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Abstract

The loss of functional cells through immunological rejection after transplantation reduces

the efficacy of regenerative therapies for cardiac failure that use allogeneic induced pluripo-

tent stem cell-derived cardiomyocytes (iPSC-CMs). Recently, mixed-chimera mice with

donor-specific immunotolerance have been established using the RGI-2001 (liposomal for-

mulation of α-galactosyl ceramide) ligand, which activates invariant natural killer T (iNKT)

cells. The present study aimed to investigate whether mixed chimerism, established using

RGI-2001, prolongs graft survival in allogeneic iPSC-CM transplantation. Mixed-chimera

mice were established via combinatorial treatment with RGI-2001 and anti-CD154 antibod-

ies in an irradiated murine bone marrow transplant model. Luciferase-expressing allogeneic

iPSC-CMs were transplanted into mixed-chimera and untreated mice, followed by in vivo

imaging. RGI-2001 enhanced iNKT cell activation in mice, and mixed chimerism was suc-

cessfully established. In vivo imaging revealed that while the allografts were completely

obliterated within 2 weeks when transplanted to untreated mice, their survivals were not

affected in the mixed-chimera mice. Furthermore, numerous CD3+ cells infiltrated allografts

in untreated mice, but fewer CD3+ cells were present in mixed-chimera mice. We conclude

that mixed-chimera mice established using RGI-2001 showed prolonged graft survival after

allogeneic iPSC-CM transplantation. This donor-specific immunotolerance might increase

the efficacy of regenerative therapies for heart failure with allogeneic iPSC-CMs.

Introduction

Despite the development of therapeutic options, including left ventricular assist devices

and heart transplantation, severe heart failure afflicts many people because of its inherent
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complications and the shortage of prospective donors [1, 2]. Regenerative medicine

using allogeneic induced pluripotent stem cell (iPSC)-derived cardiomyocytes

(iPSC-CMs) is being developed as an alternative treatment option [3–5]. Previously

reported therapies using allogeneic iPSC-CMs showed that recipient hearts benefit

mainly from the paracrine effect caused by the cytokines from the transplanted alloge-

neic iPSC-CMs. However, to achieve the ultimate goal of cardiomyogenesis, engraftment

of a large number of allogeneic iPSC-CMs at the transplanted site is required. Therefore,

it is necessary to overcome the immune rejection that occurs after allogeneic iPSC-CM

transplantation [6, 7]. Combinatorial treatment with RGI-2001 (liposomal formulation

of α-galactosyl ceramide), the ligand activating invariant natural killer T (iNKT) cells,

and an anti-CD154 antibody in a sub-lethally irradiated murine bone marrow transplant

model reportedly facilitates the establishment of mixed hematopoietic chimerism

through the expansion of in vivo regulatory T cells (Tregs) [8–10]. Cardiac allografts

were subsequently accepted by mixed-chimera mice in a donor-specific manner without

immunosuppressive agents [11, 12]. Therefore, we hypothesized that allogeneic

iPSC-CM transplants could be engrafted in mixed-chimera mice without the need for

immunosuppressive agents. The present study aimed to investigate whether mixed chi-

merism, established through the method described, reduces immune rejection after allo-

geneic iPSC-CM transplantation in mice.

Materials and methods

The mouse model

Seven-week-old BALB/c (H-2Kd) and C57BL/6 (H-2Kb) mice were purchased from CLEA

Japan (Tokyo, Japan). Animal care procedures were carried out following the “Guide for the

Care and Use of Laboratory Animals” (National Institutes of Health publication). Experimen-

tal protocols were approved by the Ethics Review Committee for Animal Experimentation of

Osaka University Graduate School of Medicine (reference no. 25-045-053). Mice were

humanely euthanized by intravenous potassium chloride injection under full anesthesia after

the required experiments.

RGI-2001

RGI-2001 (liposomal formulation of α-galactosyl ceramide: NCT04014790) was prepared in

collaboration with REGiMMUNE (Tokyo, Japan).

