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Abstract
In this work, a lipidomics workflow based on offline semi-preparative lipid class-specific fractionation by supercritical fluid chroma-
tography (SFC) followed by high-resolution mass spectrometry was introduced. The powerful SFC approach offered separation of a
wide polarity range for lipids, enabled enrichment (up to 3 orders of magnitude) of lipids, selective fractionation of 14 lipid classes/
subclasses, and increased dynamic range enabling in-depth characterization. A significantly increased coverage of low abundant lipids
improving lipid identification by numbers and degree (species and molecular level) was obtained in Pichia pastoris when comparing
high-resolution mass spectrometry based lipidomics with and without prior fractionation. Proof-of-principle experiments using a
standard reference material (SRM 1950, NIST) for human plasma showed that the proposed strategy enabled quantitative lipidomics.
Indeed, for 70 lipids, the consensus values available for this sample could be met. Thus, the novel workflow is ideally suited for lipid
class-specific purification/isolation from milligram amounts of sample while not compromising on omics type of analysis (identifica-
tion and quantification). Finally, compared with established fractionation/pre-concentration approaches, semi-preparative SFC is
superior in terms of versatility, as it involved only volatile modifiers and salt additives facilitating any follow-up use such as qualitative
or quantitate analysis or further purification down to the single lipid species level.
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Introduction

High-resolution mass spectrometry (HRMS) has evolved
as key technology in the field of lipidomics showing an
unrivaled potential to pursue quantification and lipid spe-
cies identification in parallel [1]. Shotgun lipidomics, i.e.,
direct infusion HRMS (DI-HRMS) [2] enables accurate
quantification of hundreds of lipids in complex samples.
Evidently, the combination of HRMS and liquid chroma-
tography (LC) is powerful when aiming at in-depth char-
acterization of the lipidome, as increased dynamic range
improves the lipidome coverage, which in turn enables
higher numbers of identified species within one analytical
run [3, 4]. In this work, for the first time, both HRMS and
LC-HRMS have been combined to lipid class-specific frac-
tionation as obtained by upscaling analytical supercritical
fluid chromatography (SFC). The aim has been to create a
workflow enabling purification/fractionation of as many
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lipid classes as possible at semi-preparative scale together
with in-depth characterization of the lipidome. At analyti-
cal scale, SFC-based lipid analysis has been introduced in
the late 1980s [5–7] but the number of studies had
remained low, until significant technological improve-
ments (e.g., the introduction as sub 2 μm particles,
backpressure regulation and improved injection systems)
have led to a renaissance of SFC in lipidomics [8].
Above all, the facilitated combination with mass spectrom-
etry (MS) accelerated these developments. Bamba et al. [9]
has pioneered the field. Studying different column chem-
istries, separation of phospholipids, glycolipids, neutral
lipids, and sphingolipids in relatively short time (15 min)
could be accomplished. Depending on stationary phase se-
lection, SFC separation is either governed by head group or
by fatty acid chain length, degree of saturation and double
bond position. A reversed-phase-like separation has been
proposed when using non-polar stationary phases [10–13],
while HILIC type of separation is enabled when using po-
lar stationary phases. The current state-of-the-art method
has been introduced by Lísa et al. [14] who have developed
a powerful high-throughput SFC high-resolution mass
spectrometry (HRMS) method to separate non-polar and
polar lipids within one run. More specifically, by ultra-
high performance SFC (UHPSFC) on an ethylene-bridged
hybrid stationary phase with 1.7 μm particles, a separation
of 30 lipid classes has been achieved. The optimized chro-
matographic gradient starting with pure non-polar CO2,
which is then followed by the addition of up to 51%
methanol/water (99:1, v/v) containing 30 mM of ammoni-
um acetate, is key to separate both polar and non-polar
lipids. Further applications of analytical SFC in lipidomics
are comprehensively summarized elsewhere [15–18].
However, the lipid class-specific SFC separation intro-
duced by Lísa et al. remains unrivaled in both separation
speed and coverage up to date.

