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Abstract

There is strong evidence that polyandrous taxa have evolved relatively larger testes than monogamous relatives. Sperm size
may either increase or decrease across species with the risk or intensity of sperm competition. Scorpions represent an
ancient direct mode with spermatophore-mediated sperm transfer and are particularly well suited for studies in sperm
competition. This work aims to analyze for the first time the variables affecting testes mass, ejaculate volume and sperm
length, according with their levels of polyandry, in species belonging to the Neotropical family Bothriuridae. Variables
influencing testes mass and sperm length were obtained by model selection analysis using corrected Akaike Information
Criterion. Testes mass varied greatly among the seven species analyzed, ranging from 1.661.1 mg in Timogenes dorbignyi to
16.364.5 mg in Brachistosternus pentheri with an average of 8.465.0 mg in all the species. The relationship between testes
mass and body mass was not significant. Body allocation in testes mass, taken as Gonadosomatic Index, was high in
Bothriurus cordubensis and Brachistosternus ferrugineus and low in Timogenes species. The best-fitting model for testes mass
considered only polyandry as predictor with a positive influence. Model selection showed that body mass influenced sperm
length negatively but after correcting for body mass, none of the variables analyzed explained sperm length. Both body
mass and testes mass influenced spermatophore volume positively. There was a strong phylogenetic effect on the model
containing testes mass. As predicted by the sperm competition theory and according to what happens in other arthropods,
testes mass increased in species with higher levels of sperm competition, and influenced positively spermatophore volume,
but data was not conclusive for sperm length.
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Introduction

Sperm competition is a widespread phenomenon that influences

several sexual characters [1]–[4]. It is defined as the competition of

ejaculates of two or more males to fertilize a given set of ova [5]–

[7]. In a polyandrous mating system, and when the competition is

numeric [6], [7], there is a selective pressure on males to increase

investment in sperm production, thus showing relatively larger

testes compared to monogamous relatives [7]–[11]. Larger testes

may produce more sperm and give the male an advantage in

numerical sperm competition [12]. Nevertheless, sperm is costly

[13], [14] and males should optimize their investment in ejaculates

allocating sperm strategically according to sperm competition risk

[6], [7], [15], [16]. Testes size is considered a reliable index of

sperm competition [17], but there are other tactics that can affect

testes size as well (e.g. [18]–[20]).

Sperm size is another trait that may vary according to sperm

competition risk. Sperm changes considerably in size (mainly

length) among species and sperm size may either increase ([21]

(butterflies); [22] (moths); [23], [24] (fishes); [25] (frogs); [26]

(snakes); [27]–[29] (birds); [30], [31] (eutherian mammals); [32]

(marsupial mammals)), or decrease (e.g. [33] (fishes)) across species

with the risk or intensity of sperm competition.

Among arthropods, sperm competition has been widely studied

in insects [5], [7], but spiders have also been a good model for

sperm competition [34]–[36]. Classic reviews provided by Austad

[37] and Thomas and Zeh [38] focused on the influence of sperm

competition in shaping mating strategies in spiders and other

arachnids. Unfortunately, studies of the influence of sperm

competition over testes mass are still lacking in arachnids.

Scorpions are particularly well suited models for studies on

sperm competition. Traditionally, they have been considered to be

among the most basal arachnids [39], representing an ancient sex

model. Sperm is transferred indirectly to the female genital

opening, by means of a sclerotized spermatophore deposited in the

substrate by the male [40]. Scorpion spermatozoa are long and

commonly transferred as sperm packages [41], [42]. All scorpion

species are viviparous [40] and in general females are polyandrous,

capable of storing sperm in paired seminal receptacles [43]. Males

of some species deposit a genital plug that occludes the female’s

genital opening after sperm transfer [44]–[46]. Although some

courtship characteristics and spermatozoa have been studied in

this order (e.g. [41], [42], [47]–[50]), details of sperm competition

mechanisms remain unexplored.

In this context, the present study aims to analyze variables

affecting testes mass and sperm length in scorpion species of

the Neotropical family Bothriuridae. This is a novel approach

in these arachnids. In accordance with sperm competition theory,

and assuming that greater testes produce more spermatozoa,

we predict a positive association between the risk of sperm
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competition (measured as level of polyandry) and testes mass due

to direct selection arising from sperm competition. The ejaculate,

in the form of the spermatophore volume, should increase

accordingly. Besides, and according to analyses in other groups,

we initially expect sperm length to increase with sperm compe-

tition risk to confer individual spermatozoa a competitive

advantage in sperm competition.

