
Connectotyping: Model Based Fingerprinting of the
Functional Connectome
Oscar Miranda-Dominguez1*, Brian D. Mills1, Samuel D. Carpenter1, Kathleen A. Grant1,3,

Christopher D. Kroenke1,2,3, Joel T. Nigg4,1, Damien A. Fair1,2,4*

1 Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, United States of America, 2 Advanced Imaging Research Center, Oregon

Health and Science University, Portland, Oregon, United States of America, 3 Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon,

United States of America, 4 Department of Psychiatry, Oregon Health & Science University, Portland, Oregon, United States of America

Abstract

A better characterization of how an individual’s brain is functionally organized will likely bring dramatic advances to many
fields of study. Here we show a model-based approach toward characterizing resting state functional connectivity MRI (rs-
fcMRI) that is capable of identifying a so-called ‘‘connectotype’’, or functional fingerprint in individual participants. The
approach rests on a simple linear model that proposes the activity of a given brain region can be described by the weighted
sum of its functional neighboring regions. The resulting coefficients correspond to a personalized model-based connectivity
matrix that is capable of predicting the timeseries of each subject. Importantly, the model itself is subject specific and has
the ability to predict an individual at a later date using a limited number of non-sequential frames. While we show that there
is a significant amount of shared variance between models across subjects, the model’s ability to discriminate an individual
is driven by unique connections in higher order control regions in frontal and parietal cortices. Furthermore, we show that
the connectotype is present in non-human primates as well, highlighting the translational potential of the approach.
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Introduction

It is now largely recognized that while the endeavor is vast,

understanding brain organization and dynamics will be critical for

the improved well-being of our society. From technological

advancements [1] to improved health outcomes, a better

characterization of this organ is likely to be advantageous to

several fields of study. Particularly valuable will be understanding

variation– not simply variation in brain organization across

different populations, but also between individuals.
Studies of the brain and in particular those that utilize

functional neuroimaging, have historically largely focused on the

shared variance across large populations. These studies often

neglect the vast heterogeneity that exists in both typically

developing and atypical populations (see [2]). Similar to the

Human Genome Project, which has brought unprecedented

progress in science, technology, and medicine through the

sequencing of an individual’s genome, identifying and character-

izing the unique and individualized functional architecture (i.e. the

connectotype) of the human brain may have parallel utility.

The primary goal in the current report was to determine

whether resting-state functional connectivity is capable of identi-

fying a so-called ‘‘functional fingerprint,’’ in individuals (i.e., a

specified model of the whole brain specific to a single person –see

methods). In particular, we examined if the proposed methodology

is A) able to predict the activity of a given ROI simply by knowing

the activity of all of the other brain regions at a given point in time,

B) if so, determine if the generated models act as a unique (fMRI-

derived) brain signature which is specific to an individual (i.e.
similar to a genotype), and C) to determine what connections and

brain regions are most highly variable across subjects (i.e. which

connections drive the ability to distinguish an individual).

Resting state functional connectivity MRI (rs-fcMRI) measures

correlate spontaneous brain activity between brain regions while

subjects are at ‘‘rest’’ – not performing a goal directed task. The

approach in the current manuscript deviates from more traditional

measurements of functional connectivity [3] and follows several

basic steps to generate a simple linear mathematical model of an

individual. The idea is based on the principle that the activity in

any given ROI can be predicted by the weighted sum of the

activity of its functional neighboring regions (i.e. all other brain

regions). While alternative approaches have been proposed

elsewhere [4–13], here we propose and show that 1) this

individualized model is highly reliable and has the ability to

classify an individual at a later date using a limited number of non-

sequential frames (defined as a volume of the corresponding

BOLD signal from all the ROIs used in a given parcellation at

each sampling time i.e. TR), 2) the observed phenomena is present

not only in humans but in non-human primates, highlighting the

preserved network dynamics across species and the translational

potential the approach, and 3) that brain regions and connections
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important for higher order processing (i.e., frontal-parietal systems)

are critically important for determining the connectotype. Just as

unique information within a patient’s genome can govern how an

investigator or even a clinician approaches an individual, we hope

that the connectotype will be equally informative with this regard

in time.

Methods

Subjects
Experiments were performed in data acquired from 27 healthy

adult humans (16 females) age 19 to 35 years, and 11 adult male

macaques.

Humans
All procedures were approved by the Institutional Review

Board at Oregon Health and Science University. Participants were

recruited through advertisements in the community, such as

posted flyers, online ads and on Oregon Health and Science

University’s clinical trials website. Potential participants were

screened on the phone for initial eligibility. Exclusion criteria

included a history of neurological trauma, a head injury with loss

of consciousness, a medical condition which could affect cognition,

or current substance abuse. Participants were also excluded for

having a current depressive or manic episode, a history of

psychosis, bipolar disorder, learning disability, ADHD, current

substance addiction, or for taking long acting psychoactive

medication. Informed consent was obtained for all participants.

Participants had to have normal use of both hands, had to be

right-handed and had to have normal or corrected-to-normal

vision and normal hearing. Participants were also excluded if they

had any contraindications to undergoing an MRI scan, such as

pregnancy, metal in the body or a history of claustrophobia.

Eligible participants were then scheduled for an initial visit. At this

Table 1. Frames in group H5.

