer to these dynamics as 

stable. In practice, we consider that the stable regime is determined by |λi| ≈ 1. Since these 

processes are associated with z(k), it follows that they are associated with a specific 

eigenvector, and, consequently, we refer to a stable regime associated with a particular 

eigenvector. Thus, the interplay between these three different stages and different 
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eigenvectors provides a dynamical stability characterization to identify seizure onset and to 

monitor seizure evolution.

To further characterize these dynamics, we note that the angle θi associated with the polar 

coordinates of the i-th complex eigenvalue describes the frequency as follows:

fi =
θi
2πδt

where δt corresponds to the sampling frequency. The timescale is given by

ρi =
log λi

δt

which can be interpreted as the growth rate. Therefore, the dynamical process z(k) describes 

the spatiotemporal behavior of the dynamical system, where the timescale is encoded in the 

eigenvalue and the spatial scale is encoded in the eigenvector, indicating the relative 

contribution of a given channel or—by extension—the overall activity in a specific cortical 

region.

We use this approach to consider the time-evolution of eigenvalue-eigenvector pairs 

associated with higher and lower frequencies, and associated with fine and coarse 

timescales, to better understand seizure onset, propagation, and termination. In the 

supplementary materials, we define and study synthetic examples of damping versus 
growing oscillations to demonstrate how dynamical stability analysis quantitatively 

characterizes the underlying process.

2.5. Analysis pipeline

In iEEG recordings obtained from twenty-one patients with medically refractory neocortical 

epilepsy, we used dynamical stability analysis to estimate equation (1) over a 1 s sliding-

window for 100 ms shifts. Specifically, we estimated the matrices A using previously 

developed computational algorithms [40], and then we calculated the eigenmodes (i.e. the 

eigenvalue-eigenvector pairs) of the estimated A matrices for each time point k. The 

eigenvectors are considered based on their spatiotemporal frequency; that is, the frequency 

determined by the corresponding eigenvalue. Because the eigenvector may contain several 

non-zero entries, the frequency of the dynamic process along the direction determined by the 

eigenvector does not coincide with any specific iEEG channel. Instead, it corresponds to the 

spatiotemporal frequency along the direction captured by the eigenvector. For ease of 

visualization, we normalize the eigenvectors by dividing each entry by the maximum value 

obtained across the entries, and then we take the absolute value. Thus, all entries correspond 

to values between 0 and 1, and capture the contribution of different iEEG channels to the 

evolution of the underlying neurophysiological process at a certain spatiotemporal 

frequency.
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2.6. Statistical testing

Because the distributions of our statistics of interest were not known a priori, we used a non-

parametric Wilcoxon rank-sum test to assess the statistical significance of the fluctuations in 

the maximum values as well as the kurtosis of the distributions of eigenvector loadings 

before and after the seizure onset (see supplementary figure 2 

(stacks.iop.org/JNE/17/026009/mmedia)). Similarly, we used a Wilcoxon rank-sum test to 

assess the statistical significance of the reduced loading of SOZ electrodes in the closed 

system versus the open system at ictal onset in figures 4 and 5.

2.7. Generating synthetic time series

In the first section of the Results, we provide a pedagogical example of the dynamical 

stability-based approach and demonstrate its ability to accurately uncover a planted locus, 

frequency, and damping of oscillatory dynamics. Here we provide additional information 

about this synthetic time series. Specifically, the synthetic dataset that we study consists of 

four channels associated with four oscillatory sources sampled at 512 Hz. Each source is 

modeled as an enveloped (exponential, Gaussian) sinusoid, and the four sources have a fixed 

lag between them to induce directionality of information flow across sensors. Specifically, 

the baseline activity of each channel is modeled as follows:

sin(ax + b)ecx,

where a determines the frequency of the oscillation, b captures the phase lag between 

electrodes, and c determines the damping of the oscillations. Negative values of c were used 

for early damping oscillations while positive values of c were used for late-emerging high-

frequency oscillations. In addition to this baseline activity, we also modeled transient activity 

that emerges and disappears in brief intervals during the recordings. We model these 

transient dynamics as follows:

y = sin(ax + b) 1
2σ2π

e− (x − μ)
2σ2

where μ is the mean and σ the standard deviation of a normal distribution. Finally, different 

simulated patterns of oscillatory activity over time were linearly superimposed to create the 

activity of individual channels. Additional details regarding this process of sensor time series 

creation are depicted schematically in figure 1(A).

3. Results

3.1. Dynamical stability analysis of synthetic time series

Here we provide a synthetic example of the dynamical stability-based approach, and 

demonstrate its ability to accurately uncover the planted locus, frequency, and damping rates 

of oscillatory dynamics (figure 1(A)). The synthetic dataset that we study consists of four 

channels with four spatiotemporally distributed non-stationary oscillatory sources (for more 

details see section 2). First, we show the eigenvector evolution associated with the highest 
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frequency dynamics in the signals (figure 1(B)), and then we show the eigenvector evolution 

associated with dynamics in a lower frequency (figure 1(C)). We observe that the locus of 

higher and lower frequency oscillations at every time point can be identified via electrodes 

with relatively higher values in the eigenvectors 1 and 3, respectively. We also display the 

stability, |λ| associated with those same two eigenvectors (figures 1(D), (E)). We notice that 

the changes in the angle match the changes of the underlying frequency of oscillations, 

while the intervals with radius (> 1) highlight periods of instability (captured at the very last 

estimation window). Lastly, we studied the temporal evolution (figure 1(F)) of the statistics 

of interest derived from the eigenmode decomposition (figures 1(G)–(I)). Together, these 

results demonstrate that the dynamic stability approach is able to accurately uncover the 

planted structure of the oscillatory dynamics and that an examination of the time-evolution 

of eigenvalue-eigenvector pairs allows veridical characterization of the spatial profiles, 

damping rates, and frequencies of underlying processes. In the following section, we 

demonstrate how the dynamical stability-based approach reveals the emergence of epileptic 

sources at the ictal onset.