Activation of iNKT cells

In total, 10 μg/kg RGI-2001 was intravenously administered to BALB/c (H-2Kd) mice, and

flow cytometry was performed on murine splenocytes to examine iNKT cell activation.

Induction of hematopoietic chimerism

Mixed chimerism was established in BALB/c mice, as previously reported [12, 13]. Briefly,

BALB/c mice received 3 Gy of non-myeloablative whole-body irradiation 3–4 h before the

intravenous administration of 2.0 × 107 whole bone marrow cells derived from fully allogeneic

C57BL/6 (H-2Kb) mice. Thereafter, the recipient BALB/c mice were treated with a combina-

tion of intravenous 10 μg/kg RGI-2001 and intraperitoneal 0.5 mg anti-CD154 antibody

(MR1; BioXcell, West Lebanon, NH, USA).
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Flow cytometry

Splenocytes were harvested from each mouse, and peripheral blood mononuclear cells

(PBMCs) were harvested from the whole blood of four mice in each group. Thereafter, the

cells were incubated with a mixture of anti-CD3 antibody (100235; BioLegend, San Diego, CA,

USA), anti-CD1d tetramer (TS-MCD-1; MBL, Nagoya, Japan), and aqueous α-GalCer (Funa-

koshi Co., Ltd., Tokyo, Japan), or a mixture of anti-H-2Kb antibody (116518; BioLegend) and

anti-H-2Kd antibody (116606; BioLegend) for 30 min. After incubation with the secondary

antibody at ambient temperature for 30 min, the labeled cells were assayed using a FACS

Canto II system (Becton Dickinson, Franklin Lakes, NJ, USA).

Cardiomyogenic differentiation of murine iPSCs in vitro
Luciferase-murine iPSCs (959A2-1-6), generated from C57BL/6 murine embryonic fibro-

blasts, were cultured in the absence of serum and feeder cells, using ESGRO Complete PLUS

Clonal Grade Medium (MilliporeSigma, Burlington, MA, USA). The cardiomyogenic differen-

tiation of iPSCs was carried out as previously described, with slight modifications, followed by

purification with glucose-free medium supplemented with lactic acid. Then, iPSCs (3 × 103

cells) were resuspended in 100-μL aliquots of differentiation medium [DM; Dulbecco’s modi-

fied Eagle’s medium (DMEM; Nacalai Tesque, Kyoto, Japan) supplemented with 15% fetal

bovine serum (Biofill, Melbourne, VIC, Australia), 100 mmol/L non-essential amino acids

(NEAA; Thermo Fisher Scientific, Waltham, MA, USA), 2 mmol/L L-glutamine (Thermo

Fisher Scientific), and 0.1 mmol/L 2-mercaptoethanol (Thermo Fisher Scientific)] containing

0.2 mmol/L 6-bromoindirubin-30-oxime (BIO; a glycogen synthase kinase-3β inhibitor, to

activate the Wnt signaling pathway) (MilliporeSigma), and cultured in 96-well Corning Costar

Ultra-Low attachment multiwell plates (MilliporeSigma) for 3 days. On day 3, an additional

100 μL DM without BIO was added to each well. On day 5, individual embryoid bodies (EBs)

were transferred to 100-mm gelatin-coated dishes (250 EBs per dish). On days 6, 7, 10, 11, 14,

and 15, the medium was exchanged for serum-free modified Eagle’s medium (MEM; Thermo

Fisher Scientific) supplemented with insulin transferrin selenium X (Thermo Fisher Scien-

tific). On days 8, 9, 12, and 13, the medium was exchanged with glucose-free DMEM (no glu-

cose, no pyruvate; Thermo Fisher Scientific) supplemented with 4 mmol/L lactic acid

(FUJIFILM Wako Pure Chemical Corporation, Osaka, Japan) to purify cardiomyocytes. On

day 16, the contracting cell clusters were dissociated, seeded on thermoresponsive 6-well plates

(5 × 106 CMs/well; Upcell; CellSeed, Tokyo, Japan), and incubated at 37˚C for 2 days. They

were then incubated at ambient temperature until the cells spontaneously detached to form

scaffold-free cell sheets [14, 15].

