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Estimated date of delivery 
with electronic medical records 
by a hybrid GBDT‑GRU model
Yina Wu1,4, Yichao Zhang1,4, Xu Zou2, Zhenming Yuan1, Wensheng Hu3, Sha Lu3, 
Xiaoyan Sun1 & Yingfei Wu1*

An accurate estimated date of delivery (EDD) helps pregnant women make adequate preparations 
before delivery and avoid the panic of parturition. EDD is normally derived from some formulates or 
estimated by doctors based on last menstruation period and ultrasound examinations. This study 
attempted to combine antenatal examinations and electronic medical records to develop a hybrid 
model based on Gradient Boosting Decision Tree and Gated Recurrent Unit (GBDT-GRU). Besides 
exploring the features that affect the EDD, GBDT-GRU model obtained the results by dynamic 
prediction of different stages. The mean square error (MSE) and coefficient of determination (R2) were 
used to compare the performance among the different prediction methods. In addition, we evaluated 
predictive performances of different prediction models by comparing the proportion of pregnant 
women under the error of different days. Experimental results showed that the performance indexes 
of hybrid GBDT-GRU model outperformed other prediction methods because it focuses on analyzing 
the time-series predictors of pregnancy. The results of this study are helpful for the development of 
guidelines for clinical delivery treatments, as it can assist clinicians in making correct decisions during 
obstetric examinations.

Accurate estimated date of delivery (EDD) is helpful for pregnancy outcomes and clinical decisions making1, 
including diagnosing preterm and full-term, formulating measures for fetal dysplasia, arranging the timing of 
prenatal examination, preparing nursing measures for parturition and improving the efficiency of delivery. A 
reliable EDD is very important to reduce the occurrence of premature or postmature babies and is critical for 
both short-term and long-term health outcomes in neonates. Inaccurate EDD may have adverse effects on the 
health and safety of pregnant women and fetuses.

The current clinical method of determining the EDD is based on the information about last menstrual period 
(LMP) and ultrasound2–4. Among them, the Naegele’s rule based on LMP is the most common and wide method 
to calculate the EDD5. The Naegele’s rule is calculated by adding seven days and nine months to the first day of 
the LMP, or the EDD is 280 days after the first day of the LMP. However, the limitations of LMP include devia-
tions in recalling the last menstruation, irregular menstrual cycles, oral contraceptives and early pregnancy 
bleeding6. In several studies, calculating EDD by ultrasound of the first trimester of pregnancy is more accurate 
than the LMP7,8. The research of Kessler et al.9 aimed at assessing the actual pregnancy length and accuracy of 
EDD prediction based on fetal head circumference measured at the second trimester, a population-based vali-
dation of 21,451 deliveries showed measurements can be safely used to predict EDD. Majola et al.10 compared 
the accuracy of LMP recall and an early ultrasound (EUS) in predicting the EDD in South African pregnant 
women, the results show that the effect of using EUS to calculate EDD is obviously better. However, the effect 
of predicting EDD only using ultrasonic features is not strongly helpful11. Interestingly, EDD is also affected by 
other factors. Obviously, pre pregnancy weight and maternal age are also important factors affecting EDD12,13. 
According to Staneva14, experiencing psychological distress such as depression, anxiety, and/or perceived stress 
during pregnancy may increase the risk of preterm birth. In addition, the life and behavior habits during preg-
nancy also affect EDD15,16. Besides, some studies believed that the accuracy of EDD will gradually decrease with 
the increase of gestational weeks17. Therefore, the EDD should be determined once we obtain the data from LMP 
or the first accurate ultrasound examination18,19. However, some studies showed that only about 5% of births are 
born exactly on EDD, regardless of the LMP methods or ultrasound20.
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In the study of medical prediction methods, machine learning models are widely used since its high accuracy 
and high efficiency. Liang et al.21 used a linear regression model to find the blood metabolites that can predict 
gestational age and delivery date accurately. Heuvel et al.22 used convolution neural network (CNN) to estimate 
fetal head circumference, determine gestational age and delivery date. Fung et al.23 developed a machine learning 
approach based on ultrasound-derived and fetal biometric data to estimate gestational age and delivery date, 
but this article did not mention the type of ML. Schink et al.24 developed an algorithm to estimate the begin-
ning of pregnancy in German claims data focusing on the potential of the expected delivery date. Torres et al.25 
designed a system to calculate the gestational age and delivery date. They used images from the feet, face and 
ear of 130 newborn babies and a combination of fully convolutional networks, CNN and support vector regres-
sors (SVR). Kojita et al.26 used fetal MRI in early pregnancy to predict gestational age and EDD. However, the 
above-mentioned prediction models ignored the effect of time series factors. Accurate EDD needs to evaluate 
the physical condition of pregnant women, and analyze the recent trend by judging the fetal development status 
of pregnant women at all stages. Since the data of antenatal examination is time series data, the EDD is closely 
related to the results of each examination.

