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ABSTRACT The timely and exact diagnosis of prosthetic joint infection (PJI) is cru-
cial for surgical decision-making. Intraoperatively, delivery of the result within an
hour is required. Alpha-defensin lateral immunoassay of joint fluid (JF) is precise for
the intraoperative exclusion of PJI; however, for patients with a limited amount of JF
and/or in cases where the JF is bloody, this test is unhelpful. Important information
is hidden in periprosthetic tissues that may much better reflect the current status of
implant pathology. We therefore investigated the utility of the gene expression pat-
terns of 12 candidate genes (TLR1, -2, -4, -6, and 10, DEFA1, LTF, IL1B, BPI, CRP, IFNG,
and DEFB4A) previously associated with infection for detection of PJI in peripros-
thetic tissues of patients with total joint arthroplasty (TJA) (n � 76) reoperated for
PJI (n � 38) or aseptic failure (n � 38), using the ultrafast quantitative reverse
transcription-PCR (RT-PCR) Xxpress system (BJS Biotechnologies Ltd.). Advanced data-
mining algorithms were applied for data analysis. For PJI, we detected elevated
mRNA expression levels of DEFA1 (P � 0.0001), IL1B (P � 0.0001), LTF (P � 0.0001),
TLR1 (P � 0.02), and BPI (P � 0.01) in comparison to those in tissues from aseptic
cases. A feature selection algorithm revealed that the DEFA1-IL1B-LTF pattern was
the most appropriate for detection/exclusion of PJI, achieving 94.5% sensitivity and
95.7% specificity, with likelihood ratios (LRs) for positive and negative results of 16.3
and 0.06, respectively. Taken together, the results show that DEFA1-IL1B-LTF gene ex-
pression detection by use of ultrafast qRT-PCR linked to an electronic calculator al-
lows detection of patients with a high probability of PJI within 45 min after sam-
pling. Further testing on a larger cohort of patients is needed.

KEYWORDS prosthetic joint infection, gene expression, pseudosynovial tissues,
diagnostics, intraoperative test

Prosthetic joint infection (PJI) is one of the most devastating and costly complica-
tions following total joint arthroplasty (TJA), occurring in 1 to 2% of cases after

primary TJA and up to 7% of cases following revision TJA (1).
The majority of PJIs are easily diagnosed using the traditional diagnostic armamen-

tarium (2). However, there are cases where the diagnosis of PJI lacks the required
accuracy and/or the results of blood and joint fluid tests are unavailable or conflicting.
For some patients, joint fluid for preoperative examinations is not even available. On
the other hand, patients with systemic inflammatory diseases may have elevated
inflammatory markers regardless of the presence or absence of infection (3). Finally, in
some cases, the probability of PJI can increase just after pseudocapsule incision or
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removal of the implant on the basis of the appearance of periprosthetic tissues and/or
joint fluid, regardless of the results of preoperative tests. Taken together, these in-
stances indicate that there is a strong requirement for a diagnostic tool that is exact and
available in a timely manner for the intraoperative exclusion of PJI.

At present, there is evidence of the usefulness of the leukocyte-esterase test and,
especially, the alpha-defensin lateral immunoassay for the intraoperative exclusion of
PJI, both of which deliver results within 10 min (4). However, these tests have well-
known limitations in terms of the required working conditions (e.g., the minimum
amount of joint fluid needed and a problem with blood interference) and the gener-
ation of false-positive and/or false-negative results (5–8). Periprosthetic tissues should
also be considered an important source of diagnostic information. The cells within the
tissue may directly reflect the current status of the infection, e.g., by the production of
host defense antimicrobial peptides and proteins and activation of an innate immune
response. Importantly, pseudosynovial and periprosthetic tissues are easily available at
the beginning of surgery for further analysis; they are now used mainly for routine
culture examination of bacteria (9). Some studies have examined the clinical utility of
frozen sections, with clear limitations (10). Recently, it was reported that gene profiling
of periprosthetic tissues may allow the proposal of novel PJI biomarkers, as shown for
TLR1 (11).