Data after movement correction

First scan Second scan

Subject Frames Time (min) Frames Time (min)

1 589 19.63 544 18.13

2 565 18.83 544 18.13

3 565 18.83 314 10.47

4 522 17.40 447 14.90

5 514 17.13 548 18.27

doi:10.1371/journal.pone.0111048.t001

Figure 1. Individualized Markov ROIs. For each T1-weighted MP-RAGE volume, we individually segmented each brain after individual
registration to the fsaverage surface using Freesurfer. An individual model was calculated in the 20 subjects of whom individualized ROI generation
was possible (see methods).
doi:10.1371/journal.pone.0111048.g001
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visit participants completed two semi-structured clinical interviews,

3 modules from the Kiddie Schedule for Affective Disorders and

Schizophrenia [14] modified for adults to assess child disorders,

and one from the Schedule for Affective Disorders and Schizo-

phrenia [15] modified for DSM-IV and the Structured Clinical

Interview for DSM Disorders [16]. Participants were excluded if

those interviews revealed any of the psychiatric exclusion criteria

outlined above.

Participants also completed an brief intelligence test (WASI,

Wechsler Abbreviated Scale of Intelligence, [17] and an achieve-

ment test (WRAT-4, Wide Range Achievement Test, [18]). These

measures were used to assess IQ, as well as to identify potential

learning disabilities. Participants were excluded if they had an

estimated full scale IQ under 85 or a suspected learning disability,

as indicated by a difference of more than 1.5 standard deviations

between cognitive functioning and achievement scores (as

obtained in WASI and WRAT).

At their MRI visit participants were screened for substance

abuse with a urine toxicology screen administered at the beginning

of the visit. The toxicology screen included tetrahydrocannabinol

(THC), cocaine, opioids, amphetamine and methamphetamine.

Participants were excluded from completing the MRI scan if they

tested positive for cocaine, opioids, amphetamines or metham-

phetamines, but not if they tested positive for THC.

Group H27. The human sample included 27 healthy

subjects. The average age was 2764 years with a minimum age

of 19 and a maximum age of 35. Sixteen subjects were females.

Group H5. This group comprises a subset of 5 individuals

from group H27. Each participant had 510 or more frames (after

motion correction) on a second scan acquired 1 week after the first.

This sample was used to validate the model’s ability to make

individual predictions of a subject’s identity on a subsequent scan

(out-of sample data). The number of frames for each participant is

listed in Table 1.

Macaques - Group M11
Eleven cynomolgus macaques were also examined (all adults,

ages 5.460.40, min 4.8, max. 5.9 yo), and were chosen to have no

common parents or grandparents, from the pedigreed Oregon

National Primate Research Center breeding colony. For approx-

imately 6 months prior to imaging, each monkey was individually

housed in a stainless steel cage measuring 1.660.860.8 m
(Allentown Caging, Allentown, NJ, USA) in a vivarium with

12 h light/dark cycle (with lights on at 7 am) that was maintained

at 2161 uC and 30–50% humidity. Each animal had visual,

auditory, and olfactory access to other monkeys in the vivarium,

and limited physical access to a neighboring monkey. The

monkeys were fed a diet of fresh fruit and 1 g banana-flavored

pellets in quantities sufficient to maintain a positive caloric intake.

Figure 2. Connectotyping: Once the time courses are created for each ROI (panel A1), a mathematical model is fit to predict the
activity of each ROI given its historical values (panel A2). Then, the estimations are subtracted from the original time courses. Next, each ROI’s
residual is modeled as the weighted sum of the residuals of all other ROIs (panel A3). Finally, all the coefficients are grouped in a matrix, or ‘‘the
model’’. Each subject’s timecourses can be used to make an estimation of the actual values (panel B1) and the fit can be quantified by the correlation
coefficient of measured and estimated timecourses. This approach allows us to test the model in the same subject the model was obtained from or
using a different subject (panel B2).
doi:10.1371/journal.pone.0111048.g002
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All animal procedures were conducted in accordance with the

‘‘Guidelines of the Committee on the Care and Use of Laboratory

Animal Resources’’ (National Health Council, Department of

Health, Education, and Welfare, ISBN 0-309-05377-3, revised

1996). Prior to their implementation, procedures were approved

by the Institutional Animal Care and Use Committee (IACUC) of

the Oregon National Primate Research Center as they were in

compliance with all local, state, and national regulations pertain-

ing to the humane use of animal subjects.

No animals were sacrificed to obtain the data in this paper.

Environmental enrichment is provided to all non-human primates

in the protocol in terms of each animal had visual, auditory, and

olfactory access to other monkeys in the vivarium. Monkeys are

provided either pair housing with another monkey for 2 hours

each day or tactile contact with a neighboring monkey through a

grooming partition in the housing cage. Finally, all monkeys are

provided with enriching toys, mirrors, foraging materials and the

ability to control their meal patterns through the operant panel in

the housing cage.