3.2. Dynamical stability analysis pinpoints seizure onset by identifying distinct 
spatiotemporal patterns

Successful localization of the seizure onset zone and the epileptic network from iEEG 

recordings is foundational to our ability to model and ultimately control the underlying 

seizure dynamics. After clinical assessment of the iEEG by a board-certified epileptologist 

(F.M), we divide seizures into ones with and without a clear localization of the SOZ. We use 

previously validated and published localizing features to distinguish between the two 

groups, as well as postsurgical seizure freedom. iEEG features that allow us to localize the 

seizure onset include (i) the presence of low voltage fast activity (LVFA), (ii) the presence of 

ultraslow transient polarizing shifts, and (iii) voltage attenuation or rapid spiking activity 

[41]. If these features are not observed, we refer to the dataset as nonlocalizing; such 

datasets commonly exhibit a pattern typical of seizures propagated from elsewhere in the 

brain, usually marked by the presence of slow delta activity often involving a large number 

of electrodes or slow spiking activity, as shown in supplementary figure 1. For the remainder 

of this study, we restrict our attention to seizures with a clear localization of the SOZ, which 

we observed in 10 (out of 21) patients (see table 1).

After defining the seizures of interest, we performed dynamic stability analysis. Recall that 

our synthetic example demonstrated that emerging local oscillatory sources are captured by 

the evolution of eigenvalue-eigenvector pairs. We hypothesize that the emergence of focal 

epileptic sources following ictal onset are similarly captured by eigenmodes of the system, 

which we can identify using a sliding-window approach. We anticipate that transitions of the 

system to distinct phases of the seizure will be time-locked to changes in (i) the frequency, 
which is given by the angle associated with the eigenvalues, (ii) the stability, which is 

measured by the radius associated with the eigenvalues, and (iii) the spatial profile, which is 

given by the eigenvectors in the eigenvalue-eigenvector pairs.

We now turn to test our hypothesis and expectations. To provide the reader with greater 

intuition, we consider a representative focal seizure from the group of patients with clear 
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localization of the SOZ (see figure 2(A)). Next, we demonstrate that the changes in the 

stability and frequency of system eigenmodes estimated using a one-second sliding window 

accurately capture the onset and spatiotemporal evolution of the seizure(see figures 2(B)–

(D)).Nevertheless, the change in the spatial profile of the eigenvectors of the system 

following the ictal onset is the most salient feature of the seizure onset across localizing 

samples. We observe that the transition to the regime of focal oscillations at the onset of the 

seizure is marked by an increase in the loading of eigenvector elements corresponding to the 

SOZ electrodes. We quantified the changes at seizure onset via the maximum value and 

kurtosis of the eigenvectors (see figures 2(B)–(D)). We observe a significant wide-band 

increase in the maximum value and kurtosis of the eigenvectors (supplementary figure 2, 

Wilxocon rank-sum test, p < 0.05), reflecting the emergence of focal ictal sources in patients 

with localizing iEEG recordings. In the following section, we provide additional evidence 

supporting the notion that dynamical stability analysis, in theory, can be leveraged to inform 

individualized seizure intervention algorithms.

In this work, we chose a first-order LTI to linearize each nonlinear dynamical system. If the 

system trajectory remains close to the equilibrium point or to the nominal trajectory, then the 

first-order linear model is close to the real nonlinear system. Then based on the linear model, 

one can design a linear dynamic output feedback controller to regulate the dynamics [42]. In 

practice, in either linear or nonlinear dynamical system, we should expect measurement 

errors. These errors can arise from perturbation of the system by additive stochastic noise 

[43], and/or by the presence of recording noise.

In order to improve the fit of the LTI model, one can increase the order of the model and 

tests like Akaike information criterion (AIC) or Bayesian information criterion (BIC) can be 

used to identify the number of lags necessary for an accurate fit. We show a higher-order (n 

= 2) fit to an example seizure onset to evaluate the robustness of the characterized ictal 

behavior to increases in the order of the model (supplementary figure 5). Nevertheless, to 

examine the goodness-of-fit of the first-order LTI model, we calculate the average estimated 

order of the model in a 5-second window before and after the unequivocal onset of all 

seizure samples from localizing patients. Supplementary figure 6 demonstrates that both 

criteriayieldaveragemodelordershigherthan1,regardless of the spatiotemporal sampling 

(supplementary figures 6(A) and (B)), although with a high degree of variance 

(supplementary figures 6(C) and (D)). These results suggest that we should expect a degree 

of error in our estimated first-order LTI parameters; however, because the theory is more 

tractable in the first-order case, we constrain ourselves to an investigation of AR1 in this 

paper, and leave an extension of the theory to AR2 for a future study.

Next, we provide a systematic investigation of the dependence of the estimated system on 

the sampling rates and the number of recorded areas over the peri–ictal period. 

Supplementary figures 7–10 show how variations in the spatial and temporal sampling 

impact the band-passed average kurtosis of the eigenvectors, the maximum value of 

eigenvector elements, frequency, and stability of the eigenvalues estimated from a window 

before and after the onsets of all seizure samples from localizing patients. Notably, the 

significant changes in the kurtosis and maximum value of eigenvector elements following 

the unequivocal seizure onsets over higher frequency bands are relatively robust, being 
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identified with sampling frequencies as low as 125 Hz and using as few as 25 randomly 

sampled electrodes. These results also show the importance of the number of electrodes and 

effective coverage of seizure sources; the modeled systems using only a few (e.g. n = 5) 

randomly sampled electrodes fail to accurately capture the rich multi-scale dynamics of 

seizures.

These results are best highlighted in the average estimated frequency and stability of the 

eigenvalues in supplementary figures9–10. Note that for instance, the estimated systems 

from 5 electrodes at higher sampling rates do not contain eigenvalues associated with beta 

(12–25 Hz) or gamma (25–55 Hz) frequency bands. Intuitively, these results demonstrate the 

dependence of the estimated system to spatiotemporal sampling and suggest that greater 

spatial and temporal sampling of ictal sources enhances our ability to accurately model the 

seizure onset oscillations.