Cell-sheet transplantation

Luciferase transgenic iPSC-CM sheets were subcutaneously transplanted into the dorsa of

untreated normal BALB/c mice or mixed-chimera BALB/c mice under general anesthesia via

isoflurane inhalation 2 weeks after the establishment of mixed-chimera mice.

In vivo imaging system

Bioluminescent images were acquired using an in vivo imaging system (Perkin Elmer, Wal-

tham, MA, USA) on post-operative days 1, 7, 14, (untreated normal BALB/c mice: n = 16,

mixed-chimera BALB/c mice: n = 24) and 21 (untreated normal BALB/c mice: n = 8, mixed-

chimera BALB/c mice: n = 9). Animals were anesthetized with 2% isoflurane gas in oxygen,

and 150 mg/kg D-luciferin (Summit Pharmaceuticals International Corporation, Tokyo,
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Japan) was intraperitoneally administered. Images were acquired 10 min after injection at the

peak of the bioluminescence signal. Images were quantified based on regions of interest over

the transplanted region, with data expressed as photon flux (p/s). Percentages of biolumines-

cent signals relative to those measured 1 day after transplantation were determined to assess

graft survival.

To verify the positive correlation between the number of iPSC-CMs and luminescence

intensity, we incubated iPSC-CMs for 24 h in 96-well plates containing DMEM and 15% fetal

bovine serum and assayed them using a luciferase assay system (Promega Corporation,

Madison, WI, USA) on a Synergy HT microplate reader equipped with an injector and with

time-resolved fluorescence capability (BioTek Instruments, Inc., Winooski, VT, USA).

Immunohistochemistry

Dissociated single cells were fixed with 4% paraformaldehyde and labeled with primary anti-

alpha-actinin antibody (A7732; MilliporeSigma), followed by incubation with fluorescence-

conjugated secondary antibodies, and counterstained with 40,6-diamidino-2-phenylindole

(DAPI; Vector Laboratories, Burlingame, CA, USA). Subcutaneous tissues were collected at

day 7 and 21 after transplantation. Harvested tissues around the transplanted site were fixed

with 10% buffered formalin, embedded in paraffin, sectioned, and labeled with primary anti-

CD3 antibody (B355.1(RIV-9); Abcam, Cambridge, UK), followed by color development with

3,30-diaminobenzidine. Harvested tissue were also utilized for hematoxylin and eosin staining.

The images of multiple locations in the transplant site were taken using a Biorevo BZ-9000

(Keyence, Osaka, Japan). The percentages of stained area were analyzed by ImageJ (National

Institutes of Health, Bethesda, MD, USA).

Statistical analysis

Data were presented as mean ± standard error for continuous variables. Continuous variables

were examined using the unpaired Student’s t-test. Spearman’s rank correlation was used to

compare the relationship between the cell number and luminescence intensity. Statistical anal-

yses were performed using JMP113 (SAS Institute Inc., Cary, NC, USA). Statistical signifi-

cance was defined as P< 0.05.

Results

Effect of RGI-2001 administration

RGI-2001 was intravenously administered at 10 μg/kg to BALB/c (H-2Kd) mice, and flow

cytometry of murine splenocytes was performed to examine iNKT cell activation. The propor-

tion of CD3+ and CD1d tetramer-positive cells, indicating iNKT cells, in the splenocytes of

BALB/c mice (4.2% ± 0.8%) was increased upon intravenous administration of RGI-2001 com-

pared to that in untreated normal BALB/c mice (0.5% ± 0.0%, P = 0.0034) (Fig 1A and 1B).

