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Abstract
High-density genetic linkage maps are necessary for precisely mapping quantitative trait

loci (QTLs) controlling grain shape and size in wheat. By applying the Infinium iSelect 9K

SNP assay, we have constructed a high-density genetic linkage map with 269 F 8 recombi-

nant inbred lines (RILs) developed between a Chinese cornerstone wheat breeding paren-

tal line Yanda1817 and a high-yielding line Beinong6. The map contains 2431 SNPs and

128 SSR & EST-SSR markers in a total coverage of 3213.2 cM with an average interval of

1.26 cM per marker. Eighty-eight QTLs for thousand-grain weight (TGW), grain length (GL),

grain width (GW) and grain thickness (GT) were detected in nine ecological environments

(Beijing, Shijiazhuang and Kaifeng) during five years between 2010–2014 by inclusive com-

posite interval mapping (ICIM) (LOD�2.5). Among which, 17 QTLs for TGWwere mapped

on chromosomes 1A, 1B, 2A, 2B, 3A, 3B, 3D, 4A, 4D, 5A, 5B and 6B with phenotypic varia-

tions ranging from 2.62% to 12.08%. Four stable QTLs for TGW could be detected in five

and seven environments, respectively. Thirty-two QTLs for GL were mapped on chromo-

somes 1B, 1D, 2A, 2B, 2D, 3B, 3D, 4A, 4B, 4D, 5A, 5B, 6B, 7A and 7B, with phenotypic vari-

ations ranging from 2.62% to 44.39%.QGl.cau-2A.2 can be detected in all the

environments with the largest phenotypic variations, indicating that it is a major and stable

QTL. For GW, 12 QTLs were identified with phenotypic variations range from 3.69% to

12.30%. We found 27 QTLs for GT with phenotypic variations ranged from 2.55% to

36.42%. In particular, QTLQGt.cau-5A.1 with phenotypic variations of 6.82–23.59% was

detected in all the nine environments. Moreover, pleiotropic effects were detected for
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several QTL loci responsible for grain shape and size that could serve as target regions for

fine mapping and marker assisted selection in wheat breeding programs.

Introduction
Wheat is the third highest producing cereal crop after maize and rice, and is the leading sources
of vegetable protein in human food. The demand for wheat in the developing world is projected
to increase by 60% by 2050 while production is expected to be affected negatively by climate
change and natural resource depletion (FAO). Wheat is a staple food used to make flour for
different kinds of products. Grain weight and size are the targets for breeding, not merely be-
cause they are the major components of grain yield, but also due to their impacts on milling
and baking quality [1]. Moreover, grain size can partially explain the process of crop domesti-
cation [2].

Grain weight and size are complex quantitative traits controlled by a number of genes and
significantly influenced by the environment. The grain weight and size can be divided into a
number of components including thousand grain weight (TGW), grain length (GL), grain
width (GW), and grain thickness (GT), etc. [3–7]. Previous studies have proved that TGW has
high heritability values and is phenotypically the most stable yield component [8].

Monosomic and QTL analyses have been used to identify wheat genomic regions associated
with grain weight and shape [3–12]. Röder et al. also reported fine genetic mapping of a grain
weight QTL at the telomeric region of chromosome 7DS [13]. Up to date, no gene/QTL associ-
ated with grain shape and size has been cloned in wheat via a map-based cloning approach.
However, some QTLs for grain size and weight in wheat were associated with the orthologs of
rice grain traits QTLs, including TaCwi-1A [14], TaSus2–2B [15], TaGw2–6A [6], TaCKX6-D1
[16], TaSap1-A1 [17], TaGS1–6D [18] and TaLsu1 [19].

Genetic dissection of grain weight and size in bread wheat, however, is greatly hampered by
an enourmous genome size (~17Gb), complex genomes (allohexaploid, 2n = 42, AABBDD),
and prevalence of repetitive DNA. A well-saturated genetic linkage map is a powerful tool to
dissect the genetic elements responsible for grain weight and size. Both restriction fragment
length polymorphisms (RFLP) and simple sequence repeats (SSR) have been used in linkage
map construction, and an increasing number of QTL studies have been conducted in attempts
to analysis the genetic basis of grain weight and grain size in wheat [5,7,20–27]. However,
RFLP markers have shown very low levels of polymorphism between wheat cultivars, although
they are co-dominant and highly reliable in nature. In contrast, SSR markers reveal a higher
level polymorphism in wheat but it is very laborious to construct high-density genetic linkage
maps. The need for studies of complex traits with very high density genetic linkage maps and
progress in polymorphism detection and genotyping techniques has promoted the recent de-
velopment of single nucletide polymorphism (SNP) markers in wheat. Meanwhile, next gener-
ation sequencing technology makes it possible to find more SNPs between wheat cultivars. The
wheat Infinium iSelect 9k SNP genotyping assay was developed based on transcriptomes of 26
accessions of hexaploid wheat generated using Roche 454 and Illumina platforms [28].

In this paper, we report: 1) construction of an integrated SNP and SSR high-density genetic
linkage map using Yanda1817/Beinong6 recombinant inbred lines (RILs) and an Illumina Infi-
nium 9k SNP chip, and 2) QTL mapping of TGW, GL, GW and GT traits controlling grain
shape and size in common wheat.
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Materials and Methods

Ethics Statement
No specific permission was required for the study. The field studies did not involve endangered
or protected species.