Therefore, this study attempted to combine prenatal examination with electronic medical records to establish 
a hybrid time series model based on Gradient Boosting Decision Tree and Gated Recurrent Unit (GBDT–GRU) 
to predict the expected date of delivery.

Methods
Framework for the estimated date of delivery.  This study aimed to predict the EDD by using a hybrid 
model of GBDT and GRU. GBDT-GRU model made more effective and reasonable decisions by obtaining infor-
mation from experience and mining hidden knowledge in data. The block diagram of the prediction process is 
shown in Fig. 1 and the detailed explanations of each step are as follows:

Step 1: Data preparation. The original maternal data obtained from EMR was processed with data cleaning 
and data transformation. Considering the different physiological characteristics during different periods of preg-
nancy, the processed data was divided into two datasets: dataset of the first trimester of pregnancy, and dataset 
of the second and third trimesters of pregnancy.

Step 2: Feature selection. Important features were selected in each dataset by ranking all feature importance 
of GBDT model, therefore avoiding the problem of information redundancy and reducing the dimension of data.

Step 3: EDD prediction using GBDT-GRU model. A preliminary prediction of EDD was achieved based on 
data of the first trimester with GBDT model, and considered as a new feature for the prediction of a more precise 

Figure 1.   GBDT-GRU framework for the estimated date of delivery.
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EDD. The new feature was combined with the original features of the second and third trimesters of pregnancy, 
and feed into a GRU model to generate the final EDD.

Step 4: Results evaluation. The prediction results of EDD with GBDT only, GBDT-GRU hybrid model and 
other methods were evaluated and compared.

Datasets preparation.  In this study, the data were collected from the electronic medical records (EMR) 
of pregnant women in a maternity hospital in eastern part of China. We extracted the physical examination and 
ultrasound records of the pregnant women who natural and full-term delivery between 2017 and 2020. The 
information was processed in such a way that the individual could not be identified. This study was approved by 
the ethics committee of Hangzhou Women’s Hospital and performed in accordance with the Declaration of Hel-
sinki (written permission with approval NO. 2019-02-2). Considering the necessity of predict EDD in advance, 
only the physical examination records before 35 weeks were used in this study. The count of physical examina-
tions of pregnant women in different gestational weeks is shown in Fig. 2. According to Fig. 2, there are too few 
pregnancy examinations between 13 and 22  weeks. In addition to the frequency of pregnancy examination, 
pregnant women have different examination items at different stages of pregnancy. Some ultrasound indicators 
only appear in the first trimester of pregnancy and will disappear with the increase of pregnancy weeks, such as 
the gestational sac (e. g, Features of the pregnancy examination Table 1). Therefore, we divided the dataset into 
two subsets according to the time of pregnancy examination: the first trimester of pregnancy dataset (pregnant 
week: 4 to less than 14 weeks); the second and third trimester of pregnancy dataset (pregnant week: 23 to less 
than or equal 35 weeks).