Based on the SFC studies on analytical scale, in this work,
we have addressed the development of a short, semi-
preparative SFC method for both polar and non-polar lipids
within one run to separate milligram amounts of dry lipid
extract. Most well-established preparative lipid separations
resort to techniques developed already decades ago, such as
thin layer chromatography (TLC) [19, 20], column chroma-
tography (CC) [21, 22], preparative high-performance liquid
chromatography (prep-HPLC) [23, 24], or solid-phase extrac-
tion (SPE) [25–28]. As a major drawback, not all of them
allow for lipid class fractionation. On top of that, the tech-
niques, regardless whether implemented offline or online,
are time and solvent consuming, often requiring multiple
steps. For example, a combined SPE protocol addressing
fractionation of 11 different lipid classes [26, 28] has im-
plied the use of 12 different solvent mixtures, two car-
tridges per sample, and several hours of subsequent drying

steps. While preparative SFC (prep-SFC) is widely used in
pharmaceutical sciences [29, 30], its application is less
common in the realm of lipids and rather focused on puri-
fication of selected classes [20, 21] (e.g., non-polar lipid
classes [31–34], polyunsaturated fatty acids (PUFAs) [35],
or phospholipids (PL) [31]). A comprehensive fraction-
ation attempt covering the whole lipidome is still lacking.
However, due to the key advances of (1) easy removal of
supercritical CO2 by evaporation upon fractionation, (2)
avoidance of complex buffer systems, which complicate
the further use of the obtained fractions, and (3) relatively
short run time compared with other chromatographic
mechanisms, prep-SFC shows great potential for a global
lipidome fractionation.

The novel workflow has been applied to the lipidome char-
acterization of Pichia pastoris (Guillierm.) Phaff 1956
(Komagataella phaffii Kurtzman) [36]. The yeast strain
Pichia pastoris is a well-known cell factory related to
l ip idomics but not as wel l s tudied as the yeas t
Saccharomyces cerevisiae [37–39]. The existing lipid studies
have served as a reference [40–43] for this work.

Materials and methods

In Fig. 1, a simplified workflow is shown. The different work-
ing steps are described below and in the Electronic
Supplementary Material (ESM).

Sample preparation

A detailed sample preparation procedure can be found in the
ESM. Briefly, the yeast was fermented according to a previ-
ously established protocol [44] and the cells were extracted
following the procedure of Folch [45]. Human plasma was
purchased from the National Institute of Standards and
Technology (NIST), USA, as standard reference material
1950 (SRM 1950) and also extracted to an adopted Folch
extraction.

Semi-preparative supercritical fluid chromatography
for lipid class fractionation

For semi-preparative SFC, the Waters Prep-15 SFC system
was used. The system comprised a fluid deliverymodule (con-
nected to an Accel 500 LC chiller by Thermo Fisher
Scientific), a Waters 2767 sample manager, a ten-port column
oven, a back pressure regulator, a heat exchanger, a make-up
pump, a Waters 2998 Photo Diode Array (PDA, at 210 nm),
and a Waters 2424 Evaporative Light Scattering Detector
(ELSD). The software MassLynx V4.1 was used for control-
ling the chromatography.
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A Viridis BEH column (250 × 10 mm, 5 μm, Waters
Corporation) was used at 60 °C column temperature. The
following gradient was used with pure CO2 as solvent A
and methanol (MeOH) with 30 mM ammonium formate
(1.892 g dissolved prior in 5 mL water for 1 L MeOH)
as modifier (solvent B): 0–4.0 min 5% B, 4.0–17.0 min
ramp to 55% B, 17.0–25.0 min 55% B, 25.0–25.5 min
ramp down to 5% B, and 25.5–27.0 min 5% B as equil-
ibration step.

The injection volume was 300 μL and the injector
needle was washed with methanol for 5 s prior to each
injection. Samples were dissolved in chloroform. The
flow rate was 15 mL min−1, the backpressure was set
to 120 bar, and after the column, the eluents were com-
bined with a methanol make-up flow of 3 mL min−1 to
facilitate the detection and the fraction collection. The
fractionation time events can be found in the ESM
(Table S1). The retention time stability was checked each
time prior fraction collection. The fractions were collect-
ed, dried under nitrogen, and stored at − 80 °C prior
analysis.