Materials and Methods

Analyzed Species
Adult males of eight scorpion species belonging to the

Bothriuridae family were analyzed, as listed below together with

capture sites, capture technique and number of males: Bothriurus

bonariensis (C. L. Koch, 1842), Mendiolaza, Córdoba, Argentina,

Ultraviolet light (UV light) (N = 11); Bothriurus cordubensis Acosta,

1995, Villa Berna, Córdoba, Argentina, turning rocks during the

day (N = 6); Bothriurus rochensis San Martı́n, 1965, Piedras de Afilar,

Montevideo, Uruguay, UV light (N = 10); Brachistosternus ferrugineus

(Thorell, 1876), Chancanı́ Reserve, Córdoba, Argentina, UV light

(N = 18); Brachistosternus pentheri Mello-Leitão, 1931, Chancanı́

Reserve, Córdoba, Argentina, UV light (N = 6); Timogenes elegans

(Mello-Leitão, 1931) Chancanı́ Reserve, Córdoba, Argentina, UV

light (N = 19); Timogenes dorbignyi (Guérin Méneville, 1843)

Chancanı́ Reserve, Córdoba, Argentina, UV light (N = 9)

Urophonius brachycentrus (Thorell, 1876), Tanti, Córdoba, Argentina,

turning rocks during the day (N = 9). In all species, captures were

between 2009 and 2012. Detailed data of voucher specimes and

collection deposition are included as Table S1. The authors

confirm that no specific permissions were required for capturing

those sample sizes (N,20 individuals per species) in their

respective localities and that the study did not involve endangered

or protected species. In the laboratory, individuals were kept inside

individual plastic boxes (1061368 cm) with moistened cotton as

water supply and fed with larvae of Tenebrio molitor Linné (Insecta,

Coleoptera). Data on testes mass was only obtained from recently

dissected males. Specimens were euthanized using ethyl ether, and

dissections were performed in ethanol 80%.

Comparative Design
Body mass and testes mass (bm, tm). Specimens were

cleaned and dried with tissue paper in order to remove ethanol

excess. When dried, they were weighted in a microbalance (Ohaus

Pioneer PA114) to the nearest 0.0001 g to obtain the male’s body

mass. Males were then dissected under stereoscopic dissection

microscope (Nikon SMZ1500). Paired paraxial organs, that

produce the hemispermatophores, were removed and testes were

cleaned and cut out from them (Figs. 1 A, B). Testes from both

paraxial organs were dried from liquid excess using a tissue paper

and were weighted together to the nearest 0.0001 g to get the

male’s testes mass. In all species, measurements were taken

30 seconds after the value of the microbalance was stabilized. For

comparison with other works, we also computed relative testes

mass, in the form of a Gonadosomatic Index (GSI: gonad weight/

body weight6100) [51]. The growth of testes mass and body mass

was described by the ‘allometric relation’ [52], also termed

‘allometric equation’ [53] y = a*xb. This allometric relationship

will also be described in the following two variables, sperm length

and spermatophore’s volume.

Sperm length (sl). Paraxial organs also contain seminal

vesicles [54] (Fig. 1A). Spermatozoa are stored inside seminal

vesicles as sperm packages [42], [49] (Fig. 1 C, D). Sperm

packages were photographed in a phase contrast microscope

(Nikon Eclipse 50i) with an attached digital camera (Nikon DS-fi1).

Sperm packages were then measured from the digital images with

ImageJ 64 bit software [55]. Sperm packages are elongated and

spermatozoa are easily identified (Fig. 1 C, D). Sperm length was

measured indirectly as the length of sperm packages per species.

Sperm package’s length is considered a reliable measure of sperm

length and both measures, spermatozoa and sperm length,

correlate [42], [48]. Mean value of sperm package’s length was

recorded per male (N = 10 sperm packages per individual) and

then averaged per species.

Spermatophore’s volume (sv). Besides testes mass, sperm

volume from pre-insemination spermatophores was observed. For

this purpose, area and total length of spermatophore’s trunk were

taken from one to three males depending on material availability.