3.3. Generalized pole placement offers potential solutions for stabilizing seizure onset 
dynamics

In the previous sections, we presented a model-based approach to characterize different 

events of interest in a dynamical system and then an application of that approach to seizures 

to measure the frequency, stability, and spatial profile of coherent oscillations. While of 

interest, more important is the opportunity to use this method to guide interventions to 

control seizure dynamics. We have established how eigenmode properties capture the 

evolution of the well-localized epileptic network during the transition from a disordered pre-

ictal regime—characterized by activity among different time-variant cortical regions—to a 

highly ordered ictal regime—characterized by the emergence of focal oscillatory sources 

(supplementary figure 2). Therefore, we hypothesize that by properly crafting 

neurostimulation parameters, one might be able to constrain the evolution of the seizure, or 

alternatively, to stabilize (i.e. increase the damping rate of) the persistent oscillations that 

follow the seizure onset.

Specifically, we pose the problem as one of determining the static output feedback [44] that 

jointly ensures spectral properties across the different modes of the system. Static output 

feedback entails injecting a quantity proportional to the collected measurements of the 

system’s evolution. Such a strategy has the advantage of not requiring the response to a 

given output signal to be computed at each time point, which might be prohibitive for 

implantable neurodevices, which have low computational power and limited energy 

resources. In the context of neurostimulation, most of the strategies employed to date are 

open-loop, and only recently has the field begun to consider closed-loop proportional-

integral-derivative (PID) strategies [45–48].

Following this line of work, we recently described a static output feedback control 

methodology to regulate the evolution of eigenvalues at the seizure onset. Figure 3(C) panel 

II shows an example of the excursions of eigenvalues from their per-ictal location during the 

onset of a sample seizure. However, as reported in the previous sections, both eigenvalues 

and eigenvectors may prove useful in the design of seizure control strategies. Unfortunately, 

to find such a closed-loop solution is computationally intractable, but the challenge can be 

overcome by decomposing the original problem in two sub-problems, where one can be 
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exactly and efficiently solved, and the other can be approximated in a least-squares-like 

sense that can also be efficiently determined. We provide additional technical details 

regarding these problems and the generalized pole placement algorithm in the 

supplementary information section. Building on the insights obtained from the previously 

described methodology, we propose an alternative strategy and control objective based on 

stabilizing focal seizure activity in a period immediately following the seizure onset using 

static output feedback. The schematic in figure 3(C) panel III shows how the proposed 

control law could moderate the evolution of the seizure following its onset by ensuring that 

the poles (i.e. eigenvalues) of the closed-loop system are placed in a prespecified location 

that only supports stable dynamics.

In the previous sections, we demonstrated that dynamical stability analysis allows us to 

characterize the spatial and spectral properties of the ictal onset oscillations. Although our 

results show that the ictal onset regime is marked by emerging ictal sources that can last over 

several seconds, yet we expect the estimated system parameters to fluctuate over time. These 

fluctuations may reflect the slow changes in the underlying seizure sources, in addition to 

artifacts due to the presence of recording noise, system identification error, and temporally 

overlapping non-stationary oscillations (as seen in the synthetic example in figure 1). From a 

seizure intervention standpoint, system switches can significantly limit our ability for real-

time control using static output feedback and pole placement algorithms (e.g. [49, 50]). Pole 

placement algorithm is a numerical method for determining well-conditioned solutions to 

the problem of pole assignment by state feedback [49]. However, the calculated feedback 

gains only guarantee results for a single window of estimation. To address this limitation, we 

leverage the method proposed in [31] that enables a generalized pole placement method for 

spectral control of switching linear systems. Here, we provide a computational simulation to 

demonstrate how our proposed intervention strategy and generalized pole placement may 

allow us to stabilize oscillations at the ictal onset by increasing their damping rate.

To gain an intuition for how such an intervention would work, we first show the onset of a 

seizure from a sample patient with localizing iEEG (figure 4(A)). We identify system 

parameters using a one-second sliding window. Similar to the synthetic example in figure 1, 

the evolution of the identified system’s eigenvectors highlights the focus and onset of the 

seizure (figure 4(B)). We propose to increase the stability of these emerging high-frequency 

oscillations by providing static output feedback. In supplementary figure 3(A), we 

demonstrate that the feedback gains calculated at the onset of the sample seizure in figure 

4(A) using pole placement method [49] successfully shifts all the higher frequency 

eigenvalues (> 15 Hz) of the closed system corresponding to emerging ictal oscillations, to 

the desired stable zone only by using a few (n = 5) stimulation loci. We selected a small set 

of electrodes with the highest eigenvector loading at seizure onset as the stimulating 

electrodes. Despite the apparent local success of the pole placement method, we note that 

this algorithm requires the feedback gains to be calculated for all electrodes, which can be 

limiting in real-world applications. Further, we note that the pole placement method, 

unfortunately, fails globally to stabilize the emerging ictal dynamics even after one second 

from seizure onset (supplementary figure 3(B)).
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To address these limitations, we explored the scenario in which only a few sensing and 

stimulating electrodes are available (n = 5) and sought to determine whether the feedback 

gains that were calculated using our proposed generalized pole placement method from 

several consecutive sliding windows are able to reduce the stability of the ictal oscillations. 

We observe that despite the number of sensing and stimulating electrodes constraining the 

number of the eigenvalues that are shifted to the stable zone, the stability of seizure onset 

oscillations is effectively reduced (figure 4(D)). More importantly, we observe that the 

calculated feedback gains similarly allow us to reduce the stability of ictal oscillations over 

time, despite the continued evolution of system parameters (figure 4(E)). Collectively, these 

numerical experiments suggest that our method allows us, in theory, to prevent the spread 

and evolution of focal seizures by early dampening of ictal activity.

