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Prostate cancer is the most frequent cancer in men and a leading cause of cancer death. Determining a patient’s optimal therapy is
a challenge, where oncologists must select a therapy with the highest likelihood of success and the lowest likelihood of toxicity.
International standards for prognostication rely on non-specific and semi-quantitative tools, commonly leading to over- and under-
treatment. Tissue-based molecular biomarkers have attempted to address this, but most have limited validation in prospective
randomized trials and expensive processing costs, posing substantial barriers to widespread adoption. There remains a significant
need for accurate and scalable tools to support therapy personalization. Here we demonstrate prostate cancer therapy
personalization by predicting long-term, clinically relevant outcomes using a multimodal deep learning architecture and train
models using clinical data and digital histopathology from prostate biopsies. We train and validate models using five phase III
randomized trials conducted across hundreds of clinical centers. Histopathological data was available for 5654 of 7764 randomized
patients (71%) with a median follow-up of 11.4 years. Compared to the most common risk-stratification tool—risk groups
developed by the National Cancer Center Network (NCCN)—our models have superior discriminatory performance across all
endpoints, ranging from 9.2% to 14.6% relative improvement in a held-out validation set. This artificial intelligence-based tool
improves prognostication over standard tools and allows oncologists to computationally predict the likeliest outcomes of specific
patients to determine optimal treatment. Outfitted with digital scanners and internet access, any clinic could offer such capabilities,
enabling global access to therapy personalization.
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INTRODUCTION
In 2020, 1,414,259 new cases and 375,304 deaths from prostate
cancer occurred worldwide1. While prostate cancer is often
indolent and treatment can be curative, prostate cancer repre-
sents the leading global cause of cancer-associated disability due
to the negative effects of over- and under-treatment, and is a
leading cause of cancer death in men2,3. Determining the optimal
course of therapy for an individual patient is difficult, and involves
considering their overall health, the characteristics of their cancer,
the side effect profiles of many possible treatments, outcomes
data from clinical trials involving patient groups with similar
diagnoses, and the prognostication of their expected future
outcomes. This challenge is compounded by the lack of readily
accessible prognostic tools to better risk-stratify patients.
One of the most common systems used to risk-stratify patients

worldwide is the National Comprehensive Cancer Network

(NCCN), or D’Amico, risk groups developed in the late 1990s. This
system is based on digital rectal examination of the prostate,
serum prostate-specific antigen (PSA) level, and tumor biopsy
grade assessed by histopathology. This three-tier system forms the
basis of treatment recommendations used for localized prostate
cancer throughout the world4, but has repeatedly been shown to
have suboptimal prognostic and discriminatory performance5.
This in part is due to the subjective and non-specific nature of the
core variables in these models. For instance, Gleason grading6 was
developed in the 1960s and has suboptimal interobserver
reproducibility even amongst expert urologic pathologists7,8.
Although newer clinicopathologic risk-stratification systems have
been created, three variables remain at their core—Gleason score,
T-stage, and PSA9.
More recently, tissue-based genomic biomarkers10 have

demonstrated superior prognostic performance. However, nearly
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all of these tests lack validation in prospective randomized clinical
trials in the intended use population, and there has been little to
no adoption outside of the United States due to costs, laboratory
requirements, and processing time11. Importantly, prognostic
models developed on cohort study data and not on randomized
clinical trials are subject to selection biases from treatment
decisions made in the clinic, and often have less accurate clinical
and long-term outcome data. As such, there remains a serious
unmet clinical need for improved and more accessible tools to
personalize therapy for prostate cancer12.
Artificial intelligence (AI) has demonstrated remarkable cap-

abilities across a number of use-cases in medicine, ranging from
physician-level diagnostics13 to workflow optimization14, and has
the potential to support cancer therapy.15,16 As clinical adoption of
digital histopathology continues17, AI can be implemented more
broadly in the care of cancer patients. Advances and progress in
the use of AI for histopathology-based prognostics have already
begun, for instance by predicting short-term patient outcomes18