Volume was estimated using the trunks area and its width. We

were able to calculate a volume in mm3 multiplying the area in

mm2 by the trunk’s width in mm. The total volume of the

spermatophore’s trunk can be taken as an estimative of the sperm

volume that is transferred to the female during mating (Fig. 1 E).

Risk of sperm competition: polyandry levels

(pol). Polyandry levels were considered as the average number

of males a female accepted during the reproductive season, based

in controlled laboratory assays [44], [47], [48], [56]–[58] (Fig. 1

F). Urophonius brachycentrus is a species whose males deposit a very

effective mating plug that occludes the female genital opening

[44], [48]. The females only mate once [48], (Costa-Schmidt,

Romero-Lebrón, unpublished data). Thus, this species is the only

species considered monandrous in this study. In all other species

females accepted at least two matings with different males [44],

[47], [48], [56]–[58], (Peretti, Vrech, unpublished data) (average

number of males accepted per reproductive season: Timogenes

elegans, 1,5; T. dorbignyi, 2; Bothriurus rochensis, 2,5; B. cordubensis, 2,5;

Brachistosternus ferrugineus, 2,5; Br. pentheri, 3; B. bonariensis, 4).

Statistical Analysis
Measurements were Log10 transformed to normalize their

distributions (Shapiro-Wilks normality test on Log10 transformed

data: lbm w = 0.968, p = 0.880; ltm w = 0.889, p = 0.228; lsv

w = 0.928, p = 0.502; lsl w = 089, p = 0.263).

We used model selection analysis [59] for choosing among

biological meaningful models. All these models were chosen

because they could be explained by a hypothesis or an observation

in nature. We tested 18 models divided into three categories

aiming to explain one response variable in each category. First we

tested the effect on testes mass (ltm = Log10 Testes mass). The first

model was the null model (ltm,1). This model will have the

greatest chance of being chosen when the others models perform

poorly in explaining the response variable. This is why the null

model was tested with the three response variables. The second

model for testes mass was ltm,lbm for testing the allometric effect

of body mass on testes mass. Third, we tested the effect of sperm

competition on testes mass by using polyandry levels as a predictor

(ltm,pol). Finally, we used a model assuming an additive effect

between these last two variables (ltm,lbm+pol). If body mass was

affecting the response variable, the effect of body mass on this

particular variable was controlled for by including body mass in a

multiple regression [60]. This multiple regression analysis was

performed using a sequential (Type I) sum of squares, in which the

predictor variables were added to the model only in the following

order: body mass, polyandry to control for the possible effects of

body mass. The second set of models was aimed to explain the

performance of sperm length. First we tested the null model.

Second, as for testes mass, we tested single models with body mass

and polyandry as single variables. Here, we added the effect of

testes mass on sperm length, as bigger testes could explain the

Sperm Competition in Neotropical Scorpions
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production of larger spermatozoa in some organisms (e.g. [61]).

Finally, we added two additive models to test polyandry and testes

mass influence with the control of the possible effects of body mass

(lsl,lbm+pol; lsl,lbm+ltm). The last set of variables tried to

explain spermatophore volume. Besides the null model we tested

four single models (lsv,lbm; lsv,pol; lsv,ltm, lsv,lsl). The

influence of testes mass is important as a positive influence could

be supported by the sperm competition model [17]. The last

model, tried to corroborate if bigger spermatozoa influences

ejaculate volume. Finally, we tested the influence of the last three

variables controlled for body mass as in the other set of models.

We compared these models for each response variable, and we

used Akaike’s Information Criterion corrected for small sample

size (AICc) to infer the maximum likelihood of the current models,

as suggested by Burnham & Anderson [59]. The model with the

smallest value of AICc and models whose change in AICc was

smaller than 2 (DAICc,2) were selected, because this difference

suggests substantial evidence for the model (see [63]). It is

noteworthy that models with four parameters (y,a*b) were

excluded as their changes in AICc were bigger than 10

(DAICc.10). We used Akaike weights to assess the relative

strength of the model compared to the other models tested [59].

This value can give the idea of how many times one model is

better than the other.