Due to the variability and irregularity of pregnancy examination dates, some samples will be lost. In this work, 
we deleted the samples that lacked key features. For example, a sample only has basic features such as height and 
weight, but it lacks all important features such as gestational sac size, FAC, HC and so on. Moreover, samples 
with more than 50% missing values were excluded from further analysis. The antenatal examination data is time 
series data and linear interpolation is suitable for missing value filling of time series data. The missing values 
of our data were filled by linear interpolation according to the time of two adjacent pregnancy examinations. 
The gap between the values of variables, resulting from the different dimensions and dimensional units of vari-
ables, could affect the performance of the model. Therefore, it was necessary to normalize the data to avoid the 
influence of the larger range of values on other features and improve the convergence speed of the model. The 
min–max normalization is used to scale the values of the result to range [0,1], which is represented in Eq. (1) as:

where x is the current eigenvalue, xmin and xmax are the minimum and maximum values of the current feature, 
and x∗ is the standardized eigenvalue. The prediction results generated by the model need to be further denor-
malized as shown in Eq. (2), where y is the true value and ypredict is the predicted value.

Feature selection.  GBDT27 is a boosting algorithm based on the classification and regression tree (CART). 
In this study, we used GBDT model for feature importance analysis and selection in the two datasets. The feature 
selection of GBDT is based on calculating the gain of the split nodes of the decision tree and using cumulative 
summation to evaluate the appropriateness of features28. The importance of a feature is measured by calculating 
the average importance of a feature in a single tree. GBDT uses formula (3) as a measure of influence, Îj is the 
relative influence.

(1)x∗ =
x − xmin

xmax − xmin

(2)y = ypredict ∗ (xmax − xmin)+ xmin

(3)Î2j =
1

M

M∑

m=1

Î2j (Tm)

Figure 2.   Count of the pregnant women in different pregnant weeks.
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where {Tm}
M
1  means a collection of decision tree, M represents the number of trees. The importance of feature 

j in a tree is calculated according to the formula (4):

where î2t  represents the squared loss, vt means a feature associated with j nodes, and J − 1 is the number of 
non-leaf node.

In the feature selection process, we generated the feature weights group W = {w1,w2, . . . ,wn} from prenatal 
examination datasets and selection results of GBDT model, where wi describes the weight of each feature. Feature 
selection was performed on the two subsets based on the contribution degree of each feature. In this paper, we 
added the features one by one according to the weights from high to low, and selected the features used in this 
experiment by comparing the error and running time.

Hybrid GBDT‑GRU model.  Since our aim was to predict the remaining days of pregnancy, the uncertainty 
of the future of pregnancy and the strict requirement of accuracy was really challenging. We designed a hybrid 
GBDT-GRU model and the structure was shown in Fig. 3. GBDT model is a kind of boosting algorithm, which 
belongs to the category of ensemble learning29. Among the machine learning methods used in practice, GBDT 
runs faster when training large amounts of data and have stronger robustness when processing outlier value. In 

(4)Î2j (T) =

J−1∑

t=1

î2t 1
(
vt = j

)

Table 1.   Features of the pregnancy examination.