We therefore investigated the expression patterns of 12 candidate genes for detec-
tion of PJI in periprosthetic tissues of patients with TJA. The candidate genes were
selected from promising biomarkers of PJI reported previously for (i) synovial fluid,
namely, DEFA1 (coding for alpha-defensin), LTF (lactotransferrin), CRP (C-reactive pro-
tein), BPI (bactericidal/permeability-increasing protein), IL1B (interleukin 1 beta), DEFB4A
(beta-defensin 4), and IFNG (gamma interferon) (4, 12), and (ii) periprosthetic tissue and
serum, namely, TLR1 (Toll-like receptor 1), TLR2, TLR4, TLR6, and TLR10 (11, 13, 14).
Moreover, we studied whether ultrafast quantitative one-step reverse transcription-PCR
(qRT-PCR) may deliver results within a reasonable time (up to 45 min) after sampling,
thus helping surgeons in decision-making during the operation.

RESULTS
Gene expression profiling. In order to determine PJI-associated gene expression

patterns in periprosthetic tissues, we compared gene expression levels of 12 candidate
molecules (TLR1, -2, -4, -6, and -10, DEFA1, LTF, IL1B, BPI, CRP, IFNG, and DEFB4A)
previously reported as potential biomarkers for detection of PJI in tissues obtained from
patients with TJA during revision surgery.

Among the studied genes, enhanced gene expression of DEFA1 (P � 0.0001), IL1B
(P � 0.0001), LTF (P � 0.0001), TLR1 (P � 0.02), and BPI (P � 0.01) was detected for
patients with clinically proven PJI compared to that for patients with aseptic loosening
(AL) by use of the RotorGene Q system; in addition, high interindividual variability was
detected in the patient subgroups (Fig. 1; Table 1). Gene expression levels of IFNG, CRP,
TLR2, TLR4, TLR6, TLR10, and DEFB4A did not differ between PJI and non-PJI cases (P �

0.05) (Fig. 1).
Utility of ultrafast qRT-PCR. In order to assess the utility of ultrafast qRT-PCR for

detection of infected tissues within a reasonable time, we introduced gene profiling on
the novel qPCR Xxpress instrument. Moreover, gene expression patterns obtained by
use of the RotorGene Q and Xxpress instruments were compared.

The data from the qRT-PCR Xxpress system were comparable to the data from the
RotorGene Q system regarding upregulation/downregulation and significance, but they
differed in their obtained threshold cycle (CT) values (Table 1). A difference was
achieved only for TLR2 gene expression, as the difference between PJI and non-PJI
patients reached significance on the Xxpress instrument but not on the RotorGene Q
instrument. Using one-step RT-PCR, the qRT-PCR data were available within 20 min.
Using the Xxpress instrument, the procedure from sampling to availability of qRT-PCR
data takes less than 45 min (Fig. 2A).
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Search for genes and combinations of genes distinguishing PJI from non-PJI
tissues. In order to find genes or combinations of genes that characterize the group of
patients with clinically proven PJI, we applied a neural network-based feature selection
algorithm. Moreover, we calculated receiver operating characteristic (ROC) curves for
DEFA1, IL1B, LTF, and TLR1 and neural network classification results based on the
selected combination of DEFA1-IL1B-LTF and the top five neural networks.

The neural network-based feature selection algorithm identified DEFA1-IL1B-LTF as
the best combination for characterization of clinically proven PJI. Using this gene
combination, we were able to achieve �81% overall agreement for all enrolled
patients, on average, based on 100 10-fold cross-validated neural networks (Fig. 3).

FIG 1 Relative gene expression levels of studied genes in periprosthetic tissues from PJI and non-PJI patients, as determined with the RotorGene Q system.
Group means are indicated by horizontal bars, and error bars indicate 95% confidence intervals. Only P values for significant differences between groups of
patients are stated (*, P � 0.05; **, P � 0.01; ***, P � 0.001).

TABLE 1 Relative mRNA expression levels of candidate genes in periprosthetic tissues obtained from patients with and without PJIa

Gene

RotorGene Q Xxpress

Mean (95% CI)

P value

Mean (95% CI)

P valuePJI (n � 38) Non-PJI (n � 38) PJI (n � 23) Non-PJI (n � 25)