Imaging acquisition and processing
Human MRI data acquisition. All MRI scans were

performed on a Siemens 3 Tesla TIM-TRIO system. Structural

images were obtained using a sagittal magnetization-prepared

rapid gradient echo (MP-RAGE) three-dimensional T1-weighted

sequence (TR = 2.3 s, TE = 3.58 s, flip angle = 10u, TI = 900 ms,
voxel size = 16161 mm, slices = 160). Functional images were

obtained using a gradient-echo, echo-planar sequence sensitive to

blood oxygen level-dependent (BOLD) contrast (TR = 2000 ms,
TE = 30 ms; FOV = 240 mm3; flip angle = 90u;
3.7563.7563.8 mm). Full brain coverage was obtained with 33

contiguous interleaved 3.8 mm axial slices acquired parallel to the

plane transecting the anterior and posterior commissure. Steady

state magnetization was assumed after four frames (,8 seconds).

For the resting-state fMRI, participants completed either two

scans consisting of 150 acquisitions (5 participants) or one scan of

600 acquisitions (22 participants). A longer scan was introduced in

order to insure that sufficient volumes would be retained for data

analysis after removal of volumes identified as having excessive

movement.

Human image processing. Functional data preprocessing

involved several steps. Each dataset was corrected for odd vs. even

slice intensity differences attributable to interleaved acquisition

without gaps. Head movements were first corrected by re-aligning

all volumes to the middle volume of the first run using a six

parameter motion-correction algorithm within and across runs.

Intensity normalization was applied to each run to a whole brain

mode value gradient of 1000. Atlas transformation into Talairach

coordinate system of the functional data was computed for each

individual via the MP-RAGE, and then each run was resampled in

atlas space on an isotropic 3 mm volume combining the six

parameters for movement correction and atlas transformation in

one interpolation. As an additional step, the frame-by-frame

spatial deviations of the acquisition time-series were assessed using

the temporal derivative of the time courses [19,20].

Several additional preprocessing steps were used for the rs-

fcMRI data to reduce spurious variance unlikely to reflect

neuronal activity. These steps included: (1) a temporal band-pass

filter (0.009 Hz , f,0.080 Hz) and spatial smoothing (6 mm full

width at half maximum), (2) regression of six parameters obtained

by rigid body head motion correction, (3) regression of the whole

brain signal averaged over the whole brain, (4) regression of

ventricular signal averaged from ventricular ROI, and (5)

regression of white matter signal averaged from white matter

ROI. Regression of first order derivative terms for the whole

brain, ventricular, and white matter signals were also included in

the preprocessing. Analyses were also conducted without the

whole brain regression.

Macaque MRI scanning. Imaging was performed during a

single session for each animal subject on a 3T Siemens Tim Trio

Figure 3. Modeling results. Panel A shows the measured and
predicted timecourse using both the pinv and tsvd methods of the ROI
L-V1 for the first subject of group H27 (20 frames are shown from the
Markov parcellation). Panel B shows the distribution of the correlation
coefficients between the predicted and measured ROIs calculated by
the pinv and tsvd methods, respectively. Panels C shows the
distribution of correlation coefficients between predictions and
measured time courses for 27 subjects, using the FVE and Markov
parcellations, pinv and tsvd-based predictions are shown on each panel.
Thin lines indicate the range of values, thick lines correspond to the 25
to 75 percentiles and the vertical marker is the median of each
distribution. Both methods show a strong ability to predict the
timeseries of a given ROI within an individual.
doi:10.1371/journal.pone.0111048.g003

Connectotyping: Model Based Individualized Connectivity

PLOS ONE | www.plosone.org 4 November 2014 | Volume 9 | Issue 11 | e111048



scanner with a 15-channel knee coil adapted for monkey head

scanning. Subjects were sedated with an initial dose of ketamine

(5 mg/kg), intubated, and maintained under 1% isoflurane

anesthesia for the duration of MRI procedures. Physiological

monitoring throughout anesthesia included heart rate, respiration,

and peripheral oxygen saturation. Data acquisition included four

high-resolution T2-weighted structural images (TR = 3200 ms,
TE = 497 ms; 0.5 mm2 in plane resolution, 1 mm slice thickness, 56

slices, FOV = 1286128 mm), which were averaged to improve

signal-to-noise ratio. A functional MRI scan lasting 30 minutes

was then begun exactly 45 minutes after the time of ketamine

administration (delaying the beginning of the acquisition as

necessary to maintain the time since ketamine induction across

all animals), using a gradient echo echo-planar imaging (EPI)

sequence sensitive to BOLD contrast (TR = 2070 ms, TE = 25 ms,
FA = 90u, 1.561.561.5 mm3 voxels, 32 slices with interleaved

acquisition, FOV = 96696 mm). A fieldmap scan was acquired

(TR = 450 ms, TE = 5.19 ms/7.65 ms, FA = 60u, 1.2561.2562

mm3 voxels, 40 slices, FOV = 1206120 mm) to correct for image

distortion (see below).

Macaque Image Processing. The raw fMRI data under-

went standard fMRI preprocessing using the FMRIB software

library’s FEAT preprocessing tools. This included slice-timing

correction, rigid-body correction for head motion, unwarping of

fieldmap distortions, and rigid-body co-registration of the fMRI

volumes with the high-resolution T2-weighted structural image.