Types Feature Notation Pregnant week

Static

Height Height of pregnant woman (cm) /

Age Age of pregnant woman /

P-W Pre-pregnant weight of pregnant woman (kg) /

Gravidity Gravidity /

Parity Parity /

F-SBP Systolic blood pressure of the first pregnancy examination /

F-DBP Diastolic blood pressure of the first pregnancy examination /

LMP Last menstrual period /

MD Menstrual days /

MC Menstrual cycle /

MA Menarche age /

MV Menstrual volume /

DY Dysmenorrhea (0,1) /

DH Disease history /

Time series

SBP Systolic blood pressure (mmHg) 4–35

DBP Diastolic blood pressure (mmHg) 4–35

FUH Fundal height (cm) 11–35

AC Abdomen circumference (cm) 11–35

FHR Fetal heart rate (times/min) 11–35

HRF High risk factors 4–35

BMI Body mass index (kg/m2) 4–35

GSL Gestational sac length (cm) 4–16

GSW Gestational sac width (cm) 4–16

GSH Gestational sac height (cm) 4–16

FP Fetal position 11–35

PMG Placental mature grading 12–35

AFI Amniotic fluid index (cm) 13–35

S/D Systolic to diastolic (ratio) 21–35

NT Nuchal translucency (cm) 10–14

CRL Crown-rump length (cm) 7–13

BPD Biparietal diameter (cm) 12–35

FAC Fetal abdomen circumference (cm) 12–35

FL Femur length (cm) 12–35

HC Head circumference (cm) 12–35

HGB Hemoglobin (g/L) 23–35

BLG Blood glucose (mmol/L) 23–35
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this study, we used the GBDT model for the first prediction with the dataset of first trimester of pregnancy, then 
took the predicted results as the initial EDD. As a new feature, the initial EDD was fused with the second and 
third trimester of pregnancy dataset to obtain a fused dataset.

GRU​30 and LSTM31,32 are variants of Recurrent Neural Network (RNN)33, they are proposed to solve the 
gradient disappearance and gradient explosion problems of traditional RNN in the process of long sequence 
training34. Different from LSTM, GRU only includes two gates: update gate and reset gate. The simplified structure 
enables GRU to effectively reduce the running time on the premise of ensuring the prediction accuracy. With 
the design of update gate and reset gate, GRU model can handle the time series data as well. The input layer of 
GRU is the time series from fused dataset, which can be noted as X = {x1, x2, . . . , xt} , where xi represents the 
record of the i th physical examination of pregnancy women. The hidden state ht−1 contains the information of 
the previous node. Where zt and rt denote the update gate and reset gate, respectively. Wr and Wz are the weight 
matrices from hidden states at previous time step to the update gate and reset gate, respectively. σ is a sigmoid 
function. The formula is expressed as follows:

The reset data obtained by the reset gate of the hidden layer data at the final moment is combined with 
the current input xt , and tanh is the activation function. The activation state of the hidden layer at the current 
moment h̃t can be defined as:

Then the same gate zt is used to select and forget memory, and the hidden state ht of time t  can be calculated 
by:

Finally, we used the result of the last moment of the output layer as the final EDD. Meanwhile, the final EDD 
could predict more accurately than initial EDD.

The parameters of these prediction models were determined by grid search and the models were validated 
with fivefold cross-validation. The grid search method combined all possible parameters, then trained each group 
of parameters to find the best combination of parameters. After five-fold cross-validation, the hyperparameter 
combination with the highest average score was taken as the best choice, and the model object was returned. The 
data used in the experiment included the records of multiple antenatal examinations of 5537 pregnant women, 
and dataset was divided into two sections, where 80% of dataset is used for training and the remaining 20% of 
dataset is used for testing. GRU model is composed of an input layer, a hidden layer and an output layer. During 
GRU training, the antenatal examination data are transformed into a three-dimensional matrix with a matrix size 
of (4430, X, Y), in which 4430 represents the number of pregnant women, X represents the number of antenatal 
examinations of pregnant women, and Y represents the number of characteristics of each antenatal examination 
of pregnant women. GRU model uses Adam optimizer to optimize the training process. This experiment is a 

(5)rt = σ(Wr · [ht−1, xt])

(6)zt = σ(Wz · [ht−1, xt])

(7)h̃t = tanh
(
W

h̃
· [rt ∗ ht−1, xt]

)

(8)ht = (1− zt) ∗ ht−1 + zt ∗ h̃t

Figure 3.   Structure of GBDT-GRU.
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regression task, so GBDT uses the mean square error “Ls” as the loss function of the algorithm. Table 2 shows 
the parameter settings of GBDT and GRU models.