DEFA1 1.021 (0.001–2.042) 0.035 (0.017–0.053) �0.0001 19.650 (0.278–57.030) 0.057 (0.013–0.102) �0.0001
IL1B 4.361 (0.717–8.006) 0.201 (0.093–0.309) �0.0001 0.637 (0.042–1.585) 0.013 (�0.0001–0.025) 0.0004
LTF 5.599 (0.228–13.710) 0.162 (0.095–0.228) �0.0001 7.606 (0.638–18.380) 0.397 (0.183–0.612) 0.0003
TLR1 1.856 (1.452–2.261) 1.563 (0.970–2.156) 0.019 2.728 (1.313–4.143) 0.927 (0.320–1.535) 0.001
BPI 0.445 (0.039–0.964) 0.041 (0.025–0.057) 0.010 1.524 (0.177–3.559) 0.181 (0.020–0.341) 0.002
IFNG 9.146 (2.438–15.850) 3.690 (2.230–5.150) 0.644 0.954 (0.405–1.503) 1.681 (0.405–2.958) 0.451
TLR2 3.876 (2.276–5.476) 2.005 (1.399–2.610) 0.137 1.680 (0.988–2.373) 0.625 (0.206–1.043) 0.002
TLR4 2.515 (1.817–3.213) 3.060 (2.380–3.740) 0.169 7.549 (4.679–10.420) 5.651 (3.316–7.986) 0.358
CRP 3.912 (1.151–6.673) 5.079 (2.781–7.377) 0.175 NA NA NA
TLR6 4.121 (2.748–5.495) 3.045 (2.387–3.703) 0.983 NA NA NA
TLR10 3.154 (1.504–4.804) 3.164 (2.087–4.242) 0.448 NA NA NA
DEFB4A 12.350 (3.624–21.080) 4.601 (2.397–6.806) 0.537 NA NA NA
aResults are expressed relative to levels of HPRT1 mRNA. 95% CI, 95% confidence interval; NA, not available.
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Importantly, all patients with positive microbiology findings were correctly classified
into the PJI group (100% positive agreement). For the combination of DEFA1-IL1B-LTF,
the observed sensitivity and specificity for the top five neural networks reached 94.5%
and 95.7%, respectively. The likelihood ratios (LRs) for positive and negative results for
the top five neural networks, on average, were 16.3 (95% confidence interval, 15.9 to
16.7) and 0.06 (95% confidence interval, 0.06 to 0.06), respectively (Table 2; Fig. 4).

Even the sole expression of DEFA1 was able to characterize both the PJI and non-PJI
groups of patients, with a sensitivity of 95.7% and a specificity of 79.3% (threshold �

0.046) (Table 2; Fig. 3). A neural network with 10-fold cross-validation showed the high
utility of DEFA1 for separation of PJI cases, achieving 80% overall agreement, on
average, on both instruments (Fig. 3). For IL1B (threshold � 0.005), the sensitivity was
78.1% and the specificity 75.8%; for LTF (threshold � 0.483), these values were 82.8%
and 79.9%, respectively (Table 2; Fig. 3).

Classification based on neural network analysis also showed that expression of TLR1
(Fig. 3) or the TLR1-TLR6-TLR10 combination (Fig. 3) is not usable for classification of PJI
and AL. The overall percent agreement reached 49% for TLR1 and 57% for the
TLR1-TLR6-TLR10 combination; other TLR genes (TLR2, TLR4, TLR6, and TLR10) and even
their combinations did not reach overall agreement levels of �40%. Detection of gene
expression of TLR1 (threshold � 0.616) showed a sensitivity of 90.0% and a specificity
of 66.6% (Table 2; Fig. 3).

Calculator of PJI probability. To identify patients with PJI, we created an electronic
decision tool based on the top five neural networks (Fig. 5). To test the ability of the
trained neural network models to identify PJI, we analyzed additional blinded samples
from clinical settings that were not previously used for the training procedure (Fig. 6).
For the test group of 10 patients, we classified 3 PJI and 7 non-PJI patients correctly
(Table 3). Using this tool, we were able to deliver the data to clinicians for intraoperative
decision-making immediately after obtaining qRT-PCR results (Fig. 2B).

DISCUSSION

In this study, we introduced ultrafast qRT-PCR to detect/exclude PJI in patients with
TJA. The expression of the DEFA1-IL1B-LTF gene combination in periprosthetic tissues
changes the pretest probability of PJI markedly within 45 min after sampling, making
this examination appropriate for intraoperative decision-making. In addition, we de-
veloped a decision support tool for the interpretation of data obtained from expression
profiling.