The structural image was transformed using 12-parameter affine

registration to conform to a T2-weighted atlas image, which was

an average of 112 monkeys (http://brainmap.wisc.edu/monkey.

html). This atlas image was also linearly registered onto the widely-

used macaque F99 atlas, freely available as part of the CARET

software package (http://brainvis.wustl.edu/wiki/index.php/

Main_Page). Thus, the registration parameters obtained from

each step allowed raw fMRI images to be transformed into F99

space, combining motion correction, fieldmap unwarping, and

atlas transformation in one interpolation step. As with the human

data, several additional steps were also taken to prepare the data

for connectivity analyses [21], including temporal bandpass

filtering (0.009 Hz , f,0.080 Hz), spatial smoothing (3 mm

full-width at half-maximum), and regression of nuisance signals.

The latter included the whole-brain signal and the six parameters

related to rigid-body motion correction. Analyses were also

conducted without the whole brain regression.

Parcellations
Four ROI atlases were used, all of which were based on

histological studies done in the macaque and deformed to fit

homologous areas on the human brain using methods that have

been validated in prior studies [22–24]. These atlases are the

Fellemen and Van Essen (FVE) [25], Lewis and Van Essen (LVE)

[26], Paxinos [27], and the Markov atlases [28], each with a

variable number of regions. Paxinos atlas = 351 ROIs, Mar-

kov = 184 ROIs, LVE = 176 ROIs, FVE = 156 ROIs. The four

cortical parcellations were deformed from the macaque to the

human PALS atlas using the validated deformation mapping

algorithm [29,30]. Time series were computed for cortical regions

of interest (ROIs) by averaging the signal intensity across all voxels

within a given ROI at each time point.

Human-Macaque Registration: ROI examination across species

was conducted utilizing surface based atlas registration using the

CARET software package. The process uses a spherical,

landmark-based registration algorithm [29,30]. Landmarks for

registration included a standard set of regions that are likely to be

homologous across species including visual areas V1, V2, MT, and

frontal eye fields, primary auditory cortex, olfactory, gustatory,

somatosensory, and primary motor cortex [24,30,31]. Differences

in overall cortical shape are minimized by mapping each cortical

surface to a standard configuration (i.e., a sphere), then, each

sphere is registered to one another constrained by this set of

homologous landmarks. Deformation from macaque to human

cortex results in a large non-uniform expansion of parietal,

temporal, and frontal cortex, and much less expansion in

presumably conserved regions between species (i.e. V1, motor

cortex, etc). Landmark-based registration provides a powerful

method for analyzing structural and functional organization

between humans and macaques [23,32,33]. Each of the four

cortical parcellations were deformed from the macaque to the

Figure 4. Predicting subjects in group H5. Model (pinv and tsvd) predicting same subject on second scan date for group H5 (i.e.
predicting itself versus predicting others) for the FVE and Markov parcellations. Case "Itself" corresponds to the result when the model,
regularization, and prediction were performed on the same subject. "Itself reg. in others" is the case when model and prediction were performed in
the same subject, but regularization was performed in a different subject. "Fooled by regularization" comes from the comparison where the
regularization and prediction were performed in the same subject, but the model was obtained from a different subject. The remaining combinations
are concatenated in the case "Others". In all instances, the model performs more strongly in predicting self versus others; however, a significant
amount of variance is accounted for in the ‘‘other’’ cases.
doi:10.1371/journal.pone.0111048.g004
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human PALS atlas using the deformation mapping provided by

the above procedures.

We conducted the analyses with parcellated ROIs in two ways.

Analyses were initially conducted on the atlas based ROIs, which

does not account for possible variations in individual neuroanat-

omy. Therefore, we also registered one of our atlases to each

individual subject via surface registration (see Figure 1). This

process is outlined in the following subsection.

Individualized Markov Parcellation. First, the Markov

atlas was transformed from the PALS surface to the fsaverage

surface (FreeSurfer average) via the deformation maps provided by

the Surface Management System Database and WebCaret Online

Visualization (http://sumsdb.wustl.edu/sums/index.jsp). Then,

each subject’s T1-weighted MP-RAGE underwent the ‘recon-all’

segmentation procedure from the Freesurfer software (http://

surfer.nmr.mgh.harvard.edu). One of the many outputs is a gray

matter surface and gray matter volume, specific to each subjects’

anatomy. Using Freesurfer surface to surface registration tools,

each segmented grey matter volume was converted to a 3D surface

and registered to the fsaverage surface. These mappings were then

used to register the Markov parcellation atlas to each individual’s

surface anatomy. The resulting subject defined regions were

transformed from each subject’s individual gray matter surface to

1 mm3 volume space using a gray matter mask to assign the

voxels. The individualized regions were then transformed from 1

mm3native space to 3 mm3 Talaraich space to match the atlas

registered volume data for each individual. Regions on the order

of 1 cm2 or less could not be accurately accounted for in a 3 mm3

isotropic volume in all subjects, likely due to individual variability

in cortical folding and gray matter thickness. Thus, a total of seven

subjects were excluded as they had one or more regions fail this

transformation step. The resulting regions, individualized to each

subject’s gray matter, were used to create time courses from the

processed BOLD data (see Figure 1).

Software
A variety of software packages were used for image processing:

These included in-house 4dfp software from Washington Univer-

sity (http://nrg.wikispaces.com/), FSL (http://fsl.fmrib.ox.ac.uk/

fsl/fslwiki/), and freesurfer (http://surfer.nmr.mgh.harvard.edu/).