High-resolution mass spectrometry shotgun
lipidomics

For the direct infusion analysis of the fractions, a robotic
nanoflow ion source TriVersa NanoMate (Advion
BioSciences, Ithaca, NY, USA) was coupled to a high-field
Q Exactive HF™ quadrupole-Orbitrap mass spectrometer
(Thermo Fisher Scientific, Bremen, Germany). The dried
samples were diluted in isopropanol (IPA)/MeOH/CHCl3

4:2:1 (v/v/v) containing 7.5 mM ammonium formate and
30 μL was placed in a 96-well twin.tec® plate (Eppendorf,
Hamburg, Germany). Nano-electrospray ionization (nano-
ESI) chips with spraying nozzles of 5 μm nominal internal
diameter were used and the whole NanoMate was controlled
by the Chipsoft 8.3.1 software (both Advion BioSciences).
The following settings were applied: ionization voltage
1.25 kV(+)/− 1.25 kV (−); backpressure 0.9 psi; capillary tem-
perature 250 °C; S-Lens radio frequency (RF) level 50.

Each sample was measured for 17 min and polarity switching
was triggered after 8 min (afterwards 1 min for equilibration) via
contact closure signal by the mass spectrometer as described
previously [46]. For each polarity, only MS1 spectra were ac-
quired at the beginning for 30 s before 200 data independent
acquisition (DIA) scans alternated with a MS1 scan for quantifi-
cation. In MS1, the resolution was set to 240,000, the automatic
gain control (AGC) target to 1e6, and the maximum injection
time (IT) to 150 ms. For the DIA scans, a resolution of 60,000
was applied and the AGC target and the max IT was set to 2e5
and 130 ms, respectively. Normalized collision energy (NCE) of
25was used in positive mode and 28 in negative mode. The scan
range was set to m/z 200–1600 in both modes.

Data evaluation for identification and quantification was
performed with LipidXplorer 1.2.7 software [47]. The spectra
were imported into a Master Scan database using the follow-
ing settings: mass tolerance 5 ppm, min.; occupation of 0;
intensity threshold 10,000 (MS1)/5000 (MS2); resolution
260,000 (MS1)/65,000 (MS2); resolution gradient − 102
(MS1)/− 60 (MS2). The molecular fragmentation query lan-
guage (MFQL) files used for identification can be found in the
ESM. Limits of quantification (LOQ) were calculated
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Fig. 1 Overview of the applied
workflow including sample
preparation, SFC separation, and
MS analysis
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according to EURACHEM, The Fitness for Purpose of
Analytical Methods, 2nd edition (2014), by repetitive injec-
tions of a low concentrated internal standard.

Reversed-phase chromatography high-resolution
mass spectrometry

For reversed-phase (RP) chromatography of lipids, an
Acquity HSS T3 (2.1 mm× 150 mm, 1.8 μm, Waters) with
a VanGuard Pre-column (2.1 × 5 mm, 100 Å, 1.8 μm) was
used. The column temperature was set to 40 °C and the flow
rate to 250 μL min−1. Acetonitrile (ACN)/H2O (3:2, v/v) was
used as solvent A and IPA/ACN (9:1, v/v) as solvent B, both
containing 0.1% formic acid and 10 mM ammonium formate.
The following gradient was applied: 0–2.0 min 30% B, 2.0–
17.0 min ramp to 75% B, 15.0–17.0 min ramp to 100% B,
17.0–22.0 min 100% B, 22.0 min fast switch to 30% B, and
equilibrated at the starting conditions for 5 min (22.0–
27.0 min 30% B). The injector needle was washed with 75%
isopropanol, 25% H2O, and 0.1% formic acid for 5 s prior to
each injection. The temperature of the autosampler was set to
10 °C. The same samples as for shotgun lipidomics were used
(IPA/MeOH/CHCl3 4:2:1 (v/v/v) containing 7.5 mM ammo-
nium formate) and the injection volume was 2 μL. A high-
field Thermo Scientific™ Q Exactive HF™ quadrupole-
Orbitrap mass spectrometer equipped with an electrospray
source was used for HRMS. The ESI source parameters were
the following: sheath gas 35, auxiliary gas 5, spray voltage
2.8 kV in negative and 3.5 kV in positive mode, capillary
temperature 220 °C, S-Lens RF level 30, and auxiliary gas
heater 300 °C. Spectral data were acquired in profile mode.