Evaluation methodology.  The prediction errors were considered as an essential factor to evaluate the 
proposed model. In this study, the coefficient of determination (R2), Mean Absolute Errors (MAE) and Mean 
Square Error (MSE) were used as the evaluation indices of the models. The calculation formulas are as follows:

where y(i) and ŷ(i) are the real and predicted values, respectively, and y is the average value of real values.
In order to further assess the effectiveness of prediction based on the GBDT-GRU model, the bias in pre-

dicting EDD of each method was used as another critical index of prediction reliability. The Dbias is defined as 
formula (12), where Dreal is the actual date of delivery and Dpredict is the EDD.

By counting the proportion of people under different Dbias , we could get the performance and availability of 
different methods in practical applications. We calculated the accuracy under specific requirements Accuracybias 
by formula (13).

where N is the total number of pregnant women, nDbias
 means the number of pregnant women whose prediction 

bias are less than or equal to Dbias.

Ethics declarations.  This study is observational and presents no more than minimal risk of harm to sub-
jects and involves no procedures for which written consent is normally required outside the research context. 
The study was approved by the ethics committee of Hangzhou Women’s Hospital and performed in accordance 
with the Declaration of Helsinki (written permission with approval NO. 2019–02-2). The informed consent 
requirement for this study was waived by the ethics committee of Hangzhou Women’s Hospital. The researcher 
only accessed the database for analysis purposes, and all pregnant women data have been desensitized during 
the experiment.

(9)R2 = 1−

∑n
i

(
ŷ(i) − y(i)

)2
∑n

i

(
y − y(i)

)2

(10)MAE =
1

m

m∑

i=1

∣∣∣y(i) − ŷ(i)
∣∣∣

(11)MSE =
1

m

m∑

i=1

(y(i) − ŷ(i))
2

(12)Dbias = |Dreal − Dpredict |

(13)Accuracybias =
nDbias

N
∗ 100%

Table 2.   Parameters settings of GBDT and GRU models.

Model Parameters Values

GBDT

Learning rate 0.01

Loss “Ls”

N_estimators 500

Min_samples_leaf 4

Min_samples_split 3

Max_depth 3

GRU​

Batch size 100

Loss function MSE

Layers 1

Optimizer Adam

Hidden_size 37

Input size 18

Learning rate 0.002

Epochs 200



7

Vol.:(0123456789)

Scientific Reports |         (2022) 12:4892  | https://doi.org/10.1038/s41598-022-08664-5

www.nature.com/scientificreports/

Results
Description of the experimental data.  The dataset used in this study comes from a hospital in the 
eastern part of China, which includes a large amount of data such as the maternal ultrasound records, prenatal 
examination reports and so on. After data preprocessing, the pregnancy dataset was obtained includes 33,222 
pregnancy examination records and ultrasound records of 5537 pregnant women. Table 1 describes the features 
of the dataset.

Feature importance and feature selection.  We used GBDT to selected the features that have vital 
influences on EDD. The selected features were used as the input of the prediction model, which reduced the 
dimension of the input and solved the problem of information redundancy. Feature importance reflected the 
contribution of each variable in EDD. The results for feature selection of different datasets results are shown in 
Fig. 4a, c. The GSL was the most important variable to affect EDD in the first pregnancy dataset, followed by 
GSW, GSH, P-W, Age, MC and MD (Fig. 4a). At the same time, FAC was the feature with the highest weight 
value in the second and third trimester of pregnancy dataset, followed by FL, HC, BPD, AFI, UH, P-W, HGB, 
DBP, BLG, BMI, Age and SBP (Fig. 4c).

We added the features one by one according to the weights from high to low. The corresponding MAE values 
and running time after training the different number of features with GBDT are shown in Fig. 4b, d. We chose the 
feature group with the shortest running time in the case of the lowest MAE. Finally, seven features were retained 
in the first pregnancy dataset and 13 features were reserved in the second and third trimesters of pregnancy data. 
Table 3 shows the summary statistics of these parameters.

