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Purpose: To evaluate the performance of a deep learning algorithm in the detection of
referral-warranteddiabetic retinopathy (RDR) on low-resolution fundus images acquired
with a smartphone and indirect ophthalmoscope lens adapter.

Methods: An automated deep learning algorithm trained on 92,364 traditional fundus
camera images was tested on a dataset of smartphone fundus images from 103 eyes
acquired from two previously published studies. Images were extracted from live video
screenshots from fundus examinations using a commercially available lens adapter and
exported as a screenshot from live video clips filmed at 1080p resolution. Each image
was graded twice by a board-certified ophthalmologist and compared to the output of
the algorithm, which classified each image as having RDR (moderate nonproliferative
DR or worse) or no RDR.

Results: In spite of the presence of multiple artifacts (lens glare, lens particu-
lates/smudging, user handsover theobjective lens) and low-resolution images achieved
by users of various levels of medical training, the algorithm achieved a 0.89 (95% confi-
dence interval [CI] 0.83–0.95) area under the curve with an 89% sensitivity (95% CI
81%–100%) and 83% specificity (95% CI 77%–89%) for detecting RDR onmobile phone
acquired fundus photos.

Conclusions:The fullydata-drivenartificial intelligence-basedgradingalgorithmherein
can be used to screen fundus photos taken frommobile devices and identify with high
reliability which cases should be referred to an ophthalmologist for further evaluation
and treatment.

Translational Relevance: The implementation of this algorithm on a global basis could
drastically reduce the rate of vision loss attributed to DR.

Introduction

The rising prevalence of diabetes mellitus globally,
particularly within resource-limited low- and middle-
income countries, is of great concern.1,2 There were
an estimated 451 million people living with diabetes
in 2017 with an estimated expenditure of approxi-
mately $850 billion USD.3 The prevalence is expected
to increase to 693 million by 2045.3 With the increasing
prevalence of diabetes and increasing life-expectancy

of diabetics, the prevalence of diabetic retinopathy
(DR) is also expected to rise to 191 million individu-
als by 2030.4 DR is a serious threat to the quality of
life of diabetics, accounting for approximately 2.6% of
blindness worldwide in 2010.5 This surge in prevalence
will continue to incite a need for greater and greater
numbers of DR screening examinations, increasing
visits to optometrists and ophthalmologists alike.

Screening is critical to prevent vision loss caused by
DR. Unfortunately, many at risk for diabetic retinopa-
thy do not undergo regular screening either because of
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poor infrastructure for detection, limited availability
of eye care specialists, or cost.6,7 This poor access to
health care may result in vision loss as the presenting
sign of diabetes mellitus.

In an attempt to address the increasing volume of
patients requiring screening, researchers have turned
to artificial intelligence (AI) and more specifically deep
learning (DL) with convolutional neural networks to
automate the diagnosis of referral-warranted diabetic
retinopathy (RDR). 8,9 DL is an AI technique
that learns through training from large volumes
of data. It has been used recently in identifying
risk factors for cardiovascular disease within fundus
photographs including age, sex, smoking, and systolic
blood pressure.10 It is being used in electronic health
records to predict patient outcomes, determine new
risk factors, and assist in documentation.11 In some
circumstances, AI algorithms have been shown to
outperform humans in diagnostic tasks.12 AlthoughAI
addresses the screening bottleneck, the issue of access
to care—both due to geographic restriction and to
cost—remains.

With improved geographic availability and reduced
cost, smartphone (SP) cameras have emerged as a
potential solution. Growing even faster than diabetes
is the rise of SP usage, with 94%, 77%, 68%, 30%, and
22% of people owning SPs in South Korea, the United
States, China, Kenya, and India, respectively.13 These
numbers are expected to continue rising. SPs provide
the combination of high-resolution cameras, powerful
computer processing, and global positioning systems
that can allow for fast image capture, diagnosis, and
localization to connect patients in need to providers.

Recent advances in SP camera resolution, adapters
for fundus imaging, and DL algorithms have made
the transition from an SP captured image to diagno-
sis feasible. To evaluate this technology, we assessed
the performance of a DL algorithm in the detection of
RDR on low-resolution fundus images acquired with a
SP and indirect ophthalmoscope lens adapter.

Methods

Fundus Image Data Set

Research adhered to the tenets of the Declaration
of Helsinki. We derived our algorithm from a data
set of 92,364 color fundus images obtained from the
EyePACS public data set (Eye-PACS LLC, Berkeley,
CA, USA) and the Asia Pacific Tele-Ophthalmology
Society 2019 blindness detection dataset (Fig. 1). These
data sets are heterogeneous, containing images from
patients across the spectrum of demographic features

Figure 1. Flow diagram for algorithm training, validation, testing,
and sensitivity analysis.

and that were obtained with varying camera models
from many clinical settings.14,15 Images were associ-
ated with a label of 0 or 1 referring to no RDR or
RDR, respectively, as determined by a panel of medical
specialists. In total, 73,723 images were labeled as no
RDR whereas 18,641 were labeled as RDR.