Analysis of cells harvested from mixed-chimera mice

Mixed-chimera BALB/c mice were induced as previously reported [12, 13]. Splenocytes and

PBMCs were harvested and examined via flow cytometry using anti-H-2Kb and anti-H-2Kd

antibodies for chimerism analysis. Flow cytometry revealed that after 2 weeks, mixed-chimera

BALB/c mice harbored both H-2Kd-positive cells and H-2Kb-positive splenocytes (H-2Kd;

62% ± 16%, H-2Kb; 38% ± 16%) (Fig 1C), as well as PBMCs (H-2Kd; 75%, H-2Kb; 25%), while

untreated BALB/c mice or donor C57BL/6 mice only harbored H-2Kd- or H-2Kb-positive

cells, respectively (Fig 1D and 1E).
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Fig 1. Flow cytometry. (A) Splenocytes were harvested from normal untreated mice or mice intravenously administered with RGI-2001 (liposomal formulation of α-

galactosyl ceramide), followed by flow cytometry with a mixture of anti-CD3 antibodies, anti-CD1d tetramer, and aqueous α-GalCer. Representative data in each

group are shown. (B) The percentages of invariant natural killer T (iNKT) cells in the splenocytes of mice intravenously administered with RGI-2001 versus the
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Bioluminescence analysis resulted in extended graft survival in mixed-

chimera mice

Luciferase-expressing murine iPSCs (959A2-1-6) generated from C57BL/6 murine embryonic

fibroblasts were cultured, and murine iPSCs were subjected to cardiomyogenic differentiation.

Cell sheets comprising 3.0 × 106 iPSC-CMs/sheet were prepared as previously described (Fig

2A) [14, 15]. The differentiated cardiomyocytes were positive for alpha-actinin (Fig 2B), and

in vitro bioluminescence imaging analysis of iPSC-CMs revealed a linear relationship between

the cell number and the bioluminescence signal (ρ = 0.9827, P< 0.0001), validating the use of

this method to quantify luciferase-expressing iPSC-CMs (Fig 2C). Luciferase transgenic

iPSC-CM sheets were subcutaneously transplanted into the dorsa of untreated normal BALB/c

mice or mixed-chimera BALB/c mice 2 weeks after the establishment of mixed-chimera mice

(Fig 2D).

Bioluminescent images were acquired using an in vivo imaging system (Perkin Elmer) with

intraperitoneal injection of 150 mg/kg D-luciferin (Summit Pharmaceuticals International

Corporation) on post-operative days 1, 7, 14, and 21 (Fig 3A). Percentages of bioluminescent

signals relative to those on day 1 post transplantation were determined to assess graft survival.

In vivo imaging revealed that the grafts were obliterated 2 weeks post transplantation in the

untreated BALB/c mice (day 7; 48% ± 19%, day 14; 2% ± 1%, day 21; 0% ± 0%); however, grafts

were retained for�3 weeks in mixed-chimera BALB/c mice (day 7; 81% ± 23%, P = 0.3382,

day 14; 1029% ± 380%, P = 0.0292, day 21; 6210% ± 1831%, P = 0.0433) (Fig 3B), indicating

that mixed-chimera induction suppresses immune rejection in allogeneic transplantation.

Histological analysis demonstrated a lower number of CD3+ cells in mixed-

chimera mice

To assess the immunological rejection of transplanted iPSC-CMs, we histologically evaluated

subcutaneously transplanted iPSC-CMs on days 7 and 21 post transplantation. With hematox-

ylin and eosin staining, the transplanted sheets were observed to begin to form teratomas in

subcutaneous tissues in both groups on day 7. However, larger teratomas formation was

observed in mixed-chimera BALB/c mice but not in untreated BALB/c mice on day 21, consis-

tent with the results of bioluminescence analysis (Fig 4A). On day 7, numerous CD3+ cells

were observed at the site of transplantation in the untreated BALB/c mice, while mixed-chi-

mera BALB/c mice displayed a lower number of CD3+ cells at the site of transplantation

(untreated 52 ± 3%, mixed chimera 29 ± 4%, P = 0.0039) (Fig 4B and 4C), indicating the sup-

pression of immunoreactivity against the transplanted iPSC-CMs in mixed-chimera BALB/c

mice.