Evaluation and comparison of different models.  In order to effectively evaluate the experimental 
results of GBDT-GRU model, we compared the prediction results of the Naegele’s rule and some machine learn-
ing models. The machine learning models we used for comparison include Random Forest (RF), Support Vector 
Regression (SVR) and LSTM. RF is a powerful algorithm for classification and regression, the prediction is made 
by majority vote or averaging the results of the ensemble35,36. SVR37 is an extension of the concept of Support 
Vector Machine (SVM), which is used for regression purpose. Based on the above-mentioned features in Table 3, 
we constructed these machine learning models to predict the EDD.

The average values of the results after fivefold cross-validation are shown in Table 4. We provided a perfor-
mance comparison of the prediction models in different datasets. First, GBDT, RF and SVR were used to predict 
the initial EDD from the first trimester of pregnancy dataset. Second, the final EDD was gained with the time 
series model based on the fused dataset. Finally, MSE, R2 and training time were used to compare the prediction 

Figure 4.   Analysis result for feature selection of different datasets. a shows the feature importance of the first 
pregnancy. b shows the MAE and running time with different number of features. c represents the feature 
importance of the second and third trimester of pregnancy. d represents the MAE and running time with 
different number of features in the second and third trimesters of pregnancy data.
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results of different models. Table 4 shows that the GBDT-GRU prediction model outperforms Naegele’s rule, all 
the single models and other hybrid models, achieves average MSE of 41.73 and R2 of 0.84. Moreover, comparing 
with the hybrid LSTM models, the hybrid GRU models have a shorter training time.

According to the difference between EDD and the actual date of delivery, we recorded and compared the 
accuracy rate of each model under four categories: Dbias smaller or equal to zero, two, four and six. The accuracy 
of different methods under different Dbias is shown in Fig. 5.

As shown in Fig. 5, our GBDT-GRU models achieved better prediction results than other methods for differ-
ent Dbias . The accuracy of EDD by GBDT-GRU model was 6.9%, 32.6%, 53.6% and 69.8%, when Dbias< = 0, 2, 4 
and 6 days. Significantly, with the increase of Dbias , the accuracy advantage of GBDT-GRU model is more obvious.

Discussion
In this study, we used a hybrid model of GBDT and GRU to generate features from EMR and to predicted the 
EDD of pregnant women. The accuracy of the GBDT-GRU model was superior to other prediction methods. 
In addition, we selected the features that have great influence on the EDD to make the model have better per-
formance of prediction.

The experimental results showed that the performance of hybrid models (GBDT-GRU, GBDT-LSTM, RF-
GRU and RF-LSTM) were better than all single models. Hybrid models achieved overall MSE is smaller than 
44.12 and R2 is larger than 0.81. This shows that hybrid models have better generalization ability compared to 
other models for EDD, which may better serve and support the medical staff in decision making. Furthermore, 
the GRU presented better performance than LSTM when dealing with the time series data, which was benefited 
by the simpler gates structure of GRU. The GBDT-GRU exhibited the best performance among all models. As far 
as we know, this study was the first attempt to apply a hybrid model to the data of different stages of pregnancy, 
which could adjust the EDD according to the characteristics of each period of pregnancy. Therefore, it was obvi-
ous that our models were well suitable for the EDD of healthcare service.

As shown in Fig. 5, the proposed model not only optimizes the model running time but also improves the 
prediction accuracy. When Dbias is less than six days, the accuracy of GBDT-GRU model is 9.1% higher than the 

Table 3.   Summary statistics of parameters.