Species data may not be free of phylogenetic association. They

may share character values because of a common ancestry rather

than independent evolution [52], [62]. Because of this lack of

independence, regressions were performed using a generalized

least-squares approach within a phylogenetic framework (pGLS)

[63]. This method estimates a phylogenetic scaling parameter

lambda (l), which represents the transformation that makes the

data fit a Brownian motion evolutionary model. If l values are

close to 0, the variables are likely to have evolved independently of

phylogeny, whereas l values close to 1 indicate strong phyloge-

netic association of the variables. As an advantage, GLS allows a

variable degree of phylogenetic control according to each tested

model, accounting for differences in the level of phylogenetic

association between different traits. The estimation of l values and

GLS analyses were performed using a code written by R.

Freckleton for the statistical package R v.2.15.1 (R Foundation

for Statistical Computing 2012) and the maximum likelihood value

of l was compared against models with l = 1 and l = 0. Using the

current phylogenetic hypotheses available [64], (Mattoni, unpub-

lished data), a cladogram was built for the Bothriuridae studied

species (Fig. 2). Branch lengths were assumed equal, thereby

assuming a punctuated model of evolution. Data was analyzed

with R v. 2.15.1 64 bit open source statistical package [65].

Figure 1. Main reproductive traits in scorpions. A: Right paraxial organ. B: Right testis. C: Sperm package. D: Spermatozoa forming the sperm
package. E: Spermatophore deposited in the substrate. F: Mating pair immediately after sperm transfer (the used spermatophore appears in yellow).
Abbreviations: Cm: Cementing material which sticks the spermatophore in the substrate; Fe: female; H: Sperm package’s head; where all the
spermatozoa heads concur; Ma: male; Po: Paraxial organ; S: Spermatophore; Sd: sperm drop; which is transferred to the female; Smtz: spermatozoa;
St: Spermatophore’s trunk; Sv: seminal vesicle; Te: testes.
doi:10.1371/journal.pone.0094135.g001
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Results

Testes Mass, Ejaculate Volume and Sperm Length:
Description and Allometric Values

Testes mass. Male reproductive allocation differed markedly

among the analyzed scorpion species (Table 1). There was an

order of magnitude of difference between the species with the

lowest testes mass and the species with the highest testes mass

values. Testes mass ranged from 1.661.1 mg in Timogenes dorbignyi

to 16.364.5 mg in Brachistosternus pentheri. The average absolute

testes mass among analyzed species was 8.465.0 mg. Two species

showed low absolute testes mass values (both belonging to

Timogenes) and two showed high values (Br. pentheri and B.

bonariensis), the rest had intermediate values. Urophonius brachycentrus,

the species with mating plug, had 3.261.4 mg, twice the mass

found in T. dorbignyi. Timogenes elegans, the biggest species in the

dataset, had really small testes mass compared to species with big

body sizes like Bothriurus bonariensis or Br. pentheri. In proportion to

male’s body size (Gonadosomatic Index, GSI), B. cordubensis and

Br. ferrugineus allocated more in testes mass compared to other

analyzed species, in opposition to what happened in both Timogenes

species which allocated very little in testes mass (see Table 1,

Fig. 1).

The linear logarithmic equation tested was Log10 (Testes mass)

= 22.0901+0.2521*Log10 (Body mass) (Fig. 3 A). This relation-

ship between testes mass and body mass lacked statistical

significance (ltm,lbm, Table 2).

Sperm length. Sperm length varied from 208615 mm to

30263 mm. Urophonius brachycentrus together with B. cordubensis

had the longest spermatozoa in the dataset (Table 1). On the

opposite side, Br. pentheri had the shortest sperm, and the rest of the

species had similar values oscillating from 233 to 269 mm. There

was a significant effect of body mass on sperm length (lsl,lbm,

Table 2). The pendant was negative (b,0) (Fig. 3 B). The

allometric equation found was Sperm length = 212.96*body

mass20.14.

Spermatophore’s volume (Ejaculate volume). Spermato-

phore’s trunk volume varied but not as much as testes mass. The

greatest difference among analyzed species is of about five times,

for example between T. dorbignyi and Br. pentheri (see Table 1). The

linear logarithmic equation tested was Log10 (spermatophore

volume) = 0.72+0.43*Log10 (Body mass) (Fig. 3 C). With those

parameters, the allometric equation was as follows: Testes

mass = 5.22*body mass0.43. However, the relationship between

testes mass and body mass was marginally not significant

(lsv,lbm, Table 2).