Here we focused on patients with localizing iEEG samples for two reasons. First, the non-

localizing iEEG samples do not offer clear surgical targets for electrode placement, and 

consequently, these patients are rarely implanted with neurostimulation devices. Second, our 

approach requires the following mechanism: that damping the SOZ’s activity affects the 

activity of surrounding brain regions through an ephaptic coupling. These reasons aside, it is 

also of interest to examine whether our algorithm can stabilize ictal activity in non-

localizing seizure samples. Similar to localizing samples, seizure onsets in non-localizing 

samples are marked by abnormal activity in one or many electrodes. In supplementary figure 

11, we demonstrate that similar to localizing seizures (supplementary figure 2), the changes 

in the eigenvector structure of the systems estimated following the unequivocal onsets, 

capture the emergence of ictal activity in non-localizing seizures. In supplementary figure 

12, we also provide an in silico example of stabilization of ictal activity in a non-localizing 

seizure sample. Our findings highlight the need for intervention strategies that are informed 

not by phenomenological models agnostic to the underlying drivers of neural activity, but 

instead by biophysical mechanisms of seizure initiation and evolution.

3.4. Generalized pole placement allows offline tuning

In the previous section, we demonstrated that our method allows us to dampen ictal 

oscillations using only a small set of sensing and stimulating electrodes. Nevertheless, the 

implemented algorithm in the previous section requires real-time identification of the system 

parameters using all the implanted electrodes. Here, we demonstrate that our proposed 

method in patients with stereotypic seizures may also allow offline estimation of the 

feedback gains.

We consider five seizure samples from one patient (HUP70) with stereotyped seizures that 

have clear localization of the SOZ (figure 5(A)). In this example, we treat seizures #1–4 as 

our offline samples and calculate the feedback gains by considering all seizure onset sliding-

windows (1 s window with 100 ms increments) across the four seizures (i.e. 4 × 10 = 40 

windows). We show that these feedback gains can then be used to reduce the stability of the 

ictal oscillations in seizure #5 over time (figures 5(B)–(C)). This result is a proof of concept 

that it might be possible to leverage our method for offline tuning of the closed-loop 

feedback gains in patients with stereotyped seizures, and that the control objective can be 
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achieved using only a few sensing and stimulating electrodes due to the focal nature of well-

localized seizure onset zones.

4. Discussion

4.1. Dynamic stability analysis of seizure onset dynamics

To date, several computational methods have been proposed to study seizure dynamics and 

its spatiotemporal evolution as reflected in iEEG. Naturally, methods to examine the directed 

or effective connectivity [51] have been widely used to establish the influence that neural 

populations exert over each other around the onset of a seizure. Multivariate autoregressive 

(MVAR) modeling, Granger causality [52], partial directed coherence [53], and directed 

transfer [54] are related approaches to study effective connectivity in multichannel iEEG 

signals. These measures have been used to study the flow of seizures from one channel or 

source to another, as well as to identify SOZ electrodes [20, 55–60].

A longstanding theory regarding the dynamical progression of seizures is that they evolve 

through different stages or dynamical states [12, 37, 61, 62]. However, the aforementioned 

methods assume that the underlying system is stationary over the window of estimation. In 

order to address these limitations, adaptive versions of the methods above have been 

introduced, and have been shown to capture the time-varying nature of ictal onset dynamics 

[19, 25, 63–66]. For instance, Mullen, Worrell [16] demonstrated that principal oscillation 

patterns estimated from spatially fixed sources decomposed from the iEEG time series reveal 

distinct shifts in characteristic frequency and damping time of a small subset of the most 

dynamically important eigenmodes, time-locked to ictal onset. Together, these time-varying 

linear models allow us to capture the changes in the underlying system, and to characterize 

the ictal dynamics.

Here, towards our ultimate goal of model-based control of seizures, we considered the 

dynamics at the ictal onset to be characterized by emerging focal oscillations and we, 

therefore, used adaptive MVAR to identify the parameters of a linear model of seizure 

sources. We first provided a synthetic example of time-varying oscillations to build intuition 

about how the emergence of focal sources can be captured via dynamical stability analysis 

of the identified model of the system. Our simulations reveal that spatiotemporally 

overlapping and time-varying oscillations are marked by fluctuations in the frequency and 

damping profile of the identified systems and that dynamical stability analysis accurately 

uncovers the planted oscillations following these periods of transition. Next, we examined 

seizure onset dynamics in patients with clear localization of the SOZ on the iEEG and show 

that in line with prior reports (e.g. [16, 22, 58, 59]), adaptive MVAR reliably highlights the 

focal ictal sources at the SOZ. We demonstrate that an increase in the kurtosis and maximum 

value of eigenvectors captures the sudden changes in the spatial profile of the eigenvectors 

of the identified model of the system at seizure onset. Together, these observations highlight 

the utility of linear models of seizure dynamics, which we then use to inform a proposed 

seizure intervention strategy.

Our in-depth analysis of the SOZ through the lens of an LTI model was performed with the 

goal of providing an accurate characterization of seizure onset activity, which we then use to 
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inform a proposed seizure intervention strategy. Further, we do not claim to offer a novel 

methodology for SOZ localization, but rather we build upon the insights previously obtained 

from dynamical systems modeling and stability analysis.

4.2. Implantable neurostimulation devices and model-based design for seizure control

Decades of research have demonstrated that field effects can modulate the threshold of 

neuron excitability [67–71]. Field effects induced by endogenous brain activity can also 

causally affect neural dynamics via ephaptic coupling [72]. Moreover, field effects are 

believed to play an important role in the initiation and propagation of seizures [73, 74]. For 

instance, evidence suggests that field effects are likely sufficient to generate and sustain the 

high synchronization observed at the ictal core [72, 75–78] (for a recent review see [30]). 

Moreover, in vivo laboratory experiments have shown that electrical stimulation can alter the 

LFPs and consequently modulate the firing of neurons [68, 79–84]. Motivated by these 

observations, many studies have experimented with injecting current into the seizure onset 

zone aimed at suppression or control of ictal activity [85–91].