First pregnancy Value (Mean ± SD) The second and third trimesters of pregnancy Value (Mean ± SD)

Pregnant days 54.2 ± 10.8 Pregnant days 218.5 ± 14.9

GSL 3.6 ± 1.6 FAC 26.8 ± 2.4

GSW 2.7 ± 1.3 FL 5.8 ± 0.5

GSH 2.1 ± 1.2 HC 28.5 ± 1.8

P-W 53.9 ± 7.2 BPD 7.9 ± 0.6

Age 29.3 ± 3.4 AFI 11.7 ± 2.6

MC 30.6 ± 4.4 FUH 28.8 ± 2.5

MD 5.9 ± 1.1 P-W 53.5 ± 7.2

/ / HGB 116 ± 10.1

/ / DBP 67.3 ± 8.1

/ / BLG 4.3 ± 0.4

/ / BMI 24.4 ± 2.6

/ / Age 29.3 ± 3.4

/ / SBP 113.4 ± 10.7

Table 4.   Performance of different methods compared in two datasets.

Datasets Method MSE R2 Training time (seconds)

First trimester of pregnancy dataset

Naegele’s rule 60.74 / 0

RF 48.34 ± 0.2 0.61 ± 0.01 6.3

SVR 48.66 ± 0.2 0.60 ± 0.01 620

GBDT 46.73 ± 0.2 0.63 ± 0.01 3.9

LSTM 47.35 ± 0.2 0.65 ± 0.01 436

GRU​ 46.89 ± 0.2 0.65 ± 0.01 205

Fused dataset

SVM-LSTM 48.30 ± 0.2 0.80 ± 0.01 1025

RF-LSTM 44.12 ± 0.2 0.81 ± 0.01 560

GBDT-LSTM 46.13 ± 0.2 0.81 ± 0.01 510

SVM-GRU​ 46.60 ± 0.2 0.82 ± 0.01 970

RF-GRU​ 43.49 ± 0.2 0.83 ± 0.01 250

GBDT-GRU​ 41.73 ± 0.2 0.84 ± 0.01 245
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Naegele’s rule. In addition, the results of this study were helpful for the EDD and had development of guidelines 
for clinical delivery treatments.

The clinical research about EDD was still focused on ultrasound and LMP, such as head circumference, cervi-
cal length, some improved formula methods38 and so on. These studies provided a reference for feature selection 
of machine learning. In addition, datasets of EMR provided great potential for EDD in pregnancy. We found 
that several new features were closely related to childbirth, which could enhance the accuracy of the EDD. The 
results of our study indicated that days of pregnancy, gestational sac size have a great influence on EDD in the first 
trimester of pregnancy. And for the second and third trimester of pregnancy, the influence of days of pregnancy, 
FAC, AFI and BPD were relative important features. Moreover, the importance of features given by GBDT model 
provides a reference for doctors to pay more attention to the key physiological indicators of pregnant women.

Our study also had several limitations that need to be improved. First, this study only used physical exami-
nation data and ultrasound data for prediction. We did not consider the influence of laboratory parameters on 
EDD. Second, the primary limitation of our study was a possible selection bias due to the center study with 
small sample size, and its accuracy and practicality should be verified in prospective studies with larger samples.

Conclusions
In this paper, a hybrid model of a GBDT model and GRU model was proposed to predict EDD. For a more 
accurate EDD, we established a hybrid model of the parameters related to pregnant women and fetal physical 
examination. The results show that GBDT-GRU achieves a satisfactory outcome in the experiment and the 
accuracy of the EDD can be improved by adjusting the number of features. Therefore, our hybrid model is an 
effective method to support clinical decision making and artificial intelligence methods have great application 
potential in obstetrical practice. Future studies should also solve the problem of predicting the EDD within the 
scope of preterm delivery.

Data availability
The data that support the findings of this study are available from Hangzhou Women’s Hospital, but restric-
tions apply to the availability of these data, which were used under license for the current study, and so are not 
publicly available. Data are however available from the authors upon reasonable request and with permission 
of Hangzhou Women’s Hospital.
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Figure 5.   The accuracy of different methods under different Dbias.
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