or by improving the accuracy of Gleason-based cancer grading on
postoperative surgical samples19. Whereas standard risk-
stratification tools are fixed and based on few variables, AI can
learn from large amounts of minimally processed data across
various modalities. In contrast to genomic biomarkers, AI systems
leveraging digitized images are lower-cost and massively scalable.
In addition, these tools can incrementally improve over time
through continued learning to optimize test performance and
health care value.
In this study, we demonstrate that a multimodal AI (MMAI)

system can be used to address an unmet need for accessible and
scalable prognostication in localized prostate cancer. This MMAI
system has the potential to be a generalizable digital AI biomarker
for global adoption. Herein, we train and validate prognostic
biomarkers in localized prostate cancer using five NRG Oncology
phase III randomized clinical trials by leveraging multimodal deep
learning on digital histopathology and clinical data20–24. By
utilizing data from large clinical trials with long-term follow-up
and treatment information that is standardized and less subject to
bias, our model learns from and is trained on some of the most
accurate clinical and outcome data available.

RESULTS
We created a unique MMAI architecture that ingests both tabular
clinical and image data, and trains with self-supervised learning to

leverage the substantial amount of data available. We trained and
validated six distinct models on a dataset of 16,204 histopathology
slides (~16 TB of image data) and clinical data from 5,654 patients
to predict six binary outcomes varying by endpoints and
timeframes (5- and 10-year distant metastasis, 5- and 10-year
biochemical failure, 10-year prostate cancer-specific survival, and
10-year overall survival). Notably, accurate prediction of distant
metastasis at 5 and 10 years is particularly important for
identifying patients who may have more aggressive disease and
require additional treatment. We measured the performance of
these models with the area under the time-dependent receiver
operator characteristic curve (AUC) of sensitivity and specificity,
based on censored events accounting for competing risks, and the
NCCN risk groups served as our baseline comparator. Prior to
model development, data from all five clinical trials were split into
training (80%) and validation (20%). The MMAI model consistently
outperformed the NCCN risk groups across all tested outcomes
when comparing the performance results for the validation set.

Developing the MMAI architecture
For each patient, the MMAI model took as input clinical variables
—including the NCCN variables (combined Gleason score, clinical
T-stage, baseline PSA), as well as age, Gleason primary, and
Gleason secondary—and digitized histopathology slides (median
of 2 slides). Joint learning across both data streams is complex and
involves building two separate machine learning pipelines—one
for learning feature embeddings from the pathologic image data
(Image pipeline) and the other to jointly learn from both clinical
and image data to output risk scores for an outcome of interest
(Fusion pipeline, see Fig. 1a). We standardized the image features
across the trials for consistency.
Effective learning of relevant features from a variable number of

digitized histopathology slides involves both image standardiza-
tion and self-supervised pre-training. For each patient, we
segmented out all the tissue sections in their biopsy slides, and
combined them into a single large image, called an image quilt, of
a fixed width and height across all patients (Supplementary Fig. 1).
We then overlaid a grid over the image quilt which cut it into
patches of size 256 × 256 pixels across its RGB channels. These
patches were then used to train a self-supervised learning model25

to learn histomorphological features useful for downstream AI
tasks (Fig. 1b). Once trained, the self-supervised learning model
took the patches of an image quilt and output a 128-dimensional
vector representation for each patch. Concatenating all vectors in

Fig. 1 Multimodal deep learning system and dataset. a The multimodal architecture is composed of two parts: a tower stack to parse a
variable number of digital histopathology slides and another tower stack to merge the resultant features and predict binary outcomes. b The
training of the self-supervised model of the image tower stack.
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the same spatial orientation as the original patches yielded a
feature tensor, which we called a feature-quilt, that effectively
compressed the initially massive image quilt into a compact
representation useful for further downstream learning. Before
concatenation, this feature-quilt was averaged to further compress
the representation into a 128-dimensional feature vector for each
patient. The tabular clinical data was concatenated with the
output of the image pipeline. The concatenated vector was then
fed to a CatBoost classifier26 and the model output a risk score for
the task at hand.