Areal region of interest (ROI) deformations were done as part of

the freely available CARET software package http://brainvis.

wustl.edu/wiki/index.php/Main_Page). Surface ROIs for each

area were converted to volume using caret software (3 mm
thickness in humans and 1.5 mm thickness in macaques).

Deformation maps from the Surface Management System

Database and WebCaret Online Visualization (http://sumsdb.

wustl.edu/sums/index.jsp). Registrations were then carried out

using FSL’s linear (flirt) and nonlinear (fnirt) registration tools.

Tissue segmentation into white and gray matter was performed on

the T1 image using Freesurfer software. All other analyses were

calculated using Matlab.

Connectotyping
In brief, the model was constructed by the following general

procedures. First, in order to eliminate spurious correlations,

autocorrelations were removed from all timecourses. Next, to

obtain the model, each ROI residual was modeled as the weighted

sum of all the other ROIs residuals in the same frame. Such

modeling results in an underdetermined system which we chose to

solve using the pseudoinverse (for comparison) and truncated

singular value decomposition. Testing the strength of the model

occurred using several approaches: timeseries prediction, in-

sample and out-of-sample individual classification, and prediction.
Removing autocorrelations. Autocorrelations that pre-

vailed after filtering (preprocessing) were removed from all the

time courses in order to eliminate spurious correlations. Those

autocorrelations are always present even in the absence of evoked

changes in neuronal activity due to the dispersive nature of the

Figure 5. Classification power quantified by an ROC curve (using tsvd), group H5. The left panel shows the distributions (top) and the
corresponding histograms (bottom) of the correlations of each subject predicting itself (Pos) and predicting others (Neg). The colored line is the
cumulative distribution of correlations of the entire data set. The optimal classification is achieved when the threshold is set to 0.7825, which
corresponds to the 5.83% of the largest correlation coefficients. This threshold leads to a true positive rate (TPR) of 1 and a false positive rate (FPR) of
0. As shown the classification accuracy is 100% with marked distinctions in the distributions. The performance here using tsvd was stronger than that
of the pinv (Figure S4 in File S1). Analyses were performed using the Markov atlas.
doi:10.1371/journal.pone.0111048.g005
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response at each voxel [34]. Autocorrelations could also be related

to slight changes in the local magnetic field due to scanner

instabilities [35]. To remove autocorrelations, a linear model was

fit to predict each ROI’s time course as the weighted sum of its

historical values:

ROI i~ai{1ROIi{1zai{2ROIi{2z � � �zai{mROIi{m, ð1Þ

where ROIi{1 represents the normalized bold signal of a given

ROI at the time i. ROI i is the estimated activity of that given ROI

at the time i (as predicted by the model), m indicates the historical

values included in the model, and ai are the weights (fits) used in

the prediction at each time i.
Different values of m were tested. At the end, we set m~5, that

is a balanced number between the predictions and the number of

included parameters.

Then, the residuals were calculated by subtracting the

prediction from the actual activity for each ROI:

r~ROI{ROI ð2Þ

On average, the correlation coefficient between the predicted

and actual ROI’s activity was 0.8540 with a standard deviation of

0.0513. The residuals were used to obtain a functional

connectome model for each subject.

Obtaining the model. For each parcellation and processing

protocol, the residual’s ensemble was modeled as the weighted

sum of all the others residuals, as shown in the following (Note a

brief synopsis of our approach is provided in Figure 2):
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Figure 6. Predictions using individualized ROIs. A) This panel shows the average correlation coefficient when predicted and measured BOLD
activity is compared. On the left, the results using the pinv method is used to calculate the model using 45% of the frames and predicting 15% of
fresh in-sample data. On the right, indicates the 4 distinct groups when the tsvd method is used to predict data using 45% of frames to obtain a
model, 15% of fresh in sample-data to select the number of singular values to preserve, and 15% of fresh in-sample data to predict bold activity
according to the regularized model. B) This panel summarizes the predictive power using receiver operating characteristic curves (here, the singular
values where calculated by finding stable norms of residuals and estimations, as described in methods).
doi:10.1371/journal.pone.0111048.g006
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where M is the number of ROIs for each parcellation, rj,i is the

residual of the ROI j (this index can go from 1 to M) at the time i,
r̂rj,i is its estimation, and bj,k,i is the optimized coefficient used to

predict the ROIs residual j at the time i from the residual k at the

time i (both, i and j goes from 1 to M). n indicates how many

historical values are included in the prediction.

Condensed version of equation 3 is

~̂rr~rri~Bi~rrizBi{1~rri{1z � � �zBi{n~rri{n: ð4Þ

Here, ~̂rr~rri is a vector that concatenates the expected values from all

the required ROIs in a given parcellation at time i. ~rri is the

ensemble residuals at time i that were obtained from the previous

analysis and B is a directed matrix of coefficients. Here, n also

refers to the historical information used in the prediction. Setting

n~0 makes ~̂rr~rri depend only on concurrent information, while

increasing n adds historical information about the neighbors in the

prediction. In this study we did not include historical information,

i.e. we set n~0. Future studies may include historical information,

then n will need to be adjusted according to the required number

of frames.

y~Ax, ð5Þ

where y~~̂rr~rri, and A and x are the reordered B’s and

~rri,~rri{1, � � � ,~rri{n considered in the calculation of y. From here,

the problem consists on solving the equation 5 for A. A can be

x’s pseudo-inverse or by regularization.