The full MS runs in positive mode were acquired in
the range of m/z 200–2000 at a resolution of 120,000, an
AGC target at 1e6, and a maximum IT of 200 ms. Data-
dependent MS2 (ddMS2) fragmentation spectra were ac-
quired for identification in positive and negative mode.
For both, a Top8 method with a NCE of 25(+)/28(−) and
an isolation window of m/z 1 was applied. The resolution
in the MS2 was set to 30,000, the AGC target to 2e5
(minimum 8e3), and the max IT to 60 ms. The dynamic
exclusion of triggered m/z was set to 15 s. Both an in-
clusion and an exclusion list were used for the possible
lipids in yeast and the background compounds identified
in a blank run, respectively.

Lipid identification was performed with Lipid Data
Analyzer (LDA) 2.6 [48] and LipidSearch 4.2 from Thermo
Scientific, in which following filters were applied: RT toler-
ance 0.25 min, m-score threshold 5, ID quality filter A,B,C
(D- only for free fatty acids and cardiolipins), calculate unas-
signed peak area TRUE, and top rank filter TRUE. The iden-
tifications were curated manually following the criteria in
Table S2 (see ESM).

Results and discussion

Semi-preparative supercritical fluid chromatography
method development

The developed semi-preparative class-specific separation was
based on the work of Lísa et al. [14]. This rigorously optimized
analytical SFC utilizing sub 2 μm particle stationary phases en-
abled the separation of polar and non-polar lipid classes within
6 min. Accordingly, the selection of column chemistry involving
ethylene-bridged hybrid (BEH) material and the optimized pa-
rameter (such as column temperature, water-additive composi-
tion, modifier gradient) served as a starting point of the upscaling
process. As a drawback, the 400 bar pressure limit of the prep-
SFC system (suggested operating range, 100–200 bar) only per-
mitted the use of stationary phaseswith 5μmparticle size instead
of sub 2 μm. A 10-mm column operated at flow rates of
15 mLmin−1 was implemented. Additionally, the different injec-
tion modes between prep-SFC and analytical SFC needed to be
considered. Indeed, the former system provides a so-called mod-
ifier-stream injection mode, in which the sample is injected into
the modifier (solvent B) before it is mixed with CO2. This mode
benefits from reduced impact of the injection solvent compared
with a mixed-stream injection [49, 50] established in analytical
SFC. However, as the modifier-stream injection mode only
works while using a modifier, a minimum of 5% modifier is
required. The method developed by Lísa et al. [14] involved
100% CO2 (solvent A) as starting condition and column temper-
atures of 60 °C, a prerequisite for the achieved excellent separa-
tion of non-polar lipids. The starting conditions of 100%CO2 (A)
could not be accomplished by the applied prep-SFC system
(Waters Prep-15 SFC). Hence, the separation power regarding
non-polar lipid classes was compromised. On the other hand,
using the modifier-stream injection mode, the impact of sample
matrix on the separation power was reduced. The final SFC
method was based on a CO2 (A) methanol-ammonium formate
(B) gradient. The addition of volatile salts such as ammonium
formate to the modifier was crucial with regard to peak shape of
polar lipids. Omitting the salt additives was reported to hamper
class-specific separation for these lipids. As a major advantage,
the follow-up characterization or simply the use of the lipid class
fractions obtained by prep-SFCwas straightforward requiring no
additional sample preparation steps as only volatilemodifiers and
salt additives were involved. Compared with other preparative
lipid fractionation methods such as TLC, CC, prep-HPLC, and
SPE, prep-SFC is fast, cost-efficient, less laborious, environmen-
tally friendly [51], and has additional upscaling potential. In this
work, up to 300 μL volumes could be injected containing
10 mg mL−1 dry lipid extract, which is 3 mg dry lipid extract
compared with 0.5 μg lipid dry mass sample intake in analytical
SFC (0.5 mg mL−1, 1 μL) [14].