Assembling NRG/RTOG clinical trials data
With approval from NRG Oncology, a National Clinical Trials
Network (NCTN) group funded by the National Cancer Institute
(NCI), we assembled a unique dataset from five large multinational
randomized phase III clinical trials of men with localized prostate
cancer (NRG/RTOG-9202, 9408, 9413, 9910, and 0126)20–24. All
patients received definitive external radiotherapy (RT), with or
without pre-specified use of androgen-deprivation therapy (ADT).
Combined RT with short-term ADT was of 4 month duration, with
medium-term ADT of 36-week duration, and with long-term ADT
of 28month duration (Table 1). Of the 7,764 eligible patients
randomized in these five trials, there were 5,654 with high quality
digital histopathology image data. This represented 16.1 TB of
histopathology image data from 16,204 histopathology slides of
pretreatment biopsy samples.

Identifying human-interpretable self-supervised learning
image features
The internal data representations of the self-supervised learning
model are shown in Fig. 2. We fed the entire dataset’s image
patches through the self-supervised learning model and
extracted model features—a 128-dimensional vector outputted
by the model—for each patch. The Uniform Manifold Approx-
imation and Projection algorithm (UMAP)27 was applied to these
features, projecting them from 128 dimensions down to two,

and each patch was plotted as an individual point. Neighboring
data points represent image patches that the model considered
similar. UMAP grouped the feature vectors into 25 clusters, some
of which are shown in various colors, and a pathologist was
asked to interpret the 20 nearest-neighbor image patches of the
cluster centroids and try to identify trends observed for each
cluster. Insets in Fig. 2 show example image patches (and
pathologist descriptions) that are close in feature space to the
cluster centroids, and the full interpretation for all 25 clusters is
shown in Supplementary Fig. 2.

Evaluating performance of the MMAI models on a validation
set
The MMAI prognostic models developed using pathology images,
NCCN variables (combined Gleason score, T-stage, baseline PSA),
age, Gleason primary, and Gleason secondary, had superior
discriminatory performance on the entire held-out test set across
all clinical endpoints and timeframes when compared to the most
commonly used NCCN risk-stratification tool.
The model performance results for the validation sets are

shown in Fig. 3. In Figs. 3a and d–h, the blue bars represent the
performance of the MMAI models, each trained on a specific
endpoint timeframe, and the gray bars represent the performance
of the corresponding NCCN model. Figure 3b shows the relative
improvement of the MMAI over NCCN across the outcomes, and
across the subsets of the validation set that come from the five
individual trials. As can be seen, our model consistently outper-
forms the NCCN model across all tested outcomes, with a
substantial relative improvement in AUC varying from 9.2% to
14.6%. Further, the trial subsets unanimously see a relative
improvement over NCCN except for prediction of 10 year
biochemical failure in RTOG-9910. This trial had one of the lower
event rates and shortest follow-up times compared to the
remaining trials, and all patients received hormone therapy. With
a short follow-up time, patients were less likely to recover their

Table 1. Clinicopathologic and trial characteristics.

RTOG-9202 RTOG-9408 RTOG-9413 RTOG-9910 RTOG-0126 Combined

Number of Patients 1180 1719 695 976 1084 5654

White 1004 1312 481 769 937 4503

Hispanic 18 48 23 23 0 112

African American 147 334 173 166 112 932

Asian 4 12 1 11 12 40

Other Race 1 10 11 6 9 37

Unknown Race 6 3 6 1 14 30

Number of Pathology Slides 3188 5472 2104 3075 2365 16204

Number of Clinical Variables 53 69 71 60 62 −

Therapy Randomization RTS vs. RTL RT vs. RTS RTS 2 × 2a RTS vs. RTM RT vs. RT+ −

Patient Risk Groups Inter. | High Low | Inter. | High Inter. | High Inter. | High Inter. Low | Inter.
| High

Primary Endpoint Disease-free
Survival

Overall Survival Progression-free
Survival

Prostate Cancer-
specific Mortality

Overall Survival −

Median Follow-up for Censored
Patients (Years)