Pseudo-inverse (PINV). From linear algebra, A can be

solved as

Apinv~yxT xxT
� �{1

: ð6Þ

While the pseudo-inverse method renders the solution with the

lowest discrepancy between the predictions and measurements (in

a least squares sense), its use often leads to over-fitting and its

predictions are highly susceptible to noise on ill-posed systems [2].

The coefficients calculated in ill-posed systems tend to change in

sign and have a large norm. Thus, it provides a higher bound

estimate but cannot be relied on without cross validation.

Regularization (TSVD). There are alternative approaches

to solve equation 5 robustly, which means that instead of expecting

solution is a compromise between predictive power and another

criteria, such as robustness in regards to misestimating parameters

or maximizing predictions in out-of-sample data.

In this paper, we used the truncated singular value decomposition

method (tsvd). In brief, from equation 5, x is factorized into its

x. The

x is recalculated using its more

The svd of x is given by

x~USVT , ð7Þ

Where U and V are matrices that contain the left and right

singular vectors of x.S is a diagonal matrix that contains the

singular values of x sorted decreasing monotonically

S~

S1 0 � � � 0

0 S2 � � � 0

..

. ..
.

P
..
.

0 0 � � � SM

2
66664

3
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,

S1§S2§ � � �§SM§0:

Figure 7. Predicting subjects in group M11 (11 Macaques). Distribution of average correlation coefficients for group M11 predicting itself
versus predicting others. For tsvd, case 1 (itself): model, regularization, and prediction were performed in the same subject. Case 2 (itself regularized in
others): model and prediction were performed in the same subject, but regularization (4) was performed in a different subject. Case 3 (fooled by
regularization): the regularization and prediction were performed in the same subject, but the model was obtained from a different subject. Case 4
(others): all the remaining possibilities.
doi:10.1371/journal.pone.0111048.g007

Connectotyping: Model Based Individualized Connectivity

PLOS ONE | www.plosone.org 8 November 2014 | Volume 9 | Issue 11 | e111048

Equation 4 can be condensed again as

solved by calculating

the maximum match between predictions and measurements, the

singular value decomposition (svd), which is the product of 3 matrices.

One of the matrices represents the singular values of

singular values indicate, among other things, how susceptible to

noise the system is. Then, by cancelling (truncating) some of the

more problematic singular values,

stable singular values and then the system (equation 5) is solved

(for a detailed explanation see [36,37]). One of the problems with

this sometimes it method is that sometimes it is difficult to decide

the cutoff to pass/cancel singular values.



The smaller singular values of x are more susceptible to noise. In

general, setting those singular values to zero makes the system

more robust to noise at the expense of predictive power. If some

singular values are set equal to zero, an estimation of x can be

recalculated by setting to zero some of its singular values and then

applying equation 7 using a truncated S, so xi is the truncated

i were set to

x can be plugged into 6 to find an

Atsvdð Þ.

The more singular values are set to zero, the lower the norm of

the resulting coefficients (insensitive to noise) but also the larger

discrepancy between predictions and measurements.

To estimate the optimal number of singular values to be used in

the truncation, we used two methods: first, we maximized

predictions in fresh, out-of sample data. The second method

consists on finding stable norms of the residuals and estimations.

Both of these approaches are described in more detail below.

Figure 8. Predictions in the group of 5 human subjects (H5– second day scan) based on consistent or unique connection weights
across the populations. After using tsvd to generate a model for each subject, the variance across participants was calculated for each entry (panel
A). Panels B and C shows the distribution and cumulative distribution of the coefficient’s variance, respectively. From the cumulative distribution, the
connections were grouped into 100 bins with similar variance (presented in panel A). Then, 100 masks were created setting to zero the connections
with higher variance and incrementally using more preserved (lower variance) connections. The masks were applied to the first day model to predict
the second day scan. Panel D shows the correlation coefficient between the predicted and actual time courses for each one of the subjects in the
group H5. The cell i, j indicates that the model was obtained in the subject’s i first-day scan and that model was used to predict the subject’s j second-
day time-courses. The sub-panel’s title indicates the percentile of most preserved connections (mask) used in the model. Panel E shows the 100 ROC
(lines) and optimal threshold (dots) for each run (percentile). Panel F shows the optimal True Positive Rate (TPR) and False Positive Rate (FPR) as a
function of the run. Panel G shows the distributions of correlation coefficients for all the subjects in group H5 predicting itself and predicting others,
as a function of run. The dotted line indicates the point at which there is a clear separation between the two predictions. All of panels D-F highlight
how the predictive nature of the model is dependent on the most variable connections across subjects. The most preserved (lowest variance)
connections do little to distinguish between individuals.
doi:10.1371/journal.pone.0111048.g008
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version of x where all its singular values greater than

zero. This truncated version of

estimation of A



Maximizing predictions. In this approach, we used two sets

of data from an individual. We used the residuals of the first data

set to calculate x and all its possible truncations. Then, we used the

second data set to fill the vector y. All the possible Atsvd ’s were

calculated using the entire set of truncated versions of x in equati-

y were used as x in equation 5 and finally

Finding stable norms of the residuals and

estimations. This approach just requires one data set. Again,

all the possible truncated solutions were calculated as described in

the previous method. Then, the predictions were calculated for

each truncated solution. We calculated the norm of the solution

and the norm of the residuals for each truncation and we selected

as optimal value, the value at which the rate of change of the

norms are both at a maximum of 1% for a given frame (see Figure

S1 in File S1). This tsvd method can be implemented using just set

of data from a subject. However, the correlation coefficient

between predictions and measurements can be lower than the ones

obtained by the use of the previous described method to determine

the number of singular values to truncate.