The timely diagnosis of PJI is crucial for intraoperative decision-making, as treatment
of PJI necessitates unique surgical strategies compared to those for aseptic reoperation,
aiming primarily at eradication of the infecting organisms (15, 16). The majority of

FIG 2 Schema of sample processing from tissue sampling to decision-making, using tissue gene profiling (A) and a diagnostic work-up strategy for exclusion
of PJI (B). SWCC, synovial white cell count.
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infections are easily diagnosed preoperatively by use of more or less traditional
diagnostic tools, and this is followed by appropriate therapy (4). However, for patients
with low-grade PJI or those that appear to have AL, the probability of PJI can
unexpectedly increase intraoperatively, so we need a sensitive and fast diagnostic tool

FIG 3 Networks visualizing the best combinations of genes distinguishing PJI from non-PJI cases, using a neural
network-based feature selection algorithm. The results are shown for gene patterns of DEFA1-IL1B-LTF (A and B),
DEFA1 (C and D), TLR1 (E), and TLR1-TLR6-TLR10 (F) obtained with Xxpress (A and C) and RotorGene Q (B and D to
F) instruments. Network vertices represent individual gene patterns (individual patient records); edges (links)
between the vertices represent similarities of the corresponding patient records, calculated by the Gaussian
function. Colors distinguish the classes as patients with clinically proven PJI (red) and non-PJI patients (green).

TABLE 2 Value of gene expression profiles of periprosthetic tissues obtained with the Xxpress system for diagnosis of PJI, considering
the results for each sample independentlya

Gene(s) tested

Mean % (95% CI)

Sensitivity/positive
percent agreement

Specificity/negative
percent agreement

Positive
predictive value

Negative
predictive value Accuracy LR� LR�

DEFA1 95.7 (95.4–96.0) 79.8 (79.3–80.3) 81.2 (80.8–81.7) 95.3 (95.0–95.6) 87.4 (87.1–87.7) 5.9 (5.6–6.1) 0.05 (0.05–0.06)
IL1B 78.1 (77.6–78.7) 75.8 (75.3–76.4) 74.7 (74.1–75.2) 79.2 (78.7–79.7) 76.9 (76.6–77.3) 3.8 (3.7–3.9) 0.29 (0.28–0.30)
LTF 82.8 (82.3–83.3) 79.9 (79.4–80.4) 79.3 (78.8–79.8) 83.4 (82.9–83.9) 81.3 (81.0–81.6) 5.0 (4.8–5.2) 0.22 (0.21–0.22)
TLR1 90 (89.6–90.4) 66.6 (66.0–67.2) 70.3 (69.7–70.8) 88.3 (87.9–88.8) 77.5 (77.1–77.9) 3.0 (2.9–3.1) 0.15 (0.15–0.16)
DEFA1-IL1B-LTF avg

for NN1 to NN5
94.5 (94.4–94.7) 95.7 (95.5–95.9) 95.0 (94.8–95.2) 95.6 (95.5–95.8) 95.2 (95.1–95.3) 16.3 (15.9–16.7) 0.06 (0.06–0.06)

aLR�, likelihood ratio for a positive result; LR�, likelihood ratio for a negative result; NN, neural network.
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for the rapid and reliable differentiation of true PJI from false-positive results. For this
study, we wondered whether expression profiling of genes previously associated with
infection may help identify PJI in periprosthetic tissue, especially when synovial fluid is
not available but tissues are available. For feature selection and classification of gene
expression data in our study, we used a neural network approach shown to have
excellent properties for the analysis of gene expression patterns (17–20). These mi-
croarray studies proved that a neural network takes into account the intrinsic charac-
teristics of gene expression data, confirms the most informative gene subsets, and
improves the classification accuracy with the best parameters based on data sets. Our
analysis of the expression profiles of candidate genes previously associated with PJI
revealed a high utility of the expression of DEFA1, a gene coding for alpha-defensin, for
distinguishing patients with and without PJI. This observation is in line with the

FIG 4 ROC curves with area under the concentration-time curve (AUC) values for DEFA1, IL1B, LTF, and TLR1 gene profiles (A) and for the top five neural networks
for the DEFA1-IL1B-LTF combination (B).

FIG 5 Representative examples of end-user interface results of the electronic calculator for the DEFA1-
IL1B-LTF gene combination expression data for patients from the test cohort, showing a high probability
of PJI (left) and a low probability of PJI (right).
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evidence for an alpha-defensin test of synovial fluid as a highly sensitive and specific PJI
biomarker. The alpha-defensin test is in excellent accordance with the Musculoskeletal
Infection Society (MSIS) criteria compared to other tests routinely used for the pre-/
intraoperative diagnosis of PJI (culture, erythrocyte sedimentation rate [ESR], CRP level,
synovial white cell count, and leukocyte-esterase test) (21, 22). This antimicrobial
peptide is released mainly by local neutrophils in response to a wide spectrum of
microorganisms, regardless of the organism type, Gram type, species, or virulence of
the organism (23). Importantly, some studies have proven that alpha-defensin testing
maintains its performance for PJI even in the setting of antibiotic administration (22).