Statistical Phylogenetic Analysis on Testes Mass and
Sperm Package Length in Relation to Levels of Polyandry

Models explaining testes mass. Model selection analysis

for testes mass, sperm package length and ejaculate volume

resulted in one best model for each dependent variable (Table 2,

highest wt values). The best-fitting model for testes mass

considered only polyandry as predictor with almost 70% of

chance of being the best model over 22% of the null model, over 3

times better at explaining ltm (Table 2). The phylogenetically

controlled GLS regression analysis showed a positive influence of

polyandry on testes mass (Fig. 3D, Table 2). The lambda value for

this model was significantly closed to 1 (Table 2).Body mass

performed poorly in tested models explaining response variables,

as seen the previous allometric analysis (see Fig. 3A).

Models explaining sperm length. Model selection analysis

on sperm length showed that there is also only one model that best

fit this data. In this case, according to the allometric analysis, the

model incorporated only body mass and had a 46% chance of

being the best model (Table 2). This value was greater than the

Akaike’s weight for the null model (1.5 times bigger). There was a

negative influence of body mass in sperm package length (Fig. 3 B).

Polyandry levels (Fig. 3 E) and Testes mass (both predictors

associated with sperm competition) alone were not good predictors

of sperm length. Nevertheless, the additive models of these

variables with body mass were significant or marginally significant

as shown in Table 2. Nevertheless these two models were not

selected by model selection analysis.

Models explaining spermatophore volume. The best

model for explaining ejaculate volume had body mass and testes

mass as predictors. This model beared an astonishing chance of

Figure 2. Phylogeny and GSI. Phylogeny of species used in the analysis and their respective Gonadosomatic index values.
doi:10.1371/journal.pone.0094135.g002
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being the best model. The Akaike’s weight value was almost 100%.

The relationship between spermatophore volume, both body mass

and testes mass was highly significant with a positive relationship.

Lambda value was not significantly close to 0 or 1. Both

relationships with spermatophore volume were positive (See

Fig. 3 C and F). Although there were other models with significant

values (p,0.05), model selection analysis did not choose them.

Discussion

In this study we have analyzed the relative importance of body

mass and polyandry over testes mass, sperm length and ejaculate

volume, as well as some biological important relationships among

these last three variables. For accomplishing this task, we used

scorpions that represent an ancient sex model. To date, this is the

first analysis of this kind performed on arthropods with indirect

sperm transfer. The addition of a phylogenetically comparative

analysis gives extra support to the findings made. The results are

supported by classic sperm competition theories, and some of the

patterns are found in other organisms closely related to arachnids

as well as distant related groups.

We found that testes mass varied widely among analyzed

species, both in relative (GSI) and absolute values. In some cases,

the difference was of an order of magnitude across species. This

pattern of variation in testes mass has been widely described in

similar analyses in other invertebrates (e.g. [21] (butterflies); [61]

(fruit flies); [66] (fireflies); [67] (bushcrickets); [9], [68] (Beetles)). In

Table S2, we have reviewed some studies that used GSI values for

assessing relative testes mass in insects, which represent a well-

studied group in this subject. We compared these GSI values with

the ones obtained for scorpions. In general, values for scorpions

are low, with Timogenes species showing the lowest values of the

reviewed dataset (less than 1%). Bothriurus cordubensis ranks higher

in the table but far from the colossal values shown by some

bushcrickets (eg. Sepiana sepium or Platycleis affinis), which are almost

3 times bigger than B. cordubensis’ GSI value.

Our results showed that body mass did not influence testes mass.

In some insects, a clear positive relationship between body and

testes was observed (eg. [21], [61]). Nevertheless, Wedell and

Hosken [69] suggest that in fact, there is usually no relationship

between both variables (see also [70], [71]), as we found for

scorpions in the present study. As predicted, we found a clear

positive influence of polyandry (a reliable estimator of sperm

competition risk) over testes mass. The positive effect of sperm

competition on testes mass have been widely demonstrated in

various other taxa (e.g. [21] (butterflies); [25] (anurans); [66]

(fireflies); [67] (bushcrickets); [72] (primates); [73] (bats); [74], [75]

(birds); [76] (ants); [77] (seed beetle)). The results suggest that testes

mass in scorpions would be a reliable predictor of sperm

competition risk as suggested by many studies (e.g. [19], [78]).