Model Selection

Our model featured deep learning methods to
automate characterization of fundus photography.
Specifically, deep convolutional neural networks
(CNNs) use convolutional parameter layers to learn
iteratively how to transform input images into hierar-
chical feature maps. A CNN architecture was chosen
because they tend to have the best performance in
image recognition tasks, as seen in the ImageNet
challenge.16 Given the large number of images avail-
able for training, the decision was made to choose a
relatively large CNN to help maximize the available
data. We chose the DenseNet 201 architecture that
has 201 layers, 20 million parameters, and a history of
exceptional performance in image recognition tasks.17
The model was initialized using the pretrained weights
from ImageNet. This allows the model to use the
benefits of transfer learning whereby the model has
already learnt to recognize basic features of images.

Data Augmentation

We used data set augmentation methods to encode
invariances in the deep learning procedure. To increase
image heterogeneity, we encoded rotational, zoom,
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contrast, and brightness invariance, as well as perspec-
tive warping into the data augmentation scheme.

Artificial Intelligence Training Process

The Fast.AI library (which uses PyTorch) was used
for the creation of the AI model used in this study.
Analysis was performed using an Intel Xeon CPU
@ 2.2Ghz, 13GB RAM, and a Tesla P100 (16GB
VRAM) graphics processing unit (GPU). Images were
first preprocessed as described above, then the 92,364
image training dataset was split into training (80%) and
validation (20%) datasets. Data augmentations were
applied on the fly as the model was training. A one-
cycle policy was used to maximize the speed of train-
ing.18 The DenseNet model was first split into the
convolutional layers (i.e., the backbone of the model)
that contained the pretrained ImageNet weights and
the head—a combination of the last few linear layers
of the model together with a new prediction layer. For
the first four epochs of training, the backbone was kept
frozen, with only the head trained. Then the learning
rate was optimized (using a learning rate from 3× 10−6

to 3 × 10−4), the backbone of the model was unfrozen,
and a further four epochs of training were conducted
until convergence. In total, the model took two hours
and 20 minutes to train.

External Validation

We externally validated our algorithm with an
independent data set: Messidor-2 (1058 images from
four French eye institutions; 675 no RDR, 383
RDR).19 The model was only exposed to the training
dataset prior—neither the EyeGo nor the Messidor-2
images were used for training.

Model Testing on EyeGo Dataset

We then tested this DR deep learning algorithm
on a dataset of usable fundus images from 103 eyes
from two previously published studies (76 no RDR,
27 RDR).20,21 The first was a study performed at a
health care safety-net ophthalmology clinic on 50 adult
patients (100 eyes) with diabetes.21 Fundus images in
this study were captured by a medical resident. The
second was a study performed at a quaternary eye care
center in Hyderabad that included 52 patients (84 eyes)
with a diagnosis of diabetes mellitus or DR.20 Images
in this study were captured by either a technician with
nomedical experience, medical student, cornea-trained
optometrist, retina-trained optometrist, or vitreoreti-
nal fellow. Images in both studies were acquired using
the EyeGo lens attachment (Stanford, CA, USA), an

Figure 2. Example mydriatic fundus photographs from the test
data set taken from screenshots of live video fundus examinations
performed using the EyeGo adapter on an iPhone 5S (Apple Inc.)
(left) from an FF 450 plus Fundus Camera with VISUPAC Digital
Imaging System (Carl Zeiss Meditec Inc., Oberkochen, Germany)
(right). The deep learning algorithm demonstrated high sensitivity
and specificity in spite of glare artifact (A), image warping (B), and
lens artifact (C).

iPhone 5S (1080p and 30Hz video capture; Apple
Inc., Cupertino, CA, USA) and a Panretinal 2.2 lens
(Volk Optical Inc., Mentor, OH, USA) to capture
live video fundus examinations on patients who were
already dilated for their clinical examinations. The
EyeGo served as the prototype for the device now
known as Paxos Scope by DigiSight Technologies (San
Francisco, CA, USA).