Plant Materials and Field Trials
Yanda1817, a pure line derivative of wheat landrace Pingyao Xiaobaimai from Shanxi Prov-
ince, was one of the ‘cornerstone parental’ breeding lines for the Northern China Winter
Breeding Program between 1950–1960. Yanda1817 is highly tolerance to drought, winter har-
diness and poor soil fertility, and has very strong tillering ability and taller plant height. More
than fifty registered wheat cultivars, mostly grown in the Northern Winter Wheat Zone of
China, have been generated from Yanda1817 in different breeding programs [29]. Beinong6 is
a semi-dwarf high-yielding 1B/1R derivative released in the 1990s by Beijing University of Ag-
riculture. Beinong6 consistently has larger grain size and higher kernel weight than
Yanda1817. Recombinant inbred lines (RILs) of Yanda1817/Beinong6 were selected for high-
density linkage map construction and QTL mapping because the RIL populations are known
to be segregating widely for agronomic traits, such as plant height, yield and presence/absence
of awns.

The mapping population for QTL analysis comprised 269 F8 to F12 recombinant inbred
lines (RILs) derived from Yanda1817/Beinong6 by single seed descent. Compared to
Yanda1817, Beinong6 shows a higher TGW and larger grain size.

Yanda1817, Beinong6 and the 269 RILs were grown in Beijing (BJ, E116.10, N40.08), Shijia-
zhuang (HB, E114.36, N37.38) and Kaifeng (HN, E114.23, N34.52) (S1 Fig.) from 2010–2014
at nine environments (E1–E9) for phenotype evaluations, viz., Beijing 2010 (E1), Beijing 2011
(E2), Shijiazhuang 2011 (E3), Beijing 2012 (E4), Shijiazhuang 2012 (E5), Beijing 2013 (E6), Shi-
jiazhuang 2013 (E7), Beijing 2014 (E8) and Kaifeng 2014 (E9). Beijing (Northern Winter
Wheat Zone), Shijiazhuang and Kaifeng (Yellow and Huai River Valleys Facultative Wheat
Zone) represent two different wheat growing agro-climatic regions in China. The trials were
performed in a randomized complete block design, and each treatment contains three repli-
cates except for E1 and E2 which had one replicate. Each plot had two rows that were 2 m long
and 25 cm wide and 30 seeds were evenly planted in each row. Field management was the same
as commonly practiced in wheat production.

Testing of Grain Traits
From the center of the rows, ten representational plants were selected to harvest as samples for
measuring TGW in grams, and GL, GW and GT in millimeters. The seeds were fully cleaned
and dried and broken grains were removed before trait evaluations. TGW was recorded using
an electronic balance to determine the average weight of two (E1, E2, E3, E8, E9) or three (E4,
E5, E6, E7) independent samples of 100 grains. GL, GW and GT were measured for 10 random
grains from each RIL for each replication using vernier calipers. Trait values of each year-loca-
tion combination (defined as one environment) were used for QTL analysis.

Statistical Analysis
The broad sense heritability (H = VG/VP) of each trait was estimated from the components of
variance from ANOVA. The correlation coefficients (r) between pairs of all four traits were cal-
culated using SPSS. 20.
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DNA Extraction
Genomic DNA was extracted from two week old leaf tissue of Yanda1817, Beinong6 and each
RIL using the cetyltrimethyl ammonium bromide (CTAB) method [30]. DNA was quantified
using 1% agarose gel electrophoresis with λ DNA as the standard.

SSR and EST-SSR Genotyping
Genomic SSR and EST-SSR markers (Xcau) were screened for polymorphisms between
Yada1817 and Beinong6. Primer sequences for the Beltsville Agricultural Research Center
(BARC), Gatersleben wheat microsatellite (GWM), Wheat Microsatellite Consortium (WMC),
INRA Clermont-Ferrand (CFA, CFD) and Gatersleben D-genome microsatellite (GDM) were
obtained from the Grain Genes website (http://wheat.pw.usda.gov/GG2/index.shtml) and pub-
lic available information [31–33]. EST-SSR markers were developed according to flanking se-
quences of microsatellite motifs in wheat ESTs deposited in public EST databases. The
polymorphic markers were used to genotype the RIL population. The PCR reactions were per-
formed with an ABI9700 in a total volume of 10 μL containing 10 mM Tris-Hcl, pH 7.5,
50 mMMgCl2, 0.2 mM dNTP, 25 ng of each primer, 0.75 U of Taq polymerase, and 50 ng of
genomic DNA as the template. After an initial denaturing step for 5 min at 94°C, 35 cycles
were performed for 45 s at 94°C, 55–60°C (depending on the specific primers) for 45 s, and
72°C for 70 s, with a final extension at 72°C for 10 min. PCR products were separated in 8%
non-denaturing polyacrylamide gels, visualized by silver staining and photographed.

Infinium iSelect SNP Genotyping
A total of 9,000 SNPs were selected based on their distribution across genome and frequency in
the discovery population [28]. SNP genotyping was performed on the BeadStation and iScan
instruments and conducted at the Genome Center of the University of California at Davis ac-
cording to the manufacturer’s protocols (Illumina). Single nucleotide polymorphism allele
clustering and genotype calling was performed with GenomeStudio v2011.1 software as de-
scribed in Cavanagh et al. [28]. A genotype calling algorithm was generated for bread wheat
using an iterative process to account for observed shifts in SNP allele cluster positions caused
by differences in the number of duplicated (homeologous and paralogous) gene copies detected
between assays [28, 34].