Figure 2 shows the optimized prep-SFC separation moni-
tored by evaporative light scattering detector (ELSD) for lipid
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standards and yeast samples. As can be readily observed, a
broad lipid polarity range was covered (from non-polar lipids
such as triacylglycerols (TG) to polar lipids such as
lysophosphatidylcholines (LPC)). In analogy to analytical
SFC, neutral lipids showed lower retention compared with po-
lar lipids. The elution orders were also comparable, with the
exception of the lipid classes phosphatidylserines (PS), phos-
phatidic acids (PA), and cardiolipins (CL). The final prep-SFC
method featured a separation of 22 fractions within a runtime of
27min. The collection of the lipid fractions was performed after
the backpressure regulator, which was responsible of the den-
sity control along the column to maintain the solubility and the
retention behavior of the analytes. Additional building blocks
(heater, gas-liquid separator, make-up solvent) improved the
recovery of the eluting fractions. Pure methanol was used as
make-up solvent and the lipids were collected in defined time
windows. First, the fraction collection timing was based on the
detection of non-volatile compounds by ELSD only. This
timingwas fine-tuned by an iterative approach involving offline

HRMS-based lipidomics screening of the fractions. The exact
timing is given in Table S1 (see ESM).

Using standards and yeast samples, it could be shown that
lipid class-specific fractionation was successfully accom-
plished for 14 different lipid classes or subclasses (FA, DG,
ST, MG, SPH, HexCer, PG, Hex2Cer, PC, SM, LPC, Cer d,
Cer t, Cer e) paving the way to further purification, in-depth
profiling, or facilitating a detailed fatty acyl chain composition
determination via gas chromatography-mass spectrometry
(GC-MS) as previously addressed by TLC or SPE [52, 53].
Figure 3 gives a detailed overview of the fractionated lipid
classes in yeast; the retention time of cholesterol, MG,
Hex2Cer, AcCa, and SM was determined by the multi-lipid
mix only. Early eluting non-polar lipid classes such as TG, SE,
and ubiquinones (coenzymes, Co) could not be separated due
to the compulsory minimum amount of modifier upon injec-
tion. Additionally, class-specific fractionation was only partly
successful for PLs which could be to some extent attributed to
peak tailing. While PG, PC, and LPC were clearly separated,

Fig. 2 Supercritical fluid chromatogram of a a multi-lipid mix and b
yeast (Pichia pastoris) detected with ELSD. Peak annotation: TG, triac-
ylglycerols; CE, cholesteryl esters; SE, steryl esters; FA, fatty acids; DG,
diacylglycerols; Chol, cholesterol; Ergo, ergosterol; MG,
monoacylglycerols; Cer, ceramides (d,t,e, di,tri,tetra hydroxylated);
SPH, sphingosine bases, HexCer, hexosyl ceramides; PG,

phosphatidylglycerols; Hex2Cer, dihexosyl ceramides; PE, phosphatidyl-
ethanolamines; PA, phosphatidic acids; CL, cardiolipins; PI,
phosphatidylinositols; LPE, lysophosphatidylethanolamines; PS,
phosphatidylserines; PC, phosphatidylcholines; SM, sphingomyelins;
LPC, lysophosphatidylcholines. “/” indicates co-eluting lipid classes
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others were only partially fractionated (e.g., fraction 15
contained PE/PA/CL; fraction 16 contained PI/LPE).

However, the fractionation strategy allowed overcoming
several selectivity challenges of MS analysis, e.g., isomeric
classes PC and PE (also LPC and LPE) were separated. PC,
SM, and LPC, all producing the head group fragmentm/z 184
in positive mode due to their choline-containing head group,
were separated. Finally, important classes showing corre-
sponding in-source fragments or degradation products were
successfully fractionated into different lipid classes such as
sphingolipids (SPH, Cer, HexCer, and Hex2Cer) sterol/sterol
esters or lysophospholipids and their corresponding
phospholipids.