Closed-loop feedback provides a simple yet practical framework for seizure intervention, 

and to date, several in vivo, as well as modeling, studies have provided evidence of their 

potential for control of ictal activity [48, 83, 87–89]. For instance, Gluckman and colleagues 

demonstrated that providing local negative feedback can ameliorate seizure-like activity in 

hippocampal brain slices. Here, we also consider closed-loop feedback control, but unlike 

the studies above, the feedback gains are calculated based on a model of the system. More 

speculatively, the features that we obtain from the eigenmode decomposition could be used 

as quantifiable performance objectives for optimizing stimulation parameters in closed-loop 

implantable devices [3, 92]. Specifically, this approach would depart from the current 

practice of manual, intermittent, off-line tuning of deep brain stimulation parameters such as 

amplitude and frequency based on the count of seizures experienced by the patient. Instead, 

the features estimated from the dynamical stability-based approach that characterize seizure 

onset can be used to select channels for feature extraction in a closed-loop assessment and 

stimulation paradigm [93].

We proposed spectral control of cortical activity as an early seizure intervention strategy in 

our prior work [31]. Based on prior reports of the excursions of frequency and stability of 

the oscillatory eigenmodes [16], we proposed a control objective that aims to maintain the 

spectral profile of the system following the seizure onset [31]. However, by examining the 

eigenvectors of the estimated system around the seizure onset, here we demonstrate that the 

fluctuations in frequency and stability mark a transition the emergence of focal ictal sources. 

Since our generalized pole placement scheme [31] is agnostic to the changes in the spatial 

profile of the system, we proposed an alternative control strategy that aims to damp the focal 

ictal seizure sources. Moreover, we provide simulations and show that static output 

feedback, in theory, can successfully dampen focal seizure activity. Although the 

computational burden exceeds the capability of currently implantable platforms, recent work 

by our group indicates that there is marked potential in hybrid implantable/cloud-based 

platforms for data reduction and off-device computation for analysis and control [94].
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Here we provided a tailored design for patients commonly considered ideal candidates for 

treatment with neurostimulation. Nevertheless, our approach could have potential impact on 

patients with multiple or unclear onset zones. Although the current generations of 

neurostimulators have limited onboard computational power that may be restrictive for real-

time control of seizures with multiple or changing foci, our framework is not limited in 

theory and in fact is also suitable for automated control of pathological oscillations of the 

electrical field in seizures with changing morphology and locus.

Nevertheless, our synthetic example demonstrates that our theory and proposed algorithm 

also allows offline determination of feedback gains, which could potentially be estimated in 

patients with stereotypical seizures using only a small set of electrodes. Based on our results, 

we also conjecture that the placement of the few electrodes afforded by neurostimulation 

devices can be guided based on the location of the electrodes for which eigenvalue-

eigenvector features provide reliable estimates of focal seizure sources in pre-surgical iEEG 

recordings. Taken together, our numerical experiments highlight the theoretical utility of the 

model-based approach towards seizure control via neurostimulation.

Our work is also coherent with recent computational network models of epilepsy such as the 

fragility- and synchronizability-based approaches [95, 96], although these models have 

different assumptions and utility. The fragility framework uses similar principles as the 

method adopted in our work in several ways. Specifically, both methods use LTI models and 

target the stability of the modeled systems. However, similar to the synchronizability, the 

fragility approach is primarily a resective framework. Fragility allows the investigator to 

identify brain regions whose removal results in the maximal reduction in the stability of the 

remaining network. The authors argue that this reduced stability, in theory, decreases the 

pro-ictal propensity of the network. In contrast, the synchronizability framework provides 

insight into how the topology of networks of coupled oscillators allows for sustained 

synchronous ictal activity. Therefore, similar to the fragility approach, it is a fruitful avenue 

for understanding how cortical resections and lesions change the network topology, which in 

turn will affect the global pathological dynamics. Although the intervention strategies 

between our method and synchronizability are quite different, both methods can be 

considered in a unified view. The synchronizability framework can, in theory, explain the 

emergent macroscale behavior of networks of neural populations with nonlinear oscillatory 

behavior, while linearization and state feedback control can describe and regulate the 

dynamics of this nonlinear system locally around an operating point and offer an objective 

for real-time control via neurostimulation.

4.3. Methodological considerations

Several methodological considerations are pertinent to this work. The proposed analysis 

does not directly allow for the assessment of underlying biological mechanisms. Although it 

is likely that the underlying dynamical process captured by iEEG data is nonlinear, the 

dynamical stability-based approach allows for the analysis of global non-stationarity and 

nonlinear dynamics by fitting a linear model to short time windows. Moreover, prior work 

has demonstrated that iEEG recordings can be leveraged for feedback control of seizures 

with relative success in animal models of epilepsy (e.g. [83]). Nevertheless, future research 
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could examine the limitations of our adopted class of phenomenological models in 

experimental and in vivo setting, and establish the robustness and dependence of prior 

reports on the state of the underlying system. For example, following the seizure onset, the 

ictal core regime may provide a better opportunity for feedback control of neural 

populations using direct electrical stimulation, because the activity of the neural population 

at the ictal core is strongly governed by field effects(for review see[30]).

In this work, the choice of number and location of sensing and stimulating electrodes were 

clinically motivated and were informed by the limitations of current neurostimulation 

devices. Nevertheless, future work should examine the dependence of controllability and 

observably of the estimated system and our ability to regulate its dynamics on these 

parameters. The results from these studies can offer an avenue for model-based electrode 

selection aimed at closed-loop control of seizures.

Moreover, in our proof-of-concept examples, we strategized to stabilize a rather arbitrary 

range of high-frequency oscillations. Although our algorithm is agnostic to these choices, in 

practice the response of cortical tissue to direct electrical stimulation is selective [97].Future 

work could inform our proposed control strategy experimentally by identifying which 

frequencies provide better targets for intervention. In addition, some degree of offline tuning 

of parameters is required for the calculation of the feedback gains, but we showed that it 

could be trained offline for patients with stereotypical seizures.

Importantly, our numerical experiments assume that direct stimulation does not change the 

dynamical properties of the underlying seizure source. However, in practice, the underlying 

system may change following direct electrical stimulation. We optimistically conjecture that 

this change may come about from the disrupted synchronization of the neural population at 

the ictal core due to the targeted damping of the oscillations of the local electric field. 