High Density Linkage Map Construction and QTL Analysis
The linkage map was constructed with MultiPoint software and MAPMAKER/EXP version 3.0
[35] with a minimum LOD of 3.0 and maximum recombination fraction of 0.372. The
Kosambi mapping function was used to convert the recombination frequencies into centiMor-
gan (cM) map distance [36] and the genetic linkage maps were constructed using software
Map Draw V2.1 [37]. Co-segregating markers were regarded as a polymorphic locus. QTL
analysis was performed with inclusive composite interval mapping by IciMapping 3.2/4.0
based on stepwise regression of simultaneous consideration of all marker information (http://
www.isbreeding.net/). The ‘Deletion’ command was used to accommodate the missing pheno-
types and the step size chosen was 1.0 cM. A QTL was claimed to be significant at an LOD
value of 2.5.
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Results

Phenotypic Variation and Correlation Analysis
Field trials were conducted at Beijing, Shijiazhuang and Kaifeng under different agro-climatic
conditions for five continuous years (2010–2014 in 9 total environments) to evaluate TGW,
GL, GW and GT variation amongst the two parents (Yanda1817 and Beinong6) and the RIL
populations. Beinong6 consistently showed higher values than Yanda1817 for all the grain
traits tested in 9 environments (Table 1; S1 Table). The frequency distributions of the investi-
gated traits reveled continuous variations and transgressive segregation in the RIL populations,
suggesting that the phenotypic data of TGW, GL, GW and GT are normally distributed and
that the traits are controlled by multiple loci. The heritability frequencies for TGW, GL, GW
and GT are 85.58%, 95.72%, 88.22% and 91.78%, respectively, indicating that the grain shape
and size are stable and are mainly under genetic control (Table 1; S1 Table).

Correlation coefficients (r) among the TGW, GL, GW and GT traits in different environ-
ments were calculated. All the four traits showed significant positive correlations with each
other (significant at P = 0.01) (Table 2). The highest positive correlation was observed between
TGW and GW (r = 0.796), followed by TGW and GT (r = 0.761). The correlation between GL
and GW was very weak (r = 0.204), as well as between GL and GT (r = 0.210).

Genetic Linkage Map Construction
Out of 500 genomic SSR and EST-SSR primer pairs screened, 150 polymorphic markers were
selected for RIL genotyping. Out of 8632 designated and validated SNPs in the 9k Infinium
chip, 2873 SNPs were polymorphic between the parental lines Yanda1817 and Beinong6, as
well as the RIL populations. Based on the 90K SNP consensus map [34] and after removing
ambiguous and unlinked markers, the final genetic linkage map consists of 128 SSR, EST-SSR
and 2431 SNP markers (mapped in 1062 polymorphic loci) that covered all the 21 wheat chro-
mosomes (Table 3; S2 Table). Chromosomes 4A, 7B and 7D were integrated by two linkage
groups, respectively. The entire map spaned 3213.2 cM including nine gaps (>30cM) distribut-
ed on chromosomes 1D, 2D, 3A, 3D, 6A and 7D. However, the number of markers on each
chromosome was uneven, ranging from 5 on 4D to 329 on 5B. The genetic coverage of each
chromosome varied from 19.1 cM (4D) to 292.9 cM (5A). All together, the markers mapping
on the B genome (1301) were greatly more than those on the A genome (1093), and consider-
ably fewer markers (165) mapped on the D genome. Only the long arm was mapped for chro-
mosome 1B which is consistent with the fact that Beinong6 is a 1BL/1RS translocation line
(data not shown). However, only a 41.3 cM genetic coverage was found for the centromere re-
gion of chromosome 1AL, and this was far below the aveage coverage of the A genome chro-
mosomes (Table 3; S2 Table). No polymorphic SNPs was identified between Yanda1817 and
Beinong6 for chromosome 1AS and the distal region of 1AL after checking the SNP mapping
data [28, 34]. The possible reason for this may be that the chromosome regions of 1AS and the
distal regions of 1AL have the same genetic backgrounds between Yanda1817 and Beinong6.

Marker Density
The marker density of the individual chromosomes ranged from 0.72 cM/marker for 1A to
17.83 cM/marker for 3D with an average marker density of 1.26 cM/marker in the genetic map
of Yanda1817/Beinong6 (Table 3). More markers were mapped on the A and B subgenomes
with a similar marker density of 1.09 and 1.06 cM/marker, while fewer markers mapped on the
D subgenome which had a density of 3.91 cM/marker. Most of the gaps were found in the D ge-
nome. For example, 7 gaps (>30cM) were identified in chromsome 1D, 2D, 3D, 6D and 7D. In
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addition to the gaps, 40 marker clusters (�10 makers at one locus) were spreaded over chro-
mosomes 1A, 1B, 2A, 2B, 3A, 3B, 4A, 4B, 5A, 5B, 6A, 6B, 6D and 7A (S2 Table). The largest
marker cluster was found on chromosome 5B, which contains 63 markers, while only 6 clusters
mapped on chromosome 2B. To facilicate data analysis of the 2559 markers mapping in the
1062 loci, only one marker was selected from each locus for QTL mapping. The average locus

Table 1. Phenotypic performance and distribution parameters for grain traits of parents and RILs in nine environments.