Interestingly, for ceramides, differences in hydrophilicity
due to long-chain bases (LCB) as well as hydroxylated and
non-hydroxylated fatty amid chains [54] led to SFC separation
within the class. Using P. pastoris, ceramides were recovered
in three fractions (7–9). Ceramides containing two hydroxyl
groups eluted in a separate fraction as well as ceramides with
three respectively four hydroxyl groups (see Fig. 4).

Identification, purification, and quantification
of lipids from Pichia pastoris

In a next step, the workflow was evaluated for in-depth charac-
terization of a yeast lipidome. Pichia pastoris selected as com-
prehensive lipidomics is still behind [40–43], when compared
with the well-known yeast Saccharomyces cerevisiae. The col-
lected SFC fractions were analyzed by RP-LC-HRMS using
gradient elution of 22 min for identification and shotgun
HRMS for quantification (see supplementary Excel table
“Yeast_quant_shotgun_results” in the ESM). In parallel, non-
fractionated yeast extracts were analyzed by RP-LC-HRMS to
compare the number of identifications. Overall, a tremendous
increase (by 170%) of lipid identification was achieved by the

novel workflow (see Fig. 5). In total, 404 lipid species of 18
different lipid classes from six different lipid categories were
identified either on the lipid or molecular species level in the
fractions (corresponds to the whole bar per class). This number
exceeded common workflows such as shotgun lipidomics (250
in S. cer. [38]) andHPLC analysis (ca. 200 inP. pastoris [40, 55])
Without SFC prefractionation, only 150 lipids (purple and white
bar) were identified in Pichia pastoris using RP-HRMS in this
work. The novel strategy proved to be advantageous in the case
of low abundant lipid classes (Cer, FA, SPH) and lipids with low
ionization efficiency (SE, ST). Moreover, due to the reduced
complexity, the number of PLs, both in the isolated classes,
e.g., PC and PG, as well as in the mixed fractions, e.g., PE/PA/
CL, was increased. Finally, not only the number of identified
lipids could be enhanced, also the degree of identification was
improved (blue bar). An example is the lipid class PC. This class
ionize highly efficiently in positive mode but the corresponding
MS2 spectra by higher-energy collisional dissociation (HCD)
only delivers head group-specific fragments that cannot help to
identify the fatty acyl chain composition (compare lipid species
level (e.g., PC 32:1) and molecular species level (e.g., PC
16:0_16:1)). However, in negative mode, the main fragments
are the fatty acyl chain fragments, which make this mode prefer-
able for identification. Unfortunately, in this mode, the ionization
efficiency is less and higher concentrations, as obtainedwith SFC
fractionation, can double the number of identified lipids on the
molecular species level (see Fig. 5, also for PE, PS, PI). A de-
tailed list of identified lipids (including identification level) is
given in the supplementary Excel table (see ESM). The list was
obtained after thorough corroboration of first screening data ob-
tained by the application of commercial software tools
(LipidSearch 4.2 from Thermo Scientific). Orthogonal open-
source software tools based on fragmentation rules (Lipid Data
analyzer 2.6 [48] andLipidXplorer 1.2.7 [47] for LC and shotgun
data, respectively) were used to confirm the identifications based

Fig. 3 Distribution of each yeast
lipid class over the fractionated
SFC run. Values are calculated by
the summarized area values of the
lipid species of each lipid class
obtained by LipidSearch. The size
of the points accounts for the
relative area of each lipid class
over all fractions (smaller points
indicate a distribution over
several fractions). Colors
emphasize the different lipid
classes on the y-axis
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on in silico-generated database search. As a drawback, this
strategy is restricted to classes, where reliable fragmentation
rules are available. Therefore, for some lipids, the validation
of lipid identification resorted to a probability check through
literature data [37, 38, 40–43]. Only a limited number of lipids
were confirmed by authentic standards. It has to be mentioned
that following the definition according to Schymanski et al.
[56], only a standard matched identification corresponds to
level 1 identification. Thus, all other lipids were identified
on level 3 as the exact structure (position of double bonds,
stereochemistry) cannot be determined with the applied HCD
MS2 fragmentation. The total list can be found in the supple-
mentary Excel tab “Yeast_ident_LC” (see ESM). Overall, 317
out of 404 lipid species could be validated by orthogonal
approaches.