Moreover, there is evidence that alpha-defensin testing performs considerably

FIG 6 Algorithm flow chart (laboratory tests, neural networks/feature selection algorithm, and clinical testing) used
in this study.

TABLE 3 Characteristics of a “test group” of patients undergoing revision surgery after TJAa

Patient
ID

Patient
characteristic Preoperative test result Intraoperative test result

MSIS
classificationGender

Primary
diagnosis

CRP concn
in serum
(mg/liter)

IL-6 concn
in serum
(pg/ml)

SWCC
(103 cells/�l)

Neutrophils
in fluid (%)

Lymphocytes
in fluid (%)

CRP concn
in fluid
(mg/liter)

DEFA1-IL1B-LTF
profiling
classification

Confidence
(%)

P1 Male RA 51.8 10.4 75.5 97.5 2.5 20.3 Infection 90 PJI
P2 Male POA 31.7 16.8 34.5 92.0 8.0 NA Infection 60 PJI
P3 Male POA 29.2 11.2 NA NA NA NA Infection 100 PJI
P4 Female PD 7.1 3.3 0.5 31.1 68.9 2.0 No infection 100 Non-PJI
P5 Female POA 0.6 2.2 NA NA NA NA No infection 95 Non-PJI
P6 Female PD 0.3 NA 0.4 54.5 45.5 0.2 No infection 100 Non-PJI
P7 Male NA 16.1 3.2 0.5 53.6 46.4 1.5 No infection 95 Non-PJI
P8 Female POA 2.3 7.4 0.3 53.0 47.0 0.7 No infection 100 Non-PJI
P9 Female POA 3.7 5.6 1.6 27.1 72.9 1.0 No infection 85 Non-PJI
P10 Female POA 6.3 NA 0.5 50.0 42.0 NA No infection 63 Non-PJI
aPOA, primary osteoarthritis; PD, postdysplastic hip arthritis; RA, inflammatory joint disease, rheumatoid arthritis; SWCC, synovial white cell count; NA, not available.
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better when it is combined with the synovial CRP level (21). Additionally, our results
show that the combination of DEFA1 with other genes, such as IL1B, distinguishes PJI
better than DEFA1 alone does. IL1B is a critical mediator of the host’s response to
microbial infections and bacterial clearance (24). Its protein levels in synovial fluid were
also reported to be highly informative for PJI in patients with systemic inflammatory
diseases and preoperative antibiotic treatments (12). Furthermore, LTF possesses anti-
microbial activity and is an important part of the innate defense against bacteria, fungi,
and viruses (25). There is already evidence that LTF, together with other biomarkers
(alpha-defensin, ELA2, BPI, and NGAL), correctly predicts the occurrence of PJI in
synovial fluid (26). In our study, the combination of DEFA1 with CRP did not enhance the
differentiation between patients with PJI and non-PJI patients, probably as a result of
the known nonspecific expression of CRP in other cells (e.g., infiltrating immune cells)
and/or its involvement mainly in the early defense against infections (27).

Importantly, the gene expression levels of DEFA1, IL1B, and LTF were elevated in all
the samples with positive cultures; however, two patients with negative cultures but
classified as having PJI were put into the non-PJI group. We suggest that although the
tissues from these patients fulfilled the PJI criteria, they may have already been in the
late stage of the anti-infective response. Our observation is supported by the fact that
the main producers of DEFA1 and other antimicrobial molecules are short-lived neu-
trophils, the first immune cells to travel to the sites of bacterial, fungal, and viral
infections (28). One may therefore suggest that the tissue gene pattern might already
reflect a (different) late stage of response to PJI, while the synovial fluid may still contain
elevated levels of soluble PJI biomarkers. On the other hand, five (14%) of the samples
without PJI were classified into the PJI group. The enhanced expression of DEFA1-IL1B-
LTF may deliver a different type of information, reflecting an earlier phase of PJI or,
particularly, a low grade of PJI, which may not be detected yet by methods analyzing
synovial fluid or serum. The clinical relevance of these observations and their explana-
tion should be elucidated further.