Trait Env. Yanda1817 Beinong6 RIL Min. RIL Max. RIL average SD H (%)

TGW (g) E1 23.00 39.00 15.00 46.00 29.84 5.78 85.58

E2 29.20 51.90 18.95 52.65 32.58 6.05

E3 28.60 44.08 21.68 48.48 35.27 5.19

E4 30.63 52.46 27.83 55.32 41.75 5.23

E5 26.50 46.33 20.28 49.30 34.89 4.81

E6 22.92 42.98 17.37 44.93 29.51 5.49

E7 31.83 45.03 22.27 48.63 34.10 4.35

E8 28.28 47.13 24.32 47.84 34.70 4.47

E9 31.60 52.60 22.40 54.02 37.48 5.51

GL (mm) E1 6.13 6.70 5.10 7.12 6.01 0.35 95.72

E2 6.00 6.60 5.16 7.29 6.28 0.36

E3 5.86 6.34 5.40 6.84 6.14 0.28

E4 6.25 6.77 5.62 7.33 6.60 0.30

E5 6.15 6.54 5.51 7.17 6.28 0.29

E6 6.07 6.94 5.62 7.22 6.40 0.30

E7 6.19 6.78 5.49 7.10 6.35 0.28

E8 6.32 6.65 5.74 7.09 6.40 0.25

E9 6.05 6.98 5.62 7.14 6.38 0.27

GW (mm) E1 2.65 3.30 2.02 3.55 2.93 0.24 88.22

E2 2.76 3.28 2.44 3.74 2.94 0.23

E3 2.67 3.11 2.62 3.54 3.08 0.16

E4 3.16 3.62 2.97 3.78 3.40 0.14

E5 2.91 3.53 2.70 3.70 3.24 0.15

E6 2.68 3.26 2.47 3.42 2.96 0.19

E7 3.05 3.66 2.72 3.68 3.19 0.17

E8 3.04 3.33 2.75 4.06 3.18 0.16

E9 3.04 3.56 2.74 3.89 3.26 0.19

GT (mm) E1 2.45 3.06 2.10 3.27 2.70 0.22 91.78

E2 2.56 3.11 1.50 3.48 2.65 0.25

E3 2.38 2.73 2.30 3.28 2.76 0.18

E4 2.71 3.25 2.52 3.60 3.04 0.18

E5 2.53 3.20 2.36 3.46 2.85 0.19

E6 2.48 3.10 2.21 3.18 2.71 0.17

E7 2.61 3.26 2.24 3.26 2.73 0.17

E8 2.65 2.95 2.28 3.20 2.73 0.15

E9 2.57 3.18 2.35 3.41 2.81 0.16

E1, E2, E3, E4, E5, E6, E7, E8 and E9 represent Beijing 2010, Beijing 2011, Shijiazhuang 2011, Beijing 2012, Shijiazhuang 2012, Beijing 2013,

Shijiazhuang 2013, Beijing 2014 and Kaifeng 2014, respectively.

doi:10.1371/journal.pone.0118144.t001
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Table 2. Correlation coefficients between TGW, KL, GW, and GT in the RIL population in different environments.

Env. Year Location TGW-GL TGW-GW TGW-GT GL-GW GL-GT GW-GT

E1 2010 Beijing 0.499** 0.629** 0.572** 0.422** 0.434** 0.768**

E2 2011 Beijing 0.497** 0.730** 0.733** 0.399** 0.508** 0.742**

E3 2011 Shijiazhuang 0.430** 0.755** 0.787** 0.172** 0.200** 0.635**

E4 2012 Beijing 0.634** 0.642** 0.696** 0.222** 0.207** 0.408**

E5 2012 Shijiazhuang 0.533** 0.755** 0.719** 0.256** 0.156* 0.535**

E6 2013 Beijing 0.570** 0.751** 0.696** 0.237** 0.291** 0.515**

E7 2013 Shijiazhuang 0.463** 0.666** 0.566** 0.153* 0.131* 0.649**

E8 2014 Beijing 0.392** 0.456** 0.596** 0.034 0.120* 0.574**

E9 2014 Kaifeng 0.607** 0.757** 0.682** 0.307** 0.398** 0.590**

Average 0.553** 0.796** 0.761** 0.204** 0.210** 0.595**

* and ** indicate significance levels at the P = 0.05 and 0.01 (2-tailed), respectively.

doi:10.1371/journal.pone.0118144.t002

Table 3. Distribution of markers and marker density across chromosomes in the common wheat map developed in Yanda1817 × Beinong6 RILs
population.

Chromosome No. of markers No. of loci Map distance (cM) Map density (cM/marker) Map density (cM/locus)

1A 57 28 41.3 0.72 1.48

2A 234 93 187.0 0.80 2.01

3A 156 60 214.2 1.37 3.57

4A 162 61 182.6 1.13 2.99

5A 219 91 292.9 1.34 3.22

6A 108 43 146.6 1.36 3.41

7A 157 74 129.3 0.82 1.75

1B 193 67 179.8 0.93 2.68

2B 230 60 173.5 0.75 2.89

3B 228 86 263.3 1.15 3.06

4B 64 32 135.4 2.12 4.23

5B 329 119 279.6 0.85 2.35

6B 159 68 120.9 0.76 1.78

7B 98 66 221.7 2.26 3.36

1D 47 27 106.9 2.27 3.96

2D 22 16 76.2 3.46 4.76

3D 10 10 178.3 17.83 17.83

4D 5 5 19.1 3.82 3.82

5D 8 8 44.3 5.54 5.54

6D 59 34 150.6 2.55 4.43

7D 14 14 69.7 4.98 4.98

A genome 1093 450 1193.9 1.09 2.65

B genome 1301 498 1374.2 1.06 2.76

D genome 165 114 645.1 3.91 5.66

Total 2559 1062 3213.2 1.26 3.03

doi:10.1371/journal.pone.0118144.t003
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density of the genetic linkage map was 3.03 cM/locus with 2.65, 2.76 and 5.66 cM/locus for the
A, B and D subgenomes, respectively (Table 3).