Alternatively, electrical stimulation can also cause changes in the dynamical properties of 

the underlying system without seizure termination, which necessitates real-time re-

identification of system parameters and feedback gains.

Adaptive linear control is based on an approximation of a linear function that is accurate 

only in a small neighborhood around an operating point. In theory, one can expand the 

neighborhood where the approximation is accurate using nonlinear models. Nevertheless, 

the nonlinear controller also may not achieve regulation objectives, if the trajectories of the 

states move beyond the approximation region. Moreover, our results demonstrate that the 

estimated first-order system depends on spatiotemporal sampling and is likely to contain 

approximation error. Although we can only speculate on the effects of the these factors on 

our ability to control ictal oscillations in practice, future work can aim to address some of 

these limitations, such as improving the goodness-of-fit of the LTI model using Kalman 

filtering [98].

Here we demonstrated that the number of stimulating and sensing electrodes limits the 

number of eigenvalues that are successfully placed close to the zone with low stability. 

Nevertheless, our observations suggest that due to the focal nature of seizures, the ictal states 

are observable with only a few electrodes. These results suggest that implantable devices 
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with only a few electrodes, placed at strategic locations can, in theory, allow effective 

control. We identified stimulating electrodes based on the loading of electrodes in 

eigenvectors associated with the emerging high-frequency ictal oscillations. Future work 

could aim to improve the efficacy of our intervention strategy by informing the locus of the 

electrodes based on the observability of the targeted ictal state.

While the goal of our work is not seizure detection, our dynamical stability-based approach 

allows us to characterize the changes in the underlying system following the seizure onset. 

That said, the normal (non-epileptic) ongoing brain activity also shows a rich repertoire of 

multi-scale oscillatory transients. Therefore, further efforts in seizure detection and control 

could benefit from an examination of ictal as well as inter-ictal oscillations across 

spatiotemporal scales. In the context of control, the integration of that additional information 

into the neurostimulation devices may be limited by considerations of energy consumption, 

the number of electrodes, and computational power afforded by the current devices.

Future validation experiments should bear in mind that here the closed-loop control is 

performed only on the linearization of the cortical dynamics. Additional nonlinear effects 

could be captured by considering feedback linearization, which would reduce the problem to 

the same setup presented in this paper. In practice, however, it is likely that unexpected 

behaviors will arise when applying these strategies in a clinical setting, and some additional 

nonlinear modeling may need to be considered.

Finally, we have demonstrated that the dynamical stability analysis allows us to identify 

similar changes in the underlying process during the seizure onset period for different 

samples across patients. Despite our rather homogeneous dataset, which includes a large 

number of seizures with overlapping features, heterogeneity is still present in the evolution 

of seizures across subjects and samples. Our clinical assessment reveals that the major 

source contributing to this heterogeneity, which also has critical implications for model-

based intervention strategies, is the localization quality of the epileptic network and seizure 

onset zone. Our clinical assessments reveal that only a handfull ofdatasets can be labeled as 

localizing with a high degree of confidence. These observations highlight the crucial need 

for the development of machine learning algorithms capable of accurate pre-surgical 

assessment of the quality of localization of epileptic networks. Many other factors such as 

the location and number of electrodes, sampling rate, recording noise, and type of seizures 

may also partially explain the subtle observed inter-subject variations. Nevertheless, the 

dynamical system analysis provides an avenue for the characterization of idiosyncratic 

features can be leveraged for targeted model-based control.

4.4. Future directions

The first few studies validating the use of this approach for closed-loop control could be 

retrospective. Epilepsy Centers could pool data from the ~ 1000 patients implanted with 

NeuroPace RNS devices and compare successful stimulations to unsuccessful stimulations. 

New studies of next-generation responsive stimulation devices from several companies are 

underway and these stimulation and modeling paradigms could be performed in animal 

models of epilepsy, perhaps starting with epileptic canines, to test these hypotheses [99]. 

These strategies could also be tested in patients admitted for epilepsy monitoring with 
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intracranial electrodes during functional stimulation, to arrest and control ictal events that 

routinely arise during brain mapping with electrical stimulation (not intentionally provoked), 

similar to the first NeuroPace studies [10]. In performing these studies, one would need to 

consider computational complexity and interfacing device hardware with algorithm 

software, although this is routinely done with bedside computers splitting off the iEEG 

signal.

For outpatient implementations, the required computational power is another important 

consideration. Our group is currently coupling implantable devices to cloud-based 

computation to augment implanted devices, either directly or through handhelds that 

communicate with the device and cloud-based platforms, such as Blackfynn. Intelligent, 

closed-loop stimulation has great promise to help patients with neurostimulation and 

epilepsy, and the options for tracking and responding to complex iEEG patterns in patients 

are increasing. Success with empirically derived stimulation paradigms is already positively 

impacting many patients with refractory, inoperable epilepsy, although results are still 

modest. We hope that applying new control strategies to these devices, as engineers have 

done for many other non-biological systems, will greatly augment the efficacy of current and 

new implantable anti-seizure devices.

5. Summary

We provide a dynamical stability-based characterization of the onset of seizure activity in 

well-localized epileptic network that hinges on an eigenmode decomposition of a 

computationally tractable model. We demonstrate an approach that uses eigendecomposition 

of the estimated model parameters to reveal the stereotyped behavior of well-localized 

epileptic networks at the onset of seizures, which can be leveraged to classify, identify, and 

potentially control seizures. We propose a novel control strategy that aims to stabilize 

oscillatory modes of the estimated system following seizure onset by providing static-output 

feedback. Using system parameters estimated from a sample seizure, we demonstrate that 

the feedback gains afforded by a generalized pole placement method offer potential 

solutions for stabilizing seizure onset dynamics and can potentially allow offline tuning of 

neurostimulation parameters. Together, these results demonstrate that our model-based 

approach and proposed control strategy, in theory, could inform the stimulation strategies of 

implantable devices and improve their efficacy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Dynamical stability of synthetic time series. (A) To gain intuition, we constructed synthetic 

time series sampled at 512 Hz that capture an underlying emerging process defined by an 

enveloped (exponential, Gaussian) sinusoid. Briefly, the simulated time series captures 

various partially overlapping spatiotemporal patterns of oscillations with varying 

frequencies. The colored bar at the top of the panel represents the duration over which the 

oscillation with that specific frequency is present. The colored bars on the left code the 

sources of the oscillations, where the top source leads the following source by π
2 . The yellow 
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shaded area on the right indicates the size of the moving window. (B), (C) The absolute 

values of the normalized eigenvectors 1 and 3 obtained using a 1 s window shifted by 100 

ms intervals. (D), (E) The evolution of the angle (reflecting the oscillation frequency) and 

radius (reflecting the stability) associated with the four eigenvectors of the 4-sensor system. 