Next, we analyzed the expression patterns of members of the TLR family and other
genes known to play a crucial role in the innate immune response to invading
pathogens (29). Despite TLR1 being nominated as a potential marker for PJI in peripros-
thetic tissues (11), we did not prove its utility for distinguishing PJI from non-PJI cases.
Additionally, TLR2 and other TLR members nominated by previous studies (11, 13) that
were examined here did not show any predictive value for the detection of PJI in our
patients. The reason may be the involvement of TLRs not only in pathogen recognition
but also in wear particle-induced inflammation and osteolysis (30), which may well limit
their usage as biomarkers of PJI. Despite their antimicrobial and/or antiviral activities,
BPI, DEFB4A, and IFNG did not show utility for the identification of PJI in tissues either.

We believe that gene profiling of periprosthetic tissue might help determine the
true stage of tissue damage, including that induced by pathogen invasion. Although
our exploratory study needs further testing on a larger cohort of patients, we suggest
that tissue expression profiling of a particular set of genes coding for anti-infective
proteins may also be useful for the detection of infection in other tissues. Moreover, our
data also show utility for distinguishing between tissues with acute infection and those
in late resolving and recovery phases. Whether gene profiling of a tissue is suitable for
distinguishing between present and past infections in tissues and, particularly, its
clinical relevance merit further investigation. This might open up a new avenue for
intraoperative diagnostics, including cases before the reimplantation of an implant in
two-stage surgery.

This study has several limitations. We are aware that the infection in our patient
cohort was based on a definition of PJI that did not involve the parameters of synovial
fluid (31). We used a relatively simple histological definition of PJI (32), as the new
histological definition (33) was applied for routine specimen analysis later. Additionally,
for some patients we did not analyze synovial joint fluid because the joint was dry or
synovial joint fluid leaked because of a surgical mistake. Moreover, the current study
did not reflect the clinical and causative heterogeneity of PJI (type of bacteria, acute-
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ness versus chronicity of presentation, and duration of symptoms). Thus, this explor-
atory study showing excellent diagnostic characteristics for the detection of PJI needs
to be validated with larger study cohorts diagnosed according to the MSIS criteria and
with subgroups reflecting the heterogeneity of PJI.

Taken together, our data show that gene profiling of periprosthetic tissues provides
a precise and fast enough method compared to the current detection of PJI biomarkers
in synovial fluid and serum. This may be extremely useful in cases where joint fluid is
not available or is compromised by blood, etc., and in resolving situations with
conflicting data. Our ultrafast approach shows considerable potential as an alternative
intraoperative test for surgeons that is intended for the precise and timely diagnosis
of PJI.

MATERIALS AND METHODS
Study cohort. The study cohort consisted of Czech Caucasian patients undergoing revision surgery

after TJA (n � 76) between 2010 and 2016 at a single institution (Department of Orthopaedics, University
Hospital, Olomouc, Czech Republic); all patients were operated on by a single surgeon. Among the
patients in the cohort, 38 underwent reoperation due to AL and 38 due to PJI. The PJI cases were
classified according to the following definition of PJI (31): (i) presence of a sinus tract communicating
with a joint and/or intra-articular pus; (ii) coincidentally positive results of histological examination (five
or more neutrophils per high-power field [HPF]) and culture of intraoperative samples (�2 cultures
positive for the same microorganism); and (iii) if only intraoperative culture or histological results were
positive, then at least two of the following signs had to be present: high clinical suspicion of infection
(acute onset, fever, erythema, edema, persistent local pain, early prosthetic failure, wound healing
disturbances, etc.), erythrocyte sedimentation rate of �30 mm/h, C-reactive protein level elevated more
than 1.5 times above the laboratory reference value, and positive technetium-99m leukocyte scintigra-
phy. The infections in patients recruited for the test group (n � 10) were based on clinical features
matching the Musculoskeletal Infection Society (MSIS) criteria (34). The enrolled AL patients did not fulfill
the PJI criteria.

Periprosthetic tissue specimens were harvested according to the in-house clinical protocol for
histopathological, culture, and immunological examinations. At least 3 samples (range, 3 to 7) for each
method under study were taken from each patient, using a surgical knife and forceps. Sampling sites
were as follows: (i) inner membrane of a TJA pseudocapsule; (ii) membrane from the bone-implant
interface surrounding the proximal component, if available; and (iii) membrane from the bone-implant
interface surrounding the distal component, if available. Additionally, one or more samples of tissues
with a high suspicion of infection/inflammation were taken from some patients, depending on the
surgeon’s decision. Tissues from the PJI patients were routinely assessed by culture-based analysis of
multiple specimens as described previously (31). For detailed patient characteristics and culture results,
see Table 4.