Segregation Distortion Regions
Of the 1062 loci mapped in the Yanda1817 / Beinong6 genetic linkage map, 328 loci (31%)
demonstrated genetic distortion (Chi-Square< 0.05) in the RIL population (S3 Table). Among
the segregation distortion (SD) loci, one thrid of them (32.9%) were distorted in favor of Bei-
nong6 and two thrids (67.1%) favored Yanda1817. Thrity-eight SD regions (SDR,�3 SD loci)
were distributed in the whole genome except for chromosomes 1D, 2A, 3D, 5D and 7D (S3
Table). Among the SDRs, 24 were found in the B subgenome and 10 were identified in the A
subgenome. Two large SDRs, SDR-1B (55 locus) were skewed to Yanda1817 and SDR-7A.3 (43
locus) favored Beinong6. SDR-1B may result from the 1RS/1BL translocation in Beinong6.

QTL Analysis
QTL mapping analyses revealed 88 putative additive QTLs for the four grain traits with pheno-
typic variations of single QTL ranging from 2.55% to 44.39% in different environments, and
QTLs were detected on all 21 chromosomes (Table 4, 5; Fig. 1; S4, S5 Table). Chromosome 5A
and 6B have a great number of identified QTLs, but chromosomes 1D, 2D, 5D, 6D and 7D
have only one mapped QTL. Some QTLs appeared to be identical are closely linked even
through the peaks were not at the same position. Thirty-nine individual QTLs (44.3% of all the
QTLs) could be observed in at least two environments, of which 30 (76.9%) were associated
with increased grain weight and size, through the Beinong6 alleles were mainly distributed on
chrompsome 1B, 5A, 5B and 6B. Co-localized QTLs for different traits were also found on
chromosomes 1B, 2A, 3B, 4A, 4D, 5A and 6B.

Seventeen QTLs for TGW were detected on chromosomes 1A, 1B, 2A, 2B, 3A, 3B, 3D, 4A,
4D, 5A, 5B and 6B with phenotypic variations ranging from 2.62% to 12.08% (Table 4; S4
Table). Seven QTLs (QTgw.cau-1A, QTgw.cau-1B, QTgw.cau-4A.1, QTgw.cau-4D, QTgw.cau-
5A.2, QTgw.cau-5B and QTgw.cau-6B.2) were identified in two environments and five QTLs,
QTgw.cau-3D.1, QTgw.cau-6B.1, QTgw.cau-4A.2, QTgw.cau-6B.3 and QTgw.cau-2A, were de-
tected in three to five environments, indicating that these QTLs are relatively stable. QTgw.cau-
5A.1, which is the most stable QTL, could be found in seven environments except for E1 and
E8. Only four QTLs mapped in one environment.

Thirty-two QTLs for GL mapped on chromosomes 1B, 1D, 2A, 2B, 2D, 3B, 3D, 4A, 4B, 4D,
5A, 5B, 6B, 7A and 7B. Each of these QTLs explaining the proportion of phenotypic variation
ranged from 2.62% to 44.39% (Table 4; S4 Table). Among these QTLs, QGl.cau-2A.2 had the
highest phenotypic variation and was the most stable QTL detected in all nine environments.
QGl.cau-4B was identified in eight environments, while QGl.cau-5A.3, QGl.cau-5B.2 and QGl.
cau-7A.2 were present in six environments. QGl.cau-1B.1 and QGl.cau-2B.1 were found in five
environments and two QTLs, QGl.cau-3B.1 and QGl.cau-3B.2, could to be detected in four en-
vironments. Furthermore QGl.cau-1B.3, QGl.cau-5A.1, QGl.cau-6B.1, QGl.cau-6B and QGl.
cau-7B.2 were observed in two or three environments and the remaining 14 QTLs were only
found in one environment. Chromosome regions contributing to GL were associated with
chromosomes 2A, 2B, 3B, and 4B of Yanda1817, and chromosomes 1B, 4A, 4D, 5A, 5B, 6B, 7A
and 7B of Beinong6.

Twelve chromosome regions were found to be associated with GW with phenotypic varia-
tions ranging from 3.69% to 12.30% (Table 5; S4 Table). QGw.cau-5A.1 was found in seven en-
vironments with the strongest association with GW and this QTL explained up to 12.30% of
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the phenotypic variation. QTL QGw.cau-6B.1 was detected in five environments, whereas
QGw.cau-5A.2 and QGw.cau-7D were identified in three and two environments, respectively.

A total of twenty-seven QTLs for GT were identified on chromosomes 1A, 2A, 2B, 3A, 3B,
3D, 4A, 5A, 5B, 5D, 6A, 6B, 6D, 7A and 7B (Table 5; S4 Table). Among these, QGt.cau-5A.1,
the most stable QTL locus for grain thickness and was detected in all nine environments with
phenotypic variations of more than 10% in six environments. QGt.cau-3B.2 was detected in
seven environments with the highest phenotypic variation of 36.42%. Three QTLs, QGt.cau-
6B, QGt.cau-5A.3 and QGt.cau-7A, were expressed in five, four and three environments, re-
spectively, while QGt.cau-3B.1, QGt.cau-4A.1 and QGt.cau-6D were observed in
two environments.

Table 4. Partial stable QTLs for TGW and GL detected in the Yanda1817/Beinong6 RIL population.