Note that the changes in the angle and radius associated with higher frequency eigenmodes 

(i.e. eigenmodes 1 and 2) between the 6 and 8 s timepoints mark the transition and 

emergence of high frequency (64 Hz) oscillations between electrodes 1 and 3. (F) The 

temporal progression of the sliding window illustrated in changing hues of red; the yellow 

box represents the relative size of the moving window used to estimate the linear model. (G) 

The temporal evolution of the frequency (Hz) and stability associated with the first 

eigenmode (‘dot’) and third eigenmode (‘star’). (H) The temporal evolution of the four 

eigenvalues in the Argand complex plane. (I) A zoomed-in version of the panel (H) is 

provided to show the changes in the angle and radius of the low angle eigenvalues in greater 

detail. Panels (G)–(I) use the same color-coding as in panel (F). In sum, this example 

demonstrates how the dynamical properties of oscillatory sources that are spatiotemporally 

overlapping are reflected in the eigenvalue-eigenvector pairs and their fluctuations over time.
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Figure 2. 
The evolution of the eigenmodes over the ictal period. (A) Here we show iEEG signals from 

79 electrodes in subject 3 over a single seizure, beginning 20 sec before the seizure onset 

and ending 20 sec after seizure termination. The pre-ictal activity (yellow), ictal period 

(purple), and post-ictal period (gray) are delineated separately. (B–D) The heat map 

(bottom) demonstrates the mean absolute value of eigenvectors associated with γ, β, and α 
band frequencies, respectively. Notice that the emergence of ictal sources is marked by high 

and focal loading on SOZ electrodes across all frequencies. We quantify these changes in the 
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distributions of eigenvector loadings by providing the maximum values (blue line) and 

kurtosis (purple line) of these distributions in the top panels. Notice that the increase in these 

values is time-locked to the seizure onset across frequencies; we find this phenomenon to be 

a common property across all focal localizing seizure samples (supplementary figure 2). The 

emergence of focal sources is also reflected in the fluctuations of the number (green dots), 

the stability (red line), and the frequency (black line) of the higher frequency eigenvalues 

time-locked to the seizure onset. Broadly, this example seizure and the quantitative 

characterization of the same features across all localized seizures (supplementary figure 2) 

together demonstrate that the identified systems capture the emerging ictal sources and allow 

characterization of properties of the underlying dynamics.
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Figure 3. 
Regulation of ictal activity using a dynamical stability control strategy. (A) iEEG signals 

from 79 electrodes in subject 3 over a single ictal period, beginning 20 s before seizure onset 

and ending 20 s after seizure termination, as shown previously in figure 1. The inset on the 

bottom right shows the emergence of epileptic activity and the transition from pre-ictal 

(blue) to ictal (red) dynamics following the seizure onset. (B) The evolution of the absolute 

value of the third eigenvector associated with high frequencies (mean = ~ 38 Hz, std = 2.86) 

displayed in the heat map. (C) Argand diagrams display the position of the eigenvalues over 
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the course of (I) pre-ictal, (II) onset, and (III) ictal periods. Ictal onset is marked by the 

excursion of several eigenvalues from the pre-ictal zone (dashed green). An early 

intervention control strategy could entail closed-loop actuation, with the aim of driving the 

eigenvalues of the system closer to the center, towards the asymptotically stable zone 

(dashed gray) and, thus, in effect damping the focal epileptic dynamics via field effects.
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Figure 4. 
Stabilizing ictal onset oscillations using closed-loop feedback control. (A) Seizure onset 

sampled from a patient with iEEG recordings from which we can clearly localize the SOZ. 

(B) Mean absolute values of all eigenvectors, whose associated eigenvalues reside at β- and 

γ—band frequencies (15–50 Hz) across the 1-sec sliding windows. The orange and purple 

arrows highlight the high loading of a few electrodes in two selected windows at the seizure 

onset presented in panel A. (C) Wavelet decomposition of a SOZ electrode highlights the 

emergence of oscillations at high frequencies following seizure onset. (D) The left panel 

shows the distribution of the estimated eigenvalues at seizure onset (orange window in panel 

A). Eigenvalues are sorted based on their frequencies, from highest to lowest. Blue 

numbered dots represent the empirically estimated values. We simulate the effect of closed-

loop static feedback between a few electrodes (marked by red in panel A), by representing 

eigenvalues of the closed system (red numbered dots). Only five electrodes with the highest 

eigenvector loading at seizure onset (as seen in panel B) were selected as sensing and 

stimulating electrodes to mimic the limited channels of implantable neurostimulation 
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devices. The static output feedback gains were calculated using the generalized pole 

placement method [31], with the control-theoretic objective of shifting all the higher 

frequency (>15 Hz) eigenvalues of systems that were estimated from ten consecutive sliding 

widows following the seizure onset to the predefined zones, represented by green circle (for 

more details see supplementary information). The two middle panels show the absolute 

values of eigenvectors of the open and closed systems. The right panel shows the stability 

(i.e. absolute values of eigenvalues) and frequency of all eigenvalues in both open (solid 

lines) and closed (dashed lines) systems. Note the reduced stability of all the closed system 

eigenvalues with associated eigenvectors with high loading on stimulating electrodes 