Discussion

To induce sufficient cardiomyogenesis using allogeneic iPSC-CMs, overcoming the immune

rejection that can occur after allogeneic iPSC-CM transplantation is one of the most important

issues. We successfully generated luciferase-expressing iPSC-CMs and mixed-chimera mice

and then tested graft survival after the subcutaneous transplantation of allogeneic iPSC-CMs.

The survival rate of the transplanted allogeneic iPSC-CMs in the mixed-chimera mice was not

normal untreated mice are shown. (C) Splenocytes and peripheral blood mononuclear cells (PBMCs) were harvested from donor C57BL/6 mice, normal untreated

BALB/c mice, or mixed-chimera BALB/c mice and analyzed using flow cytometry with a mixture of anti-H-2Kd and anti-H-2Kb antibodies. Representative splenocyte

data in each group are shown. (D) The percentages of H-2Kb-positive donor splenocytes of donor C57BL/6, untreated BALB/c, and mixed-chimera BALB/c mice. (E)

The average percentages of H-2Kb-positive PBMCs of donor C57BL/6 mice, normal untreated BALB/c mice, and mixed-chimera BALB/c mice. Student’s t-test was

performed, and the results are depicted as mean ± SEM. ��P< 0.01.

https://doi.org/10.1371/journal.pone.0264317.g001
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reduced even 3 weeks after transplantation, although the grafts were completely eliminated 2

weeks after transplantation in the untreated normal mice. In addition, the immunoreaction

with CD3+ cells at the site of transplantation decreased in the mixed-chimera mice compared

to the untreated mice.

Although major histocompatibility complex (MHC)-matching allogeneic iPSC-CMs trans-

plantation on the surface of an ischemic heart reportedly reduced immune rejection in a non-

human primate model, the immunosuppressive agents used for allogeneic cardiac transplanta-

tion in the clinical setting were insufficient for the graft to survive for more than 6 months

even in the MHC-matching transplantation [16]. Co-transplantation of other cells that had

Fig 2. Experimental flow. (A) Cardiomyogenic differentiation protocol. (B) Immunocytochemistry for alpha-actinin (green) and DAPI (blue) in induced pluripotent

stem cell (iPSC)-derived cardiomyocytes (iPSC-CMs). Scale bar, 20 μm. (C) Positive correlation between the number of iPSC-CMs and bioluminescence (ρ = 0.9827,

P< 0.0001). (D) Transplantation scheme of luciferase-expressing murine iPSC-CM sheets derived from C57BL/6 mice into untreated normal BALB/c or mixed-chimera

BALB/c mice.

https://doi.org/10.1371/journal.pone.0264317.g002
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shown immunosuppressive effects through Tregs, such as vasculogenically conditioned

PBMCs or mesenchymal stem cells, reportedly prolonged graft survival after allogeneic

Fig 3. In vivo imaging of bioluminescence. (A) Representative images of luciferase transgenic allogeneic induced pluripotent stem cell-derived cardiomyocyte

(iPSC-CM) sheets transplanted in normal untreated BALB/c mice or mixed-chimera BALB/c mice, obtained through in vivo imaging on days 1, 7, 14, and 21 post

transplantation. (B) Percentages of the bioluminescence signal on days 7, 14, and 21 compared to those on day 1 post transplantation in normal untreated BALB/c mice

or mixed-chimera BALB/c mice. Student’s t-test was performed, and the results are presented as mean ± SEM. �P< 0.05.

https://doi.org/10.1371/journal.pone.0264317.g003

Fig 4. Histochemical and immunohistochemical staining of tissue sections. (A) Representative images showing hematoxylin and eosin staining of tissue sections from

normal untreated BALB/c mice (top) or mixed-chimera BALB/c mice (bottom) 7 days (left) and 21 days (rignt) post transplantation. Dotted lines indicate surviving

induced pluripotent stem cell-derived cardiomyocyte (iPSC-CM) sheets or transplanted site. Scale bar, 300 μm. (B) Representative immunohistochemical staining images

using an anti-CD3 antibody for normal untreated BALB/c mice (top) or mixed-chimera BALB/c mice (bottom) 7 days post transplantation. Scale bar: 100 μm. (C) The

percentages of stained area for CD3 in untreated BALB/c and mixed-chimera BALB/c mice. Student’s t-test was performed, and the results are depicted as mean ± SEM.
��P< 0.01.

https://doi.org/10.1371/journal.pone.0264317.g004
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iPSC-CM transplantation in mice [17, 18]. However, the engraftment of the transplanted cells

was hardly observed 2 weeks after allogeneic iPSC-CM transplantation, shown in studies using

vasculogenically conditioned PBMCs and mesenchymal stem cells [17, 18].