QTL Env. Chr. Position Left Marker Right Marker LOD a PVE
(%) b

Add c QTL
Reported d

QTgw.
cau-5A.1

E2 5A 33 wsnp_Ex_c30178_39124189 wsnp_Ex_c5267_9318903 3.59 5.26 -1.36 [17], [18],
[21], [35]

E9 5A 41 Xcfa2250 Xbarc186 4.88 7.77 -1.52

E6 5A 43 Xcfa2250 Xbarc186 5 5.78 -1.31

E5 5A 44 Xbarc186 Xgwm304 4.61 6.27 -1.19

E7 5A 48 Xgwm304 Xwmc25 4.29 6.38 -1.09

E3 5A 57 wsnp_Ex_c3369_6192815 wsnp_Ex_c7841_13337935 5.13 6.25 -1.3

E4 5A 59 wsnp_Ku_c11110_18216209 wsnp_Ku_c5071_9049540 4.57 4.32 -1.08

QGl.cau-
2A.2

E3 2A 115 wsnp_Ex_c41168_48053629 wsnp_Ex_c17852_26612172 10.08 8.47 0.08

E4 2A 115 wsnp_Ex_c41168_48053629 wsnp_Ex_c17852_26612172 6.43 7.26 0.08

E5 2A 115 wsnp_Ex_c41168_48053629 wsnp_Ex_c17852_26612172 9.93 10.74 0.1

E6 2A 115 wsnp_Ex_c41168_48053629 wsnp_Ex_c17852_26612172 8.13 6.82 0.08

E1 2A 117 wsnp_Ex_c42815_49298013 wsnp_Ex_rep_c103255_88258450 4.81 5.07 0.08

E7 2A 117 wsnp_Ex_c42815_49298013 wsnp_Ex_rep_c103255_88258450 4.28 4.38 0.06

E8 2A 118 wsnp_Ex_rep_c103255_88258450 wsnp_Ex_c25057_34318425 33.7 44.39 0.17

E2 2A 119 2ABD_wsnp_BG608354A_Ta_2_1 wsnp_Ku_c16371_25240695 3.58 5.24 0.08

QGl.cau-
4B

E1 4B 87 wsnp_RFL_Contig4151_4728831 Xbarc199 4.2 4.43 0.07 [16]

E2 4B 87 wsnp_RFL_Contig4151_4728831 Xbarc199 5.68 8.24 0.1

E4 4B 87 wsnp_RFL_Contig4151_4728831 Xbarc199 6.01 6.96 0.08

E6 4B 87 wsnp_RFL_Contig4151_4728831 Xbarc199 7.93 6.88 0.08

E8 4B 87 wsnp_RFL_Contig4151_4728831 Xbarc199 5.19 5.41 0.06

E9 4B 93 Xbarc199 Xgwm513 3.24 3.64 0.05

E3 4B 95 Xbarc199 Xgwm513 6.02 5.06 0.06

E5 4B 98 Xgwm513 wsnp_Ex_c40815_47789152 3.07 3.66 0.06

E9 2A 119 2ABD_wsnp_BG608354A_Ta_2_1 wsnp_Ku_c16371_25240695 9.13 10.04 0.09

a LOD score from the location with the underlined P-value
b PVE (%) = phenotypic variance estimated from marker regression against phenotype
c Additive effect. Positive values indicate a positive effect of Yanda1817 alleles, whereas negative values indicate the contribution of the Beinong6 allele
d QTL reported by references

doi:10.1371/journal.pone.0118144.t004
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Discussion

A High-Density Linkage Map for QTL Mapping
Improvement of grain weight and size has always been a challenging task for breeders because
it is very difficult to select complex quantitative traits such as TGW, GL, GW and GT directly.
Therefore, marker-assisted selection (MAS) has been proposed as an alternative approach for
indirect selection to improve the grain weight and size. With a complex and large genome,
high-density marker coverage of the genome is crucial for QTL mapping in common wheat.

Previous genetic linkage maps used for QTL detection in wheat generally contained hun-
dreds of markers, mostly AFLPs and SSRs, which were laborious and time-consuming to devel-
op [38–42]. Here, we have constructed a high-density genetic linkage map consisting of 2559
markers (1062 polymorphic loci) that spanns 3213.2 cM covering all 21 wheat chromosomes
using the recent developed Infinium iSelect 9K SNP assay intergrated with SSR and EST-SSR
markers. The coverage of the Yanda1817/Beinong6 genetic linkage map is in agreement with

Table 5. Partial stable QTLs for GW and GT detected in the Yanda1817/Beinong6 RIL population.

QTL Env. Chr. Position Left Marker Right Marker LOD a PVE (%) b Add c QTL
Reported d

QGw.cau-
5A.1

E1 5A 27 Xcfd81 wsnp_Ex_c15046_23216392 3.3 4.39 -0.05 [18]