17.4 15.1 13.7 9.3 13.2 11.4

No. Patients Died 944 1154 504 297 505 3404

Trial Accrual Dates 1992–1995 1994–2001 1995–1999 2000–2004 2002–2008 1992–2008

The column ‘combined’ shows the characteristics of the final dataset with all five trials used for training and validation. aRTOG-9413 randomized patients in a
2 × 2 fashion testing the effect of timing of ADT (before and during RT vs. starting after RT) and field size (prostate only vs. full pelvic RT). New acronyms:
radiotherapy plus short/medium/long-term hormone therapy (RTS/RTM/RTL).
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testosterone and prostate-specific antigen levels to be able to
experience biochemical failure.
To evaluate the incremental benefit of various data compo-

nents, we ran an ablation study in which we sequentially removed
data features to understand their effect on the overall perfor-
mance of the system28. We trained additional MMAI models using
the following data setups: pathology images only, pathology
images+ the NCCN variables (combined Gleason score, T-stage,
baseline PSA), and pathology images+ NCCN variables+ three
additional variables (age, Gleason primary, Gleason secondary).
Each additional data component improved performance, with the
full setup (pathology images and six clinical variables) yielding the
best results (Fig. 3c). The MMAI prognostic model had superior
discrimination compared to the NCCN model for all outcomes,
including 5-year distant metastasis (AUC of 0.84 vs. 0.74, p-value <
0.001), 5-year biochemical failure (AUC of 0.67 vs. 0.59, p-value <
0.001), 10-year prostate cancer-specific survival (AUC of 0.77 vs.
0.68, p-value < 0.001), and 10-year overall survival (AUC of 0.65 vs.
0.59, p-value < 0.001).

DISCUSSION
Prior work prognosticating outcomes from histopathology slides
typically leverages extensive region-level pathologist annotations
on slides (e.g., to train AI models to predict Gleason grading19,29,30,
or to prognosticate short-term outcomes18). In contrast, our
technique learns from patient-level clinical data and unannotated
histopathology slides and can prognosticate long-term outcomes.
Moreover, the self-supervised learning of the image model allows
it to learn from new image data without the need for additional
annotations. When deploying machine learning (ML) models in a

new domain (e.g., a new scanner or a new clinic) including data
from that domain during training can help improve generalization
and performance. This system also lowers the barrier for
physicians to begin using this tool and for clinics to easily
continue sharing histopathology image data to obtain prognostic
information and aid their treatment decisions. This lower barrier
for usage is a valuable advantage when deploying the system in
new locations and attempting to adapt to their inherent biases—a
challenge previously observed in medical AI deployment31. In
addition, this tool focuses on supporting the oncologist in making
treatment decisions and provides complementary information to
the diagnostic and histopathology information identified by a
pathologist.
Self-supervised learning25 is a method recently popularized in

the ML community for learning from datasets without annota-
tions. Typical ML setups leverage supervised learning, in which
datasets are composed of data points (e.g., images) and data
labels (e.g., object classes). In contrast, during self-supervised
learning, synthetic data labels are extracted from the original data,
and used to train generic feature representations which can be
used for downstream tasks. Here we find that momentum
contrast32—a technique that takes the set of image patches,
generates augmented copies of each patch, then trains a model to
predict whether any two augmented copies come from the same
original patch—is effective at learning features from digital
pathology slides. The structural setup is shown in Fig. 1b, with
further details in the Methods. One challenge with real-world
medical datasets is the sheer volume of image data available and
potential class imbalance (tissue vs. no tissue) that is a result of
how histopathology slides are created. To overcome this and
guide the self-supervised learning process towards patch regions

Fig. 2 Pathologist interpretation of self-supervised model tissue clusters. The self-supervised model in the multimodal model was trained
to identify whether or not augmented versions of small patches of tissue came from the same original patch, without ever seeing clinical data
labels. After training, each image patch in the dataset of 10.05 M image patches was fed through this model to extract a 128-dimensional
feature vector, and the UMAP algorithm27 was used to cluster and visualize the resultant vectors. A pathologist was then asked to interpret the
20 image patches closest to each of the 25 cluster centroids—the descriptions are shown next to the insets. For clarity, we only highlight 6
clusters (colored), and show the remaining clusters in gray. See Supplementary Fig. 2 for full pathologist annotation.
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that are likely to be more clinically useful, we only use images
from patients with a Gleason primary ≥4. Future work could
investigate further whether other training techniques such as
transfer learning are effective, and whether training or fine-tuning
models end-to-end using patient-level information improves final
performance.
When new models are introduced, an understanding of how to