In this scenario, sperm would compete numerically following the

fair raffle principle [6], [79], [80]. Increased gonadal investment

would be traduced directly to sperm numbers because testes would

only produce sperm (following what was suggested for insects, see

[81]). The strong positive association between testes mass and

spermatophore volume suggests, indeed, that bigger testes produce

a bigger volume of ejaculate for transferring to the female. At the

moment, we do not know if a greater volume of ejaculate is

traduced directly to an increase in sperm number in scorpions.

Preliminary analyses in seminal vesicle volume for these species,

suggested that sperm volume was positively related to sperm count,

(Vrech, unpublished data).

All analyzed scorpions were polyandrous except for U.

brachycentrus. In this species, females mate only once because males

deposit a very efficient mating plug [44], [48]. The presence of this

mating plug seems to make females unreceptive and/or unattrac-

tive to new males (Romero-Lebrón, Vrech & Peretti, unpublished

data). The mating plug in this species should have appeared in the

past as a strategy to overcome the risk of sperm competition [45].

Sperm competition should have been huge before the appearance

of this strategy. The investment in sperm plug should have favored

the reduction of testes mass over evolutionary time. However,

from a wide evolutionary perspective, the appearance of an

efficient genital plug would be recent in this species [48], (Mattoni

and Peretti unpublished data) without a clear optimization in

gonadal investment yet.

Similarly, both Timogenes species did not show the expected

testes mass inferred by their polyandry levels. Unfortunately, we

do not know why these species show such small testes mass, but we

can speculate there is a phylogenetic component, as both species

belong to the same genus.

Some other possible explanations could be given for this

unexpected result in Timogenes species: a.- Testes could be

nonfunctional during some periods of time or they could stop

producing sperm after the last molt, as happens in some other

arachnids [82], [83]. b.- They could be nearly monandrous in

nature, however they behave as polyandrous in controlled

laboratory essays. c.- Sex ratio could be biased towards males,

although sex ratio in these species are not yet fully evaluated (M.

Nime, unplublished data). The study of physiological testes

function as well as resource allocation influence over sex ratio

(e.g. [84], [85]) in these species could give in the future interesting

Table 1. Body mass, testes mass, spermatophore volume and sperm length for the scorpion species analyzed in this study.

Species Body mass (g) Testes mass (mg) Spermatophore volume (mm3) Sperm length (mm) Polyandry GSI

Timogenes dorbignyi 0.4360.17 1.6061.10 1.27 229.35612.49 2.0 0.37%

Timogenes elegans 1.5560.40 7.4063.70 4.41 240.74616.37 1.5 0.48%

Urophonius brachycentrus 0.1560.03 3.2061.40 1.86 301.3069.10 1.0 2.14%

Brachistosternus pentheri 0.7160.17 16.3064.50 6.23 207.73615.02 3.0 2.30%

Bothriurus rochensis 0.3360.03 7.6064.80 3.37 269.39615.24 2.5 2.33%

Bothriurus bonariensis 0.6160.13 14.6067.00 5.66 233.07612.68 4.0 2.38%

Brachistosternus ferrugineus 0.2760.07 8.4063.60 3.49 233.0468.02 2.5 3.07%

Bothriurus cordubensis 0.1760.01 8.2061.80 3.23 302.3963.44 2.5 4.75%

These values are given as mean 6 standard deviation. Species are ordered by GSI. Polyandry values are the mean number of males a female accepts per mating season
in laboratory trials (see text). Abbreviations: GSI: Gonadosomatic Index.
doi:10.1371/journal.pone.0094135.t001
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insights that could delimit better the interpretation of the data of

this analysis. For example, the use of different evolutionary

strategies on resource allocation for male function either through

the increase of testes mass or other traits. However, for this

purpose new information from field studies on sex ratio is needed.

Sperm Transfer, Ejaculate Volume and Sperm Length
The positive effect of body mass on ejaculate volume could be

related to the size of the spermatophore itself. Bigger species

produce bigger spermatophores with bigger storing capacity. The

results suggest that this character scales negatively with body mass,

as the pendant b is positive but smaller than one [86]. Although,

Figure 3. Relationships between variables of sperm competition in bothriurid scorpions. A: Effect of body mass on testes mass. B: Effect
of body mass on sperm length. C: Effect of body mass on spermatophore’s volume. D: Effect of polyandry on testes mass. E: Effect of polyandry on
sperm length. F: Effect of polyandry on spermatophore’s volume. Abbreviations: Td: Timogenes dorbignyi, Te: Timogenes elegans, Br: Bothriurus
rochensis, Bb: Bothriurus bonariensis, Bc: Bothriurus cordubensis, Brf: Brachistosternus ferrugineus, Brp: Brachistosternus pentheri, Ub: Urophonius
brachycentrus.
doi:10.1371/journal.pone.0094135.g003
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studies show that positive allometry is generally shown in

characters under directional sexual selection, one clear exception

for this pattern is insect genitalia where negative allometry is

usually observed (see [86], reviewed in [87]).