E3 5A 39 wsnp_Ex_c62351_62025537 Xcfa2250 6.82 11.03 -0.05

E9 5A 41 Xcfa2250 Xbarc186 4.42 7.28 -0.05

E6 5A 45 Xbarc186 Xgwm304 5.92 8.63 -0.06

E5 5A 47 Xgwm304 Xwmc25 7.15 10.12 -0.05

E7 5A 47 Xgwm304 Xwmc25 7.89 12.3 -0.06

E4 5A 55 Xgwm293 5ABD_wsnp_BE500291A_Ta_2_1 9.13 12.03 -0.05

QGt.cau-
3B.2

E1 3B 107 wsnp_Ex_c15944_24350833 wsnp_Ex_c4888_8713275 6.37 7.42 -0.06

E4 3B 111 wsnp_Ex_c4888_8713275 wsnp_JD_c8629_9594108 9.07 8.04 -0.05

E3 3B 112 wsnp_JD_c8629_9594108 wsnp_Ex_c13906_21771680 3.22 2.89 -0.03

E6 3B 112 wsnp_JD_c8629_9594108 wsnp_Ex_c13906_21771680 4.18 3.99 -0.03

E2 3B 113 wsnp_JD_c8629_9594108 wsnp_Ex_c13906_21771680 4.07 6.41 -0.06

E5 3B 115 wsnp_JD_c9902_10674725 wsnp_Ex_c19982_29009504 27.16 36.42 -0.11

E8 3B 115 wsnp_JD_c9902_10674725 wsnp_Ex_c19982_29009504 4.83 6.93 -0.04

QGt.cau-
5A.1

E1 5A 28 Xcfd81 wsnp_Ex_c15046_23216392 8.71 10.61 -0.07

E2 5A 33 wsnp_Ex_c30178_39124189 wsnp_Ex_c5267_9318903 4.69 7.06 -0.06

E3 5A 34 wsnp_Ex_c30178_39124192 wsnp_Ex_c5267_9318906 16.47 16.72 -0.07

E4 5A 34 wsnp_Ex_c30178_39124192 wsnp_Ex_c5267_9318906 23.55 23.59 -0.08

E5 5A 34 wsnp_Ex_c30178_39124192 wsnp_Ex_c5267_9318906 11.27 12.87 -0.07

E8 5A 38 wsnp_Ex_c62351_62025537 Xcfa2250 4.3 6.82 -0.04

E6 5A 42 Xcfa2250 Xbarc186 18.26 19.85 -0.08

E9 5A 42 Xcfa2250 Xbarc186 10.99 17.43 -0.07

E7 5A 48 Xgwm304 Xwmc25 15.28 21.11 -0.08

a LOD score from the location with the underlined P-value
b PVE (%) = phenotypic variance estimated from marker regression against phenotype
c Additive effect. Positive values indicate a positive effect of Yanda1817 alleles, whereas negative values indicate the contribution of the Beinong6 allele
d QTL reported by references

doi:10.1371/journal.pone.0118144.t005
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Fig 1. Partial pleiotropic QTL effects for TGW, GW and GT. Distribution of the detected QTLs for TGW, GL, GW and GT of the Yanda1817/Beinong6 RILs
on the chromosome 3B, 4B, 5A and 6B. Supported intervals for QTL are indicated by vertical bars, the length of the bar show a one LOD confidence interval.
LODmax is pointed by atriangle.

doi:10.1371/journal.pone.0118144.g001
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previously reported maps in common wheat with genetic coverage from 1070 cM [5] to 4223.1
cM [41]. The B genome has the longest length and the most markers, which is also consistent
with earlier reports [5,7,22,27]. In our genetic linkage map, the marker density was 1.26 cM/
marker, far less than 3.7cM to 14.8cM per marker in previously reported wheat genetic linkage
maps [5,7,27,40].

Another advantage of the Infinium iSelect 9K SNP assay was the high throughtput genotyp-
ing of multiply DNA samples at the same time. As the accuracy of a genetic linkage map was
heavily influenced by population size, our mapping population containing 269 RILs is large
enough to develop a high-density genetic linkage map with adequate genetic information for
QTL analysis.

A significant phenomenon noticed in our study was the SNP marker clusters and gaps in
the SNP only genetic linkage map. One possible reason may be that the SNPs were developed
from the transcriptomes of 26 hexaploid wheat accessions and that most of the SNPs were de-
rived from the gene-rich regions. Another version may be because the mapping population
used for linkage map construction was developed from a cross between two Chinese wheat
lines and some of the SNPs in the 9k Infinium chip were absent in the RILs. Therefore, we inte-
grated 128 SSR and EST-SSR markers in the genetic linkage map to close some of the gaps.

Low Level of Polymorphism in the D Genome
The polymorphic ratio of SSR and EST-SSR markers is about 30% (150/500) at the whole ge-
nome level in our mapping population, whereas a higher polymorphic ratio (33.3%, 2873/
8632) was observed for SNPs. We detected relatively high SNP and SSR polymorphism levels
in our mapping population and a possible reason may be due to the high divergence of the two
parental lines: Yanda1817 is a Chinese landrace while Beinong6 is an advanced semi-dwarf
high-yielding breeding line.

In the 3 sub-genomes, B and A have the most polymorphic markers and the D genome has
the lowest number of markers. Out of 2559 polymorphic markers, only 165 markers (6.4%)
mapped on the D genome, which is consistent with previous studies [33, 43–46]. The low ge-
netic coverage of the D genome may be responsible for the low number of QTLs in the
D genome.

After two polyploidization events during the common wheat evolution, the gene flow be-
tween Ae. tauschii and T. aestivum was limited to only a small population/accessions Ae. stra-
gulata from north Iran and the southwest Caspian sea introgressed into hexaploid wheat,
whereas a continuous gene flow occurred due to frequent hybridization between T. aestivum
and tetraploid wheat species, and these events increased the diversity of the A and B genomes
[47–49]. Increasing the genetic diversity of the D genome is still an urgent task for wheat breed-
ers. Considering that many important genes/QTLs controlling agronomic traits were located
on the D genome, additional work to increase the number and density of markers in the D ge-
nome should be considered by applying new approach like next generation sequencing (NGS).