use them in routine clinical care is critical to the adoption of such
tools. In this study, we focus on the unique AI architecture used to
develop the prognostic models trained on data from thousands of
patients with accurate, long-term follow-up data and clinically
relevant outcomes. The MMAI model consistently outperforms the
NCCN model across all tested outcomes. However, further work
will be required to evaluate the clinical utility of this model,
including identifying actionable information from defined patient
risk groups and calibration with contemporary data. Importantly,
interpretability of the features used by the model to predict
prognosis should be investigated, and will be the subject of
future work.
By creating a deep learning architecture that simultaneously

ingests multiple data types, including histopathology image data
of variable sizes as well as clinical data, we built a deep learning
system capable of inferring long-term patient outcomes that
substantially outperforms established clinical models. This study
leverages robust and large-scale clinical data from five prospec-
tive, randomized, multinational phase III trials with up to 20 years

of patient follow-up for 5,654 patients across a varied population,
enrolled at hundreds of different diverse medical centers.
Validation of these prognostic classifiers on a large amount of
clinical trials data—in the intended use population—uniquely
positions these tools as aids to therapeutic decision-making.
Barriers to the adoption of urine-, blood-, and tissue-based
molecular assays include their invariably high costs, the collection
and consumption of biospecimen samples, and long turnaround
times. In contrast, AI tools lack these limitations, substantially
lowering their barrier to large-scale adoption. Moreover, the
growing adoption of digital histopathology will support the global
distribution of AI-based prognostic and predictive testing. This will
enable broad access to therapy personalization and enable AI
algorithms to continue improving by learning from diverse
multinational data.

METHODS
Dataset preparation
In collaboration with NRG Oncology, we obtained access to full patient-
level baseline clinical data, digitized histopathology slides of pretreatment
prostate biopsies, and longitudinal outcomes from five landmark, large-
scale, prospective, randomized, multinational clinical trials containing 5654
patients, 16,204 histopathology slides, and >10 years of median follow-up:
NRG/RTOG-9202, 9408, 9413, 9910, and 0126 (Table 1). Patients in these
trials were randomized across various combinations of external

Fig. 3 Comparison of the multimodal deep learning system to NCCN risk groups across trials and outcomes. a Performance results
reporting on the area under the curve (AUC) of time-dependent receiver operator characteristics of the MMAI (blue bars) vs. NCCN (gray bars)
models, include 95% confidence intervals and two-sided p-values. Comparisons were made across 5-year and 10-year time points on the
following binary outcomes: distant metastasis (DM), biochemical failure (BF), prostate cancer-specific survival (PCSS), and overall survival (OS).
b Summary table of the relative improvement of the MMAI model over the NCCN model across the various outcomes and broken down by
performance on the data from each trial in the validation set. Relative improvement is given by (AUCMMAI− AUCNCCN)/AUCNCCN. c Ablation
study showing model performance when trained on a sequentially decreasing set of data inputs, including the pathology images only (path),
pathology images+NCCN variables (path+NCCN), and pathology images+NCCN variables+ age+ Gleason primary+Gleason secondary
(path+NCCN+ 3). d–h Performance comparison on the individual clinical trial subsets of the validation set—together, these five comprise
the entire validation set shown in (a).
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radiotherapy (RT) with or without different durations of androgen-
deprivation therapy (ADT). The slides were digitized over a period of
1 year by NRG Oncology using a Leica Biosystems Aperio AT2 digital
pathology scanner at a resolution of 20x. The histopathology images were
manually reviewed for quality and clarity. Six baseline clinical variables that
were collected across all trials (combined Gleason score, Gleason primary,
Gleason secondary, T-stage, baseline PSA, age), along with the digital
histopathology images, were used for model training and validation. The
patients from five trials were split into training (80%) and validation (20%)
datasets, and there was no patient overlap among splits. To ensure that
the test set captured a clinically relevant and representative subset of
patients, the final test set was selected such that the NCCN risk group’s
5-year distant metastasis AUC performance was between 0.7 and 0.75, as
observed in the literature33,34. Institutional Review Board approval was
obtained from NRG Oncology (IRB00000781) and informed consent was
waived because this study was performed with anonymized data.