Results

The current work outlines an approach for constructing a

functional connectivity model of an individual’s connectome.

Conceptually, each individual’s model is obtained by predicting

the activity of each node based on the concurrent activity of all the

other regions after the removal of autocorrelations. Such modeling

results in an underdetermined system which we chose to solve

using two commonly used methods, truncated singular value

decomposition (tsvd) as well as the pseudo inverse. The

methodology is illustrated in Figure 2.

Timeseries prediction
Bold activity prediction was first conducted on 27 adult

participants (group: H27). To assist in direct comparability to

the analysis with non-human primates all analyses were conducted

on four whole brain ROI parcellations stemming from well-known

areal macaque atlases. These atlases included the Felleman and

Van Essen (FVE) [25], Lewis and Van Essen (LVE) [26], Paxinos

[27], and the Markov atlas [28], deformed to fit a common human

atlas (see methods). For each combination of these 4 parcellations,

two models were obtained for each subject: one model by the

pseudo-inverse (pinv) and the second by truncated single value

decomposition (tsvd) (see Methods). From here, on ‘‘fresh’’ data,

ROI’s activity was predicted for each model (i.e. participant) using

In-sample and out-of-sample individual classification
In this section we describe how strongly our functional

connectome (individually obtained functional connectivity model,

or ‘‘connectotype’) is able to describe or predict the individual

subject it was created on versus other individuals. We begin this

effort by exploring the models ability to predict an individual from

‘‘fresh’’ data within the same scanning session (in-sample

predictions) using group H27. We follow this experiment by

examining the models ability to predict an individual based on

‘‘fresh’’ data in a scanning session one week later on 5 adult

participants, group H5 (Out-of-sample predictions). The experi-

ment was performed using all ROI parcellations (as above). In

both scenarios (i.e. in–sample and out-of-sample) our models were

capable of predicting an individual with high precision (described

below). Importantly, these analyses were replicated in a population

of non-human primates.

Pseudo inverse (H27 group). By randomly selecting 45% of

the frames from each participant, a model was obtained by the

pseudo inverse method for each one of the 27 subjects. We then

applied the model to 15 percent of fresh data (i.e., making sure

Figure 9. Shared vs individualized connections. The color indicates how stable the source connections are for each colored ROI. Color (in base
10 logarithmic scale) indicates the sum of the variance of the coefficients. The lower the value, the more stable (i.e., the more preserved) the
connection across individuals (shown in the Markov parcellation).
doi:10.1371/journal.pone.0111048.g009
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on 6. values of

the correlation coefficients for each truncation were calculated.

The optimal truncation value was selected as the one that

provided the maximum correlation coefficient between the

predictions and the residuals in the fresh data.

equation 5. On average, the correlation coefficient between the

predicted and measured time courses was 0.9823 with a standard

deviation of 0.0188 for the pinv method, while the corresponding

mean and standard deviation for the tsvd were 0.7692 and

0.1750, respectively. An example timeseries, the distribution of

r-values, and distinct results for the FVE and Markov parcell-

ations are shown in Figure 3 (for remaining parcellations see

Figure S2 in File S1). Both the pinv and tsvd show highly accurate

prediction of the timeseries of a given ROI (Note: despite the

higher correlation for the pinv, as noted in methods, the TSVD

score is the more robust estimate, less prone to over fitting, and

provides more stability, as shown and described below).



that the frames used here were not used when each model was

obtained), which was used to predict the corresponding time

courses of these fresh frames. The correlation coefficient between

the predicted and measured time courses was used to classify

whether the data comes from the same subject or not. Panel a) on

Figure S3 in File S1 compares the distribution of correlation

coefficients obtained when the data to obtain model and to make

the predictions comes from the same subject versus the

distribution when the data comes from the other subjects. The

correlation coefficients quartiles 1 and 3 are 0.70 and 0.77 when

data to obtain the model and make predictions comes from the

same participant while the same quartiles’ correlation coefficients

are 0.40 and 0.50 when data comes from different participants.

The difference between self and others was highly significant (p,

0.0001), but note the high variance induced in ‘‘other’’ condition

using pinv.

TSVD (H27 group). To generate our model using TSVD we

again randomly selected 45% of the frames from each participant

to obtain a model. However, for TSVD, as opposed to pinv,

regularization is required prior to testing. Thus, for each subject

15% of the frames (randomly selected) from each one of the 27

participants were used to regularize the model by maximixing the

predictions of this fresh data (see Methods). The resulting model

then was used to predict a new fresh set of 15% of the frames from

each participant (again, frames were randomly selected making

sure that no frames were repeated at any stage of the analysis).

This approach leads to several ways to test the model. To

determine the effect of regularization, we grouped the possibilities

into 4 cases:

Case 1 (itself): model, regularization, and prediction were

performed in the same subject.

Case 2 (itself regularized in others): model and prediction were

performed in the same subject, but regularization (4) was

performed in a different subject.