QTLs for Grain Shape and Size
TGW has been subjected to QTL analysis in many studies but very limited information is avail-
able for QTL mapping of GL, GW and GT in wheat. To date, QTLs for grain shape and size
have been detected on almost all 21 wheat chromosomes [3,4,9–12,20,22–25,27,38,39,50–53].
Using introgression lines (ILs), Röder et al. described fine mapping of QTgw.ipk-7D associated
with the microsatellite marker Xgwm1002–7D [13]. Due to the low coverage of chromosome
7D in our genetic map, we did not detect this QTL. QTLs for TGW were mapped to the same
genetic region of chromosome 6AS by Huang et al. [39] and Sun et al. [7] using F1-derived
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doubled haploid (DH) populations and RILs, respectively. Furthermore, TaGW2, the ortholog
of OsGW2 in rice [54], was mapped earlier on 6AS and considered to be a candidate gene relat-
ed to wheat grain development [6]. However, we did not detect any QTL on chromosome 6AS
in our genetic map. In addition, due to the diversity of mapping populations, field trail condi-
tions, and genetic coverage of the linkage maps used for QTL mapping, QTLs were often ob-
served on different chromosome regions for grain weight and size when analyses were carried
out with different phenotypic variation effects. Therefore, more refined analyses we focused on
the QTLs detected at least in more than two environments.

We detected 17 QTLs for TGW and thirteen of these were found in at least two environ-
ments. In order to compare our QTL mapping data with published results, we used the inte-
grated high-density SSR genetic linkage map [33] as a reference to anchor SSR markers and
mapped QTLs (Table 4; S4, S5 Table). QTgw.cau-6B.1 and QTgw.cau-3D.1 were newly identi-
fied QTLs in three environments with phenotypic variation from 2.98% to 9.90%. QTgw.cau-
1B was located in chromosome 1B near the Xgwm268–1B locus where an important QTL for
TGW was previously identified using 262 accessions from a mini-core collection of Chinese
wheat [26]. Similarly, QTgw.cau-2A for TGW was detected in the interval of Xgwm249-
Xgwm473 on chromosome 2A, which corresponds to the QTLs previously found by Sun et al.
[7], Huang et al. [24] and Wu et al. [55], respectively. QTgw.cau-4D was closely linked to mark-
er Xcfd71 which may correspond to the TGWQTL reported by Huang et al. [39]. The QTL
QTgw.cau-5A.1 detected in two environments mapped in a position that also has been de-
scribed by many researchers [22,23,26,27,40,52,53], indicating its stability and major effects.
The QTgw.cau-5A.2 was detected in two environments and located on the end of 5AL. In the
same genetic region, QTLs for TGW were also reported by Mir et al. [56] with interval and as-
sociation mapping and by Wu et al. [55] with a DH population genetic map. The interval of
QTgw.cau-5B was described by Patil et al. [52] and is similar to the TGWQTL identified by
Groos et al. [38] andWang et al. [27]. In addition, Cui et al. [57] and Wu et al. [55] also de-
tected QTLs for kernel weight per spike (KWPS) or TGW in same chromosome region. The
QTgw.cau-6B.2 identified in two environments may be same as that reported by Sun et al. [7].

Out of the 14 QTLs for GL that we detected in more than one environment, five were de-
scribed in previous studies and the remaining nine may be new loci. QTL QGl.cau-1B present
in 5 environments in our study was linked to marker Xgwm259. Sun et al. [7] also detected a
QTL for GL that is associated with SSR marker Xgwm140 which is closely linked with
Xgwm259. A GL QTL reported by Gegas et al. [23] maps at the same location as QGl.cau-3B.1
in our mapping study. By using two hexaploid wheat mapping populations, Breseghello and
Sorrells [21] detected two QTLs for GL on 4B and 5B, which are close to QGl.cau-4B and QGl.
cau-5B.2 location in our study. On chromosome 7A, the detected QTL QGl.cau-7A.2 seems to
correspond with the QTL previously detected by Williams et al. [11].

Four GWQTLs located on 5A, 6B and 7D were detected in more than one environment,
and among theses, only QGw.cau-5A.1 was previously described [23].

QTL for grain thickness was rarely reported previously in wheat [10–12]. In our study, the
GT QTLs, QGt.cau-3B.2, QGt.cau-5A.1, QGt.cau-5A.3 and QGt.cau-6B, were identified in
more than four environments. Due to the diversity of molecular markers, it was difficult to
align and compare QTLs detected by these studies. TGW, GL and GWQTLs were also detected
at the same chromosome regions, indicating possible linkage or pleiotropic effects.

Trait Correlations and QTL Clustering
It was interesting that QTLs for grain size and shape clustered in same chromosome regions. In
our study, co-localized QTLs were found on chromosomes 1B, 2A, 3B, 4A, 4D, 5A and 6B, and
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were especially prevalent on chromosomes 3B, 5A and 6B. Two QTL clusters were identified
on chromosome 5A. One was located on the distal end of 5AS and is involved in controlling
TGW, GW and GT. Another cluster on the distal end of 5AL is involved in regulating a GT
QTL detected in four environments, a TGWQTL detected in two environments, a GL QTL de-
tected in six environments, and a GWQTL was identified in only one environment. On chro-
mosome 6B, QTL clusters were mainly related to TGW, GW and GT. As previous described
[7,23,38,50,53,58,59] this is consistent with the positive relationships between the four grain
shape and size traits, especially among TGW, GW and GT. These QTL clusters for TGW, GL,
GW and GT provide important information for wheat breeders to improve the grain shape
and size via marker-assisted selection.
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