Image Set and Preprocessing

To maintain consistency between datasets, allow-
ing for use of an algorithm trained on traditional
fundus camera images to be tested on images acquired
from a smartphone, all images were preprocessed. To
obtain fundus images, we extracted screenshots from
live video fundus examinations performed with an
SP, the EyeGo adapter, and a Panretinal 2.2 lens
(Fig. 2, Fig. 3A). We exported images as screen-
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Figure 3. Image preprocessing allowed for standardization of the data set. We used an algorithm on the original image (A) to crop the
fundus photo and reduce background noise (B). We then sized the image to a standard resolution of 224× 224 pixels (C) tomatch the input
size of our chosen model architecture.

shots from live video clips filmed at 1080p resolution
through the iPhone application Filmic Pro (Cinegenix
LLC, Seattle, WA, USA; http://filmicpro.com/) used
to provide constant adjusted illumination and video
capture in conjunction with the EyeGo. We sized to
a standard resolution of 224 × 224 pixels to match
the input size of our chosen model architecture. We
then used an algorithm to crop the images to reduce
background noise in the area captured by the fundus
camera or by the SP surrounding the Panretinal 2.2
lens (Fig. 3). This was particularly important in the
EyeGo dataset, where the images typically include a
hand holding the 20D lens, as well as a partially blocked
face.

Reference Standard

The EyeGo dataset was tested under two different
conditions of ground truth. For the first, each eye was
graded as having RDR (moderate NPDR or worse)
or no RDR based only on the images extracted from
live video fundus examinations. This was deemed to
be most helpful clinically because the aim of such an
algorithm is to determine patients in need of referral to
a specialist. Images were graded by two board-certified
ophthalmologists with fellowship training in vitreoreti-
nal diseases and surgery. Any disagreement in grading
was adjudicated by a third board-certified ophthalmol-
ogist with fellowship training in vitreoretinal diseases
and surgery. Image grades were then compared to the
output of the algorithm, which classified a single repre-
sentative image chosen for each patient as having RDR
or no RDR. For the second, as a sensitivity analysis,
76 eyes of smartphone images from the Hyderabad
dataset were graded as having RDR or no RDR based
on a grading from the conventional camera fundus

photo. Eight eyes were excluded that did not have both
conventional fundus photography andEyeGo imaging.

Statistical Analysis

Python (http://www.python.org) was used to
perform DL. To measure the precision-recall trade-off
of the algorithmwe used area under the receiver opera-
tor characteristic curve (AUC), as well as the F-score
(scored between 0, worst, and 1, best). Confidence
intervals were calculated using 1000 bootstrapped
samples of the data.

Results

We evaluated the performance of our optimal
algorithm on the EyeGo smartphone data set and
validated its performance on a publicly available data
set (Messidor-2) (Table). In contrast with prior studies,
our model did not train on any of these data sets prior
to validation.22,23 Using the EyeGo smartphone set,
our algorithm scored an AUC of 0.89 (95% CI 0.83–
0.95) with a sensitivity of 89% (95% CI 81%–100%),
specificity of 83% (95% CI 77%–89%), and an F1
score of 0.85 (95%CI 0.80–0.90). Using theMessidor-2
dataset, our algorithm achieved an 87% (95% CI 84%–
90%) sensitivity and 80% (95%CI 78%–83%) specificity
for detecting RDRwith an AUC of 0.92 (95%CI 0.91–
0.94) and F1 score of 0.83 (95% CI 0.81–0.85).

Upon sensitivity analysis, where EyeGo images were
instead graded for presence of RDR based on tradi-
tional fundus photography, the model was able to
achieve a sensitivity of 84% (95% CI 78%–91%), speci-
ficity of 77% (95% CI 63%–88%), and an AUC of

http://filmicpro.com/
http://www.python.org
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Table. Average AUC, F-Score, Sensitivity, and Specificity of Nonreferable Diabetic Retinopathy Versus Referable
Diabetic Retinopathy Using the EyeGo Smartphone Data Set and a Publicly Available Dataset for Validation
Dataset No. With RDR No. Without RDR AUC (95% CI) F1 (95% CI) Sensitivity (95% CI) Specificity (95% CI)

EyeGo (ground truth EyeGo photo) 27 76 0.89 (0.83–0.95) 0.85 (0.80–0.90) 0.89 (0.81–1.0) 0.83 (0.77–0.89)
EyeGo (ground truth fundus photo) 52 25 0.82 (0.73–0.90) 0.82 (0.75–0.89) 0.83 (0.78–0.91) 0.76 (0.63–0.88)
Messidor-2 (validation) 383 675 0.92 (0.91–0.94) 0.83 (0.81–0.85) 0.87 (0.84–0.90) 0.80 (0.78–0.82)

Figure 4. Receiver operating characteristic (ROC) curves for the EyeGo smartphone data set using EyeGo images as ground truth (left),
EyeGo smartphone data set using Fundus photos as ground truth (middle), and Messidor-2 dataset (right) demonstrating high reliability of
a deep learning algorithm used to screen heterogeneous fundus photos.

0.82 (95% CI 0.73–0.90; F1 score 0.83, 95% CI 0.81–
0.85) (Fig. 4).