Immunosuppressants in clinical use suppress T-cell activation and B-cell differentiation by

inhibiting the transcription of IL-2 or downstream signaling of the IL-2 receptor or suppress-

ing the proliferation of lymphocytes by inhibiting DNA synthesis, which leads to nonspecific

immunosuppression rather than donor-specific immunosuppression [19–21]. Nonspecific

immunosuppression might cause side effects such as susceptibility to infection and malignant

tumors [22–25]. However, the mixed-chimeric mice established herein showed a donor-spe-

cific immunosuppressive effect, which would have a lower risk of infection and malignancy

compared to a nonspecific one [12].

These mixed-chimera mice were established using RGI-2001 and anti-CD154 antibodies in

an irradiated murine bone marrow transplant model. RGI-2001 activated iNKT cells, which

are innate lymphocytes that produce a variety of cytokines and bridge the innate and adaptive

immune systems [26] and induce the proliferation of CD4+CD25+Foxp3- preTregs, which dif-

ferentiate into CD4+CD25+Foxp3+ Tregs upon IL-2 stimulation [27]. This is consistent with

previous reports stating that the use of a calcineurin inhibitor, which inhibits IL-2 transcrip-

tion, failed to induce Treg expansion [28].

The expansion of Tregs and donor-derived dendritic cells in the recipient thymus was

accompanied by a sequential clonal deletion in the donor-reactive CD8+ T cells secreting IFN-

g, which led to the engraftment of donor bone marrow cells [13]. The transplantation of donor

splenocytes instead of bone marrow cells fails to expand Tregs, depletes donor-reactive CD8+

T cells, and prolong graft survival [29]. This indicates that donor bone marrow cells are

required for further expansion of Tregs and are indispensable for the establishment of mixed-

chimera mice. Although the co-transplantation of donor splenic T cells reduced the number of

bone marrow cells down to one-fourth, the requirement of harvesting donor bone morrow

cells makes it difficult to apply this model for human allogeneic iPSC-CMs transplantation

[30]. The identification of the responsible cell type in bone marrow cells for the establishment

of mixed-chimera mice and its differentiation from iPSCs could help induce mixed-chimera

mice without transplantation of donor bone marrow cells, which would be clinically accept-

able. This method would be applicable for allogeneic iPSC-CMs, as well as all other allogeneic

iPSC-based regenerative therapies, inducing donor-specific immunotolerance.

In this study, the allogeneic iPSC-CM sheets were transplanted into the subcutaneous space

of non-ischemic mice instead of onto the heart of disease model, which is one of the limita-

tions of this study because immune reactions may be altered by morbidities or different trans-

plantation sites. Since undifferentiated cells in iPSC-CMs were not eliminated herein,

transplanted cells induced tumorigenesis, resulting in teratomas formation, which was sup-

ported by the previous study [31]. Undifferentiated cells in human iPSC-CMs were previously

completely eliminated, such that human iPSC-CMs transplanted in NOD/Shi-scid IL2Rγnull

mice did not result in tumorigenesis [31]. Therefore, further studies using complete elimina-

tion of undifferentiated cells prior to transplantation would be required to definitively demon-

strate the donor-specific immunotolerance in this mixed chimerism.

Conclusions

In conclusion, mixed chimerism, induced via iNKT cell activation with RGI-2001, prolonged

graft survival after allogeneic iPSC-CM transplantation. This donor-specific immunotolerance

might potentially shed light on the immune rejection problem after allogeneic iPSC-based

therapy.
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