Written informed consent about the usage of periprosthetic tissues for the purpose of this study was
obtained from each subject, and the local ethics committee approved the study.

One-step RT-PCR. The pseudosynovial tissue samples (0.1 to 1 mg) obtained during revision surgery
were placed immediately in Tri reagent (Sigma-Aldrich, Germany) and used immediately for isolation of
RNA by use of a Direct-zol RNA miniprep kit (Zymo Research, USA) according to the manufacturer’s
recommendations. One-step qRT-PCR was performed in a total volume of 20 �l containing Kapa SYBR
Fast One-Step qRT-PCR mix (Kapa Biosystems, USA), 200 nM (each) gene-specific primers, and 5 �l of RNA
(10 ng/�l; absolute amount, 50 ng). See Table 5 for primer sequences (Integrated DNA Technologies,
USA). qRT-PCR was performed on two systems, i.e., the RotorGene Q (Qiagen, USA) and Xxpress (BJS
Biotechnologies, United Kingdom) systems. Each run included a no-template control, in which RNA
was replaced by water. In detail, for reverse transcription, the sample was held at 42°C for 5 min,
followed by enzyme inactivation at 95°C for 3 min. PCR was then performed for 35 cycles of 95°C for
3 s and 60°C for 20 s. qRT-PCR takes 60 min on the RotorGene Q system and 20 min on the Xxpress
PCR system. The data were normalized to the housekeeping gene HPRT1 (35, 36). A human universal
reference RNA (Stratagene, USA) was used in triplicate as a calibrator, at 12.5 ng/reaction mix,
calculated based on input RNA.

Statistical analysis and feature selection algorithm. Statistical analysis (nonparametric Mann-
Whitney U test) of relative gene expression values was performed using GraphPad Prism 5.01 (GraphPad
Software, La Jolla, CA, USA). ROC curves, sensitivity, specificity, positive predictive value, negative
predictive value, accuracy, and positive/negative likelihood ratios (LRs) for gene expression profiles were
calculated using R software. The threshold averaging method on bootstrapped values was used for
calculation of confidence intervals (37).

For identification of the best combination of genes distinguishing PJI from non-PJI cases, a neural
network-based feature selection algorithm containing the correct class assignment (PJI/non-PJI) for each
record of expression values was used. Neural networks are based on features analogous to those of
human learning. Depending on the learning (training) data, neural networks have the ability to
generalize. This is manifested by the fact that the trained network is able to deduce phenomena that can
be derived in some way, even though they were not (or only to a limited extent) part of learning (38).
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TABLE 4 Patient clinical characteristicsa

Characteristic

Value

Patients with TJA (n � 76)
Patients with TJA, test-blinded data
set (n � 10)

PJI Non-PJI PJI Non-PJI

No. of patients 38 38 3 7
No. of males/females 20/18 9/29 3/0 1/6
No. of patients with TKA/THA 27/11 23/15 2/1 2/5
Interval between index surgery and revision [mo

(range)]
40 (0.4–231) 142 (12–303) 17 (2–40) 159 (48–278)

Patient age at index surgery [yr (range)] 65 (40–83) 57 (26–78) 63 (60–70) 57 (43–67)
Patient age at revision [yr (range)] 69 (43–84) 69 (31–89) 65 (60–73) 71 (55–83)

No. of patients with primary diagnosis of:
Primary osteoarthritis 31 27 2 5
Posttraumatic arthritis 2 2 0 0
Postdysplastic arthritis 2 9 0 2
Avascular necrosis 2 0 0 0
Inflammatory disease 1 0 1 0

No. of patients with indicated type of infection
Based on time course

Early postoperative 7 1
Delayed infection 5 1
Chronic infection 13 1

Based on clinical manifestation
Evident PJI 31 3
Low-grade PJI 7 0

Based on pathogenesis
Surgery related 27 2
Hematogenous 5 1
Infection from surrounding environment 5 0
Recurrent infection 1 0

No. of patients who were culture positive/negative/NA 25/13/0 0/38/0 3/0/0 0/6/1

No. of patients with positive culture for infectious agent
Staphylococcus aureus 10 1
Coagulase-negative Staphylococcus 4 2
Streptococcus sp. 6 0
Pseudomonas aeruginosa 3 0
Mycobacterium tuberculosis 1 0
Klebsiella pneumoniae 1 0