Discussion

This study demonstrates the feasibility of using a
validated DL algorithm to screen patients for RDR
using images captured on an SP with a low-cost SP
indirect lens adapter. In spite of the presence of multi-
ple artifacts (lens glare, lens particulates/smudging,
user hands over the objective lens, Fig. 2) and low-
resolution images achieved by users of various levels of
medical and ophthalmic training, our model scored a
89% sensitivity and 83% specificity to determine RDR
with an AUC of 0.89. This model of automated-AI
enabled SP diagnosis provides one possible solution to
the problem of screening rising numbers of diabetic
patients globally.

Relative to traditional fundus photography, SP are
lower cost and more portable and provide wireless
access to secure networks for image transmission.
Rajalakshmi et al.24 previously demonstrated the
ability of AI-based DR screening software (EyeArt)
to detect DR and sight-threatening DR by fundus
photography using Remidio Fundus on Phone, a
smartphone-based imaging device that can be used in
a handheld mode or fit onto a slit lamp (Remidio
Innovative Solutions Pvt. Ltd, Bangalore, India). They
graded 296 patients, and their model attained a sensi-

tivity of 96% and specificity of 80% for detecting any
DR. Unlike the EyeGo, Remidio devices are difficult
to use in handheld mode and are typically used in the
slit lamp. This study uniquely demonstrates the feasi-
bility of a remote screener with an SP, lens, and three-
dimensional (3D)–printed EyeGo to detect DR.

As expected, we find that the AI model performs
best when given smartphone images of the fundus that
humans have deemed gradable and correlates well with
the human assessment for findings in that field of view.
Although the specificity of the model decreases in the
“real-world” test where the model was presented with
a series of images, many of which are of poor quality
and possibly only receiving partial views of the fundus,
the performance remained high.

Given the high performance of our model on a
public test data set, it is possible that poor image
quality by newer users and by nonmedical person-
nel limited performance. Overall, studies comparing
fundus images captured by SPs to slit-lamp biomi-
croscopy and to images captured using fundus cameras
have found considerable agreement, so this modality
appears promising.25,26

We did not run the algorithm on the iPhone 5S
used to capture the images, but based on our prior
analysis, this would be feasible. We previously demon-
strated that both iPhone and Android smartphones
are capable of running an AI DR algorithm offline
for medical imaging diagnostic support.9 When tested
on an iPhone 5, the real-time runtime performance
yielded an average of eight seconds per evaluated
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image.9 Combined with an average recording time with
the EyeGo of 73 seconds to obtain a fundus image,
nonphysician screeners could provide a diagnosis to
patients in less than 1.5 minutes. This would require the
development of software to preprocess images incorpo-
rated into EyeGo capture, a version of which already
exists.

When compared to our model run using photos
captured from gold standard fundus photography
devices, we achieved a lower AUC, sensitivity, and
specificity. In April of 2018 the Food andDrugAdmin-
istration approved IDx-DR as a breakthrough device
for automated diagnosis of diabetic retinopathy.27
They did so under an accuracy level of 87.4% sensi-
tivity and 89.5% specificity—a sensitivity below that
realized in this study.

It is important to note that the images used in
this study were generated from screen captures of
video taken at 1080p, using an iPhone 5S that has
a much older imaging sensor and camera quality
that has been significantly improved in today’s smart-
phones (e.g., iPhone 11). In addition, the EyeGo device
used the iPhone’s internal light source; the subse-
quent commercial version of the device (Paxos Scope)
uses a variable-intensity, external LED, which enables
additional control over illumination and image quality.
Currently the commercial Paxos device is configured to
capture still images at the modern iPhone full resolu-
tion of 12MP 4000 × 3000 dpi—a dramatically higher
amount of data than was used in images from this
study. Future work is merited to evaluate the image
interpretation algorithm developed in this study on
images taken with the latest commercial versions of
both the camera attachment hardware, as well as smart-
phone handset.

Additionally, patients required mydriasis for fundus
imaging using the EyeGo. Therefore screenings
performed outside of the setting of an optometry or
ophthalmology clinic would still need to undergo angle
evaluation followed by placement of dilation drops.
A strength of this study was its use of an algorithm
trained with heterogeneous data sets in regard to
ethnicity—a feature critical for generalizability first
demonstrated by Ting et al.28

Overall, we demonstrate the ability of DL to assist
in the diagnosis of RDR using low-quality fundus
photos attained with an SP, 3D-printed lens attach-
ment, and indirect lens. As it stands, health care
workers could bring these portable devices to the
homes of individuals unable to travel for screening,
dilate, then image the fundus of the patient with a
resulting diagnosis within 90 seconds. The efficiency
and low cost of this technology will revolutionize the
current diagnostic paradigm, allowing for widespread

early recognition of DR and prevention of its compli-
cations and blindness.
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