Validation of prep-SFC for offline quantification

In a next step, the SFC fractionation was combined to shotgun
HRMS and was validated with regard to quantification accu-
racy. Proof-of-principle experiments were performed using
the established internal standardization strategy (one-point
calibration with one deuterated internal standard per lipid
class) and a standard reference material from NIST, USA
(SRM 1950), of human plasma. A recent international
interlaboratory comparison provided consensus values for a
large number of lipids [57]. An online tool denoted as
LipidQC [58] facilitated cross-validation. The concentration
was calculated according the following equation:

concAnalyte μmol L−1� � ¼ concISTD � IntensityAnalyte
IntensityISTD

Fig. 5 Improved lipid identification in yeast with SFC fractionation. The
total number of identifications over all fractions of the fractionated yeast
(whole bar) compared with identifications in the non-fractionated full
extract (purple and white bar) was more than doubled (404 compared
with 150). The white bar corresponds to the lipids identified in both

fractionated and non-fractionated full extract, but the level of identifica-
tion was improved in the fractionated yeast (molecular species level, e.g.,
PC 16:0_16:1 instead of lipid species level, e.g., PC 32:1). The blue bar
shows the number of lipids only identified in the fractionated yeast

Fig. 4 Distribution of ceramides
in the ceramide-containing frac-
tions. Ceramides ordered after the
number of hydroxyl groups in the
three fractions, where ceramides
were identified (fraction 7–9).
Lipids marked with asterisk have
a hydroxyl group on the fatty
amid chain
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As the internal standard was added prior extraction and
therefore also before SFC separation, any losses during the
process influence the internal standard and the analytes equal-
ly. Even a lower recovery rate can still lead to a decreased
complexity in the following analysis, thus enabling quantifi-
cation of low abundant lipid species. Figure 6 gives an over-
view of the accuracy assessment for both fractionated and
non-fractionated plasma. The figure compares quantitative
values (> LOQ by both approaches) for the lipid classes DG,
TG, LPE, PC, PE, and SM. Overall, 70 out of 79 lipids were

absolutely quantified within the 99% confidence interval by
both approaches, which in turn confirmed the quantitative
capability of SFC fractionation at semi-preparative scale.
Finally, the quantitative semi-preparative SFC/shotgun
lipidomics workflow was applied to P. pastoris. The results
of this study are summarized in the supplementary Excel table
(see ESM). It can be readily seen that starting from 1 g yeast
resulting in 10 mg/mL lipid extract following sample prepa-
ration, high microgram amounts of lipid classes can be
obtained.
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Fig. 6 Accuracy assessment for SRM 1950 - “Metabolites in Frozen
Human Plasma.” Values are presented as normalized coverage equiva-
lents at the mean (dots) and stdev (error bars, N = 2) of measurements,
overlaid onto the consensus mean value (blue line) and uncertainty (95%

coverage, green region; 99% coverage, red region). a Fractionated with
SFC. b Non-fractionated full extract. See ESM Tables S3 and S4 for
detailed results. Graphic is produced with LipidQC [58]
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Conclusions

The presented novel lipidomics workflow proved to be very
versatile. The key advantages can be summarized as follows:
(1) The class-specific fractionation by SFC offered reduced com-
plexity and enrichment of low abundant lipids and lipid classes,
respectively, thus overall enhancing the number of identified
lipids (compare shotgun lipidomics (250 in S. cer. [38]) and
HPLC analysis (ca. 200 inP. pastoris [40, 55]); (2) the workflow
enabled absolute quantification as shown in a validation study
using SRM1950; and (3) SFC commonly accepted as a green
method provided “ready-to-use” lipid class fractions. Thus,
follow-up lipid analysis is not limited to LC-MS-based assays.
Any other additional lipid characterizationmethod can be applied
such as GC-MS analysis following hydrolysis and methylation
(fatty acid methyl ester (FAME) analysis to determine the fatty
acyl chain composition of each class) or structural elucidation via
NMR. Additionally, in the future, isotopically labeled and non-
labeled lipid standards/fractions could be produced from any
organism of interest. The relatively short run time of 27 min,
the automatization, and the use of CO2 makes this fractionation
method attractive for many applications.
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