Image pipeline
All tissue from digitized slides were segmented into a single image quilt of
size 200 by 200 patches for each patient prior to model training. A simple
grid was then laid over the image quilt to obtain contiguous and adjacent
patches of size 256 × 256 pixels. We used a ResNet-50 model35, together
with the MoCo-v2 training protocol36 (parameters: learning rate= 0.03
with a cosine learning rate schedule for 200 epochs, moco-t= 0.2,
multilayer perceptron head, batch size of 256, the default MoCo-v2
parameters for augmentation), to train the self-supervised learning model
used in the system architecture of Fig. 1b. For the validation results shown
in Fig. 3a, we used images of patients with a Gleason primary ≥4 to pre-
train a corresponding self-supervised learning model to effectively learn
relevant histomorphologic features. Once self-supervised pre-training was
complete, we fed in all patches with usable tissue (See tissue segmentation
section) to the self-supervised pretrained ResNet-50 model to generate an
image feature vector for each patch. These image feature vectors were
averaged to produce a 128-dimensional image feature for each patient.

Fusion pipeline
To leverage information from both modalities (image and clinical features),
we used a joint fusion approach. The tabular clinical data were all
considered as numerical variables, and a CatBoost26 model that took in a
concatenation of numerical clinical variables and image features as input
was used for model prediction and to output a risk score (parameters:
learning rate 0.003, depth 5, L2 leaf regularization 10, 2000 iterations).

Tissue segmentation
After the slides were cut into 256 × 256 pixel patches, we developed an
artifact classifier by training a ResNet-18 to classify whether a patch
showed usable tissue, or whether it showed whitespace or artifacts. The
artifact classifier was trained for 25 epochs, optimized using stochastic
gradient descent with a learning rate of 0.001. The learning rate was
reduced by 10% every 7 epochs. We manually annotated 3661 patches
(tissue vs. not tissue) and trained this classifier on 3366 of them, achieving
a validation accuracy of 97.6% on the remaining patches. This artifact
classifier was then used to segment tissue sections and filter out low-
quality images during image feature generation.

Model performance metrics (AUC)
For each model and each outcome, we estimated the time-dependent
receiver operating characteristic curve, accounting for competing events
and censoring, using the R-package timeROC37. The area under this curve
defines the model’s performance. Each time-dependent curve was
constructed by evaluating the sensitivities and specificities based on the
disease statuses fixed at time t and the model predictions determined by
sweeping through a threshold c. Methods detailed in Blanche et al. were
used to compute pointwise 95% confidence intervals (1.96 × standard
error) for AUCs and two-sided p-values for comparing AUCs of two models
(e.g., MMAI vs. NCCN)37.

NCCN risk groups
Three variables—clinical T-stage, Gleason score, and baseline PSA—were
used to group patients into low-, intermediate-, and high-risk groups. The
risk groups were defined as follows: low risk (cT1–cT2a, Gleason score ≤6,

and PSA <10 ng/mL), intermediate risk (cT2b–cT2c, Gleason score 7, and/or
PSA 10–20 ng/mL), and high risk (≥cT3a or Gleason score 8–10 or PSA
>20 ng/mL)9.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The data that support the findings of this study included pathology slides,
clinicopathologic variables, and outcomes information from NRG Oncology. Data
may be made available for noncommercial academic use from the authors with
permission from NRG Oncology. For access to the clinicopathology variables and
outcomes information, please contact AP@nrgoncology.org. For the digitized
pathology slides, please contact A.E. (aesteva@artera.ai).

CODE AVAILABILITY
The multimodal AI architecture was developed using PyTorch Python library (https://
pytorch.org/). In addition, scikit-learn, NumPy, statsmodels, pandas, Matplotlib, and
MoCo-v2 have been used for computation and plotting (available under: https://scikit-
learn.org/stable/, https://numpy.org/, https://www.statsmodels.org/, https://pandas.
pydata.org/, https://matplotlib.org/, and https://github.com/facebookresearch/moco).
The trained model used in this study has not yet undergone regulatory review and
cannot be made available at this time. Interested researchers can contact A.E.
(aesteva@artera.ai) for questions on its status and access.
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