It is important to point out that sperm transfer in scorpions has

distinct characteristics. In contrast to what happens in all other

arthropods usually analyzed under the sperm competition theory,

scorpions transfer their ejaculate using a sclerotized spermato-

phore deposited on soil [1], [48], [88]. The features implied in this

ancient sex model drive to interesting questions at a macroevo-

lutionary level. For example, how sperm competition pressures

shaped the use of an indirect mode of sperm transfer. This

question is particularly important in scorpions, considering its

ancient phylogenetic position. Indeed, it is important to point out

that natural selection promoted the appearance of spermatophores

as a solution to the desiccation problem of some terrestrial

organisms, including scorpions [38], [89], [90]. Nevertheless,

sexual selection via sperm competition is directly involved in the

evolution of direct sperm transfer, passing first through indirect

spermatophore transfer (e.g. scorpions, amblypigids, uropygids)

[5], [42], [91], [92]. In resume, spermatophores were the first

attempt to put the sperm close to the ova. Spermatophores usually

appear in basal systematic position groups, such as scorpions [89],

[93], [94]. They are solitary predators that in general show relative

low density and require more intimate contact compared to other

groups with spermatophores [89], [92]. Spermatophores in

scorpions have a relatively fixed volume [52], and this volume

varies up to a certain maximum value (Vrech, unpublished data).

Therefore, males will face a clear limitation in the ejaculate

volume, a fact that would be relevant in a context of sperm

competition [1], [48]. Interestingly, this could imply that, even

though spermatogenesis is continuous in adulthood [95], [96], the

great majority of the sperm production would not be transferred to

females during the male’s life. Nevertheless, males could produce

several spermatophores during their life [48], [57]. Some

preliminary results suggest that scorpion males can adjust the

volume of sperm deposited in the spermatophore (D. Vrech, C. I.

Mattoni & A. V. Peretti unpublished data), but it is yet unknown if

there is a real mechanism of sperm allocation in scorpions.

The volume of the sperm drop was smaller than the volume of

the whole spermatophore trunk, as preliminary tested in both

Timogenes species (Vrech, unpublished data). Volumes of ejaculated

sperm and spermatophore’s trunk covary, both showing a positive

relationship with testes mass (Vrech unpublished data). This

pattern may suggest that bigger testes would be associated with

bigger ejaculates. This idea has the support of the sperm

competition theory [5], [12] where polyandry promotes bigger

testes in males generating more spermatozoa to prevail in a

numeric type of competition [6].

The influence of sperm competition risk has been widely tested

on spermatozoa length. There is strong support of a positive

influence of sperm competition over sperm length (eg. [21]

(butterflies); [22] (moths); [23], [33] (fishes); [27], [29], [97] (birds);

[32], [98], [99] (mammals); [72] (bats), [100] (Beetle), [101] (fruit

flies); [102] (Coenorabditis elegans)). However, our results showed no

influence of sperm competition risk (measured as the level of

female polyandry and testes mass) on total sperm length. This

result would agree with those published mostly in vertebrates (e.g.

[27], [72], [99], [100]). According to Parker [12], sperm size

should not necessary increase with an increase in the risk of sperm

competition. Indeed, there must be some selective advantage in

increased sperm size. With no advantage, sperm would tend to

remain at a minimum size (due to energetic reasons) independent

of sperm competition influence [33].

Unlike with testes mass, body mass did influenced sperm length.