(marked by red in middle panels); namely, eigenmodes 1–4 (See supplementary figure 4 for 

statistical test results). (E) Same results as those represented in panel D, calculated for the 

purple window in panel A. Together, this demonstration suggest that the calculated static 

feedback can similarly stabilize the seizure activity across all seizure onset windows.
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Figure 5. 
Offline estimation of closed-loop feedback gains. (A) Five examples of iEEG recordings at 

the time of seizure onset from a single patient with well-localized SOZ. (B) The left panel 

shows the distribution of the estimated eigenvalues at the onset of seizure #5 (orange 

window in panel A). Eigenvalues are sorted based on their frequencies, from highest to 

lowest. Blue numbered dots represent the empirically estimated values. We simulate the 

effect of closed-loop static feedback between a few electrodes (marked by red in panel A), 

by representing eigenvalues of the closed system (red numbered dots). Only five electrodes 

with the highest eigenvector loading at seizure onset (as seen in panel B) were selected as 

stimulating and sensing electrodes to mimic the limited channels of implantable 

neurostimulation devices. Similar to figure 4, the static output feedback gains were 

calculated using the generalized pole placement method [31], with the control-theoretic 

objective of shifting all the higher frequency (> 15 Hz) eigenvalues of the systems that were 
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estimated from 40 sliding windows (4 seizures × 10 consecutive sliding windows) following 

the onsets of seizures #1–4 to the predefined zones represented by green circle (for more 

details see supplementary information). The two middle panels show the absolute values of 

eigenvectors of the open and closed systems estimated from seizure #5. The right panel 

shows the stability (i.e. absolute values of eigenvalues) and frequency of all eigenvalues in 

both open (solid lines) and closed (dashed lines) systems estimated from the same seizure. 

Note the reduced stability of all the closed system eigenvalues with associated eigenvectors 

with high loading on stimulating electrodes (marked by red in the middle panels), namely 

eigenmodes 1–4 (see supplementary figure 4 for statistical test results). (C) Same results as 

in panel B, calculated for the purple window in panel A. Broadly, this simulated example 

suggests that the static feedback gains calculated offline from patients with stereotypical 

seizures might be utilized to stabilize the seizure onset activity using only a few sensing and 

stimulating electrodes, without the need for any real-time analysis.
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Table 1.

Patient Information. The subjects from the University of Pennsylvania and Mayo Clinic (Rochester) cohorts 

were labeled as HUP and study, respectively. For each patient, we report sex, as well as age at first reported 

seizure onset and at phase II monitoring (age). Additionally, we report the seizure etiology, which was 

clinically determined through medical history, imaging, and long-term invasive monitoring. The different 

seizures observed (seizure types) include simple-partial (SP), complex-partial (CP), and complex-partial with 

secondary generalization (CP + GTC). We also indicate the total number of seizures recorded in the epilepsy 

monitoring unit, as well as the clinical imaging analysis (imaging) that concludes whether the seizure etiology 

is lesional (L) or non-lesional (NL). Finally, surgical outcome (outcome) was based on either Engel score or 

ILAE score: seizure freedom to no improvement (I–V), no resection (NR), and no follow-up (NF). Finally, 

patients are labeled as localizing (L) or non-localizing (NL) based on the localization quality of the seizure 

onset zone (SOZ localization) after clinical assessment of the iEEG by a board-certified epileptologist (F.M.).

Patient (IEEG 
Portal) sex

Age(Years) 
(Onset/
Surgery) SeizureOnset Etiology

Seizure 
Type

Seizures 
(N) Imaging Outcome

SOZ 
Localization

HUP64_phaseII M 0.3/20 Left frontal Dysplasia CP + 
GTC

01 L ENGEL-I L

HUP65_phaseII M 02/36 Right temporal Dysplasia CP + 
GTC

03 N/A ENGEL-I NL

HUP68_phaseII F 15/26 Right temporal Meningitis CP, CP + 
GTC

05 NL ENGEL-I L

HUP70_phaseII M 10/32 Left 
perirolandic

Cryptogenic SP 08 L NR L

HUP72_phaseII F 11/27 Bilateral left Mesial 
temporal 
sclerosis

CP + 
GTC

01 L NR L

HUP73_phaseII M 11/39 Anterior right 
frontal

Meningitis CP 05 NL ENGEL-I NL

HUP78_phaseII M 00/54 Anterior left 
temporal

Traumatic 
injury

CP 05 L ENGEL- 
III

L

HUP79_phaseII F 11/39 Occipital Meningitis CP 01 L NR NL

HUP86_phaseII F 18/25 Left temporal Cryptogenic CP + 
GTC

02 NL ENGEL- 
II

L

HUP87_phaseII M 21/24 Frontal Meningitis CP 02 L ENGEL-I NL

Study 004–2 F 14/27 Right temporal 
occipital

Unknown CP + 
GTC

01 NL ILAE-IV NL

Study 006 M 22/25 Left frontal Unknown CP 02 NL NR NL

Study 010 F 00/13 Left frontal Neonatal 
injury

CP + 
GTC

02 L NF L

Study 011 F 10/34 Right Mesial 
Frontal

Unknown CP 02 NL NF L

Study 016 F 05/36 Right temporal 
orbitofrontal

Unknown CP + 
GTC

03 NL ILAE-IV L

Study 019 F 31/33 Left frontal Unknown CP + 
GTC

15 NL ILAE-V NL

Study 020 M 05/10 Right frontal Unknown CP + 
GTC

04 NL ILAE-IV L

Study 023 M 01/16 Left occipital Unknown CP 04 L ILAE-I NL

Study 026 M 09/09 Left frontal Unknown CP 10 NL ILAE-I NL
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Patient (IEEG 
Portal) sex

Age(Years) 
(Onset/
Surgery) SeizureOnset Etiology

Seizure 
Type

Seizures 
(N) Imaging Outcome

SOZ 
Localization

Study 031 M 05/05 Right frontal Unknown CP + 
GTC

05 NL NF NL

Study 033 M 00/03 Left frontal Unknown GA 07 L ILAE-V NL

Study 037 F 45/?? Indeterminate Unknown CP 02 NL NR NL
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