No. of patients with histology results (yes/no) 29/9 38/0 3/0 7/0
Noninfectious 11 30 1 6
Infectious (�5 neutrophils per HPF) 18 2 2 0
Undetermined 0 6 0 1

SWCC (103 cells/�l) 54.6 (0.1–267.9)f 1.4 (0.2–10.1)d 55.0 (34.5–75.5)b 0.6 (0.3–1.6)b

Neutrophils in synovial fluid [% (95% CI)] 72.5 (0.6–98.0)g 43.7 (18.0–85.0)h 94.8 (92.0–97.5)b 44.9 (27.1–54.5)b

Lymphocytes in synovial fluid [% (95% CI)] 19.0 (0.3–96.0)g 42.2 (0.06–88.0)h 5.3 (2.5–8.0)b 53.8 (42.0–72.9)b

CRP concn in serum [mg/liter (95% CI)] 105.0 (4.0–371.7)e 4.5 (0.1–17.0)g 37.6 (29.2–51.8)b 5.2 (0.3–16.1)
IL-6 concn in serum [pg/ml (95% CI)] 353.8 (12.6–3,466.0)g 22.3 (10.6–43.2)i 12.8 (29.2–51.8)b 4.3 (2.2–7.4)c

aThe PJI cases were classified as described previously (31); patients enrolled as the “test group” were classified according to the MSIS criteria (34). The types of PJI
based on the time course were defined as reported previously (41). Based on clinical evidence, the patients were classified into evident PJI cases, with clinically
evident sepsis in terms of clinical manifestation and laboratory tests, and those who had rather hidden PJI (called low-grade PJI), usually with a late onset, less
specific symptoms, and lower levels of serum biomarkers. The origin of infection (surgical contamination, hematogenous infection, infection from the surrounding
environment, or recurrent infection) was classified as described previously (42). Index surgery, the surgery predating reoperation; TKA, total knee arthroplasty; THA,
total hip arthroplasty; SWCC, synovial white cell count; NA, not applicable/not available; HPF, high-power field (magnification, �400).

bData were missing for 1 patient.
cData were missing for 2 patients.
dData were missing for 4 patients.
eData were missing for 7 patients.
fData were missing for 10 patients.
gData were missing for 13 patients.
hData were missing for 15 patients.
iData were missing for 25 patients.
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For visualization of the data set, a transformation of data to the network (graph) was applied.
Network vertices represent individual patient records (vectors of gene expression values); edges
(links) between the vertices represent the similarities of the corresponding records based on the
Gaussian function. The edges were chosen to link the nearest neighbors (vertices having the highest
similarities). The number of the nearest neighbors for each vertex corresponds to vertex represen-
tativeness (39).

Classification of patients by the artificial neural network. The artificial neural network (Neuralnet
package [https://cran.r-project.org/package�neuralnet] from R software) was used to find combinations
of attributes (i.e., genes) having a high ability to classify patients into two classes (PJI and non-PJI). For
all possible combinations of attributes and their 10-fold cross-validations (40), neural networks were
trained by using learning data on two hidden layers (13 and 9 neurons), with a backpropagation
algorithm and a logistic activation function. For learning and testing, 90% (68 of 76 patients) and 10%
(8 of 76 patients) of patients were used for each network at each step of the cross-validation. Only neural
networks with a classification error of �20% were then selected. From the corresponding combinations,
three top-ranked (based on their P values) and most-often-occurring genes, DEFA1, IL1B, and LTF, were
selected for classification.

In the next step, 76 patients were used, and 100 neural networks were trained for the selected
DEFA1-IL1B-LTF gene combination. For the learning of each of 100 networks, 70% of randomly
selected patients (53 of 76 patients) were chosen, and the remaining 30% (23 of 76 patients) were
used for testing. Because of the random initialization of the network before the start of learning and
the different learning and testing sets, each network provided slightly different results for classifi-
cation. From the total of 100 networks, the five with the smallest classification errors (with the lowest
mean square error values) were selected for further use in the electronic calculator. A flow chart of
the process is documented in Fig. 6.

Infection calculator application. The infection calculator enables one to insert DEFA1, IL1B, and LTF
expression values into a small MS Windows application to show the patient’s probability of PJI. The
classification algorithm is included in the R script and uses the Neuralnet package and the top five fully
trained neural networks. Results from the calculator are presented to the end user by two indicators
(green-red) for (i) patient classification (infection/no infection) and (ii) the confidence interval, based on
values resulting from the obtained classification.
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