The negative association found suggests that species with greater

body masses had smaller spermatozoa. Similar association is hard

to find among invertebrates, but in vertebrates, many studies

suggest a positive relationship or no relationship at all (see [21],

[22], [30], [101], [102]). Cummins and Woodall [103] found a

similar pattern in mammals, but their findings were not supported

by posterior analyses [30], [99]. In snakes, Tourmente et al. [26]

found a similar negative association between body mass and

medial piece length, but found no relationship between total

sperm length and body mass. This negative pattern between

body mass and sperm size in scorpions could be partially

explained by the dilution effect that species with great body

volumes usually experiment [104]–[106]. Bearing in mind the

hypothetical occurrence of a trade-off between sperm length

and number, sperm in scorpions could be small and numerous

in bigger species relative to small ones. Females from bigger

species show a relative increase in the volume of the genital tract

where the ejaculate is distributed [107]. In this situation, males

from bigger species should produce a greater amount of smaller

spermatozoa to fill the increased volume of the female genital

tract [108].

In conclusion, the present study shows a variation in testes

mass that was influenced by polyandry but not by body mass.

Body mass positively related to ejaculate volume, and negatively

to sperm length. Ejaculate volume and testes mass were strongly

associated and both increased linearly in the relationship. Some

models were under phylogenetic effects but the great majority

lacked phylogenetic influence. Timogenes species showed dispro-

portionally small testes relative to the expected for their body

mass. Urophonius brachycentrus produces a very effective mating

plug, but testes mass is not as small as would be expected in this

situation, suggesting a very strong sperm competition over

evolutionary time. Sexual selection mechanisms such as sperm

competition are poorly known in scorpions. In the future, studies

with a bigger sample of species are strongly needed. Unfortu-

nately, this is no easy task as species should have a well-known

mating system, and they should be easy to collect, as fresh

material is needed. This last condition is essential as fixed

material is difficult and inexactly to use, contrary to what

happens for example in vertebrates. Besides, sperm concentration

analyses of scorpions are strongly needed to elucidate the real

sperm competition tactics affecting these arachnids. Furthermore,

a detailed analysis of how sperm competition shapes different

components of spermatozoa is also needed. Polyandry levels

should be enhanced with more field observations, as well as

additional knowledge of population parameters such as opera-

tional sex ratio.
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95. Jespersen Å, Hartwick R (1973) Fine structure of spermiogenesis in scorpions

from the family Vejovidae. J Ultrastruct Res 45: 366–383.

96. Alberti G (1983) Fine structure of scorpion spermatozoa (Buthus occitanus;
Buthidae, Scorpiones). J Morphol 177: 205–212.

97. Kleven O, Laskemoen T, Fossøy F, Robertson RJ, Lifjeld JT (2008)

Intraspecific variation in sperm length is negatively related to sperm
competition in passerine birds. Evolution 62: 494–499.

98. Harcourt AH (1991) Sperm competition and the evolution of nonfertilizing

sperm in mammals. Evolution 45: 314–328.

99. Breed WG, Taylor J (2000) Body mass, testes mass, and sperm size in murine
rodents. J Mamm 8(3): 758–768.

100. Gay L, Hosken D, Vasudev R, Tregenza T, Eady P (2009) Sperm competition

and maternal effects differentially influence testis and sperm size in
Callosobruchus maculatus. J Evol Biol 22: 1143–1150.

101. Pitnick S, Markow TA, Spicer GS (1995) Delayed male maturity is a cost of

producing large sperm in Drosophila. Proc Nat Acad Sc 92(23): 10614–10618.

102. Schulte-Hostedde AI, Millar JS (2004) Intraspecific variation of testis size and
sperm length in the yellow-pine chipmunk (Tamias amoenus): implications for

sperm competition and reproductive success. Behav Ecol Sociobiol 55(3): 272–
277.

103. Cummins JM, Woodall PF (1985) On mammalian sperm dimensions. J Reprod

Fertil 75: 153–175.

104. Brody S (1945).Bioenergetics and growth. Reinhold publishing corporation.

105. Peters RH (1983) The ecological implications of body size. Cambridge:
Cambridge University Press. 297 p.

106. Calder WA (1996). Size, function, and life history. Courier Dover Publications.

384 p.

107. Short RV (1981) Sexual selection in man and the great apes. In Short RV,

editor. Reproductive biology of the great apes. New York: Academic Press.

319–341.

108. Gage MJG (1998) Influences of sex, size, and symmetry on ejaculate
expenditure in a moth. Behav Ecol 9(6): 592–597.

Sperm Competition in Neotropical Scorpions

PLOS ONE | www.plosone.org 10 April 2014 | Volume 9 | Issue 4 | e94135

http://www.R-project.org/