Case 3 (fooled by regularization): the regularization and

prediction were performed in the same subject, but the model

was obtained from a different subject.

Case 4 (others): all the remaining possibilities.

Experimentally, each case was statistically distinct (panel b on

Figure S3 in File S1). The highest correlation coefficient between

predictions and measurements is achieved when the model,

regularization, and prediction were performed in the same subject

(,0.84) – i.e., Case 1. Regularizing the model in a different subject

decreases the predictive power (from 0.84 to 0.81) – i.e. Case 2.

The case ‘‘fooled by regularization’’ reports an average correlation

coefficient of 0.68 (i.e. Case 3), while the remaining combinations

average a correlation coefficient of 0.62 (i.e. Case 4).

The difference in the average correlation coefficient between

the cases ‘‘itself’’ and ‘‘itself regularized in others’’ roughly

corresponds to what is gained by regularization when tsvd is

compared to pinv. Fooled by regularization indicates the potential

Figure 10. Frames required for prediction. The distribution of correlation coefficients for each model predicting itself (green) vs predicting
others (red) is shown as a function of frames for the group H27. 60 frames produces stable self prediction, where below 60 frames the model is
slightly reduced in its ability to predict an individual.
doi:10.1371/journal.pone.0111048.g010
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lost in predictive power (compared to pinv) when the regulariza-

tion is not done properly. Finally, others is the control case that

quantifies the variance that is shared by all the subjects. These

findings suggest that unique individual patterns for a given model

lead to a strong prediction. The results also indicate that there is a

significant amount of shared variance across participants.

Out-of sample classification - Group H5
This analysis was conducted on five human subjects. The

following subsections describe the results of the experiment when

data from the same participants obtained from two scanning

sessions elapsed by one week are used to obtain the model and

make the predictions, respectively.

Pseudo inverse (H5 group). For the group H5, a functional

connectotype was identified for each subject by randomly selecting

45% of the total frames from the first scan. Then, 15% of the

frames from scan 2 (1 week later) were randomly selected and used

to predict each subject. This experiment was repeated 10 times

randomly selecting different frames on each realization. Across

atlases, the obtained model using the pseudo inverse was able to

reliably distinguish an individual vs other subjects on a second

scan. The model explained approximately 65–70% of the variance

in the same individual, where the model explained roughly 50% of

the variance in other subjects (left side panels on Figure 4 and

Figure S3 panel c in File S1).

TSVD (H5 group). A model was obtained for each partic-

ipant by randomly selecting 45% of the frames from the first

scanning session. Then, for each subject, 15% of the frames

(randomly selected) from the second scan were used to regularize

the model by maximixing the predictions of this fresh data (see

Methods). The resulting model then was used to predict a new set

of 15% of the frames from scan 2 (randomly selected and making

sure that no one of the frames were repeated in the 2 datasets).

This experiment was repeated 10 times resampling the frames.

Again, we grouped all of the possibilities into 4 cases: itself, itself
regularized in others, fooled by regularization, others (see

description of cases in previous section).

For each one of the parcellations, the 4 cases were distinct (see

right panels of Figure 4 and Figure S3 panel c in File S1). The

highest correlation coefficient between predictions and measure-

ments is achieved when the model, regularization and prediction

were performed in the same subject (,80%). Regularizing the

model in a different subject decreases the predictive power.

We next used receiver operating characteristic (ROC) curves to

quantify the classification power of the method for a given

individual, where the average correlation coefficient between

predicted and measured residuals was used as classification

criteria. The optimal correlation coefficient was calculated as the

one providing simultaneously the lowest false positive rate (FPR)

and the maximum true positive rate (TPR), as shown in Figure 5

for the tsvd method and Figure S4 in File S1 for pinv.

Prediction and classification using individualized ROIs
To insure that the obtained results were driven by individual

differences in functional connectivity rather than variation in

anatomy (see methods), we calculated individualized anatomical

based ROIs for each one of the human subjects included in this

study (H27 group), as described in methods. We repeated the

modeling to determine whether an individual connectivity matrix

can predict with higher reliability fresh data from itself than data

coming from others. Using the same sampling proportions (i.e.,

45% to obtain the model, 15% to regularize, when required, and

15% to predict), we found that using individualized ROIs, the

obtained model was able to predict BOLD activity similar to what

was identified for the atlas based ROIs, as shown in Figure 6.

Interestingly, tsvd renders, on average, a higher correlation

coefficient when using individualized Markov ROIs to predict

fresh data coming from the same subject (right panel on

Figure 6A), compared to using the atlas based Markov ROIs

(Figure S3, panel c in File S1). In these two cases, the truncation

was selected by maximizing predictions of fresh data. These

findings highlight that the model is not driven by individual

differences in anatomy.

Predictions in macaques. Importantly, because of the

unconstrained nature of the resting state and other problematic

issues with rs-fcMRI in humans (such as movement, and ‘‘free

thinking’’) [20], we also conducted our connectotyping experi-

ments in a set of macaques under anesthesia. The experiments in

macaques were performed as described for humans (in-sample,

group H27). The samples used for model, regularization (if

applicable, i.e. in tsvd), and prediction were different frames from

the same-day scan. The variance explained is somewhat weaker to

Figure 11. Group H27 resting state networks for 20, 60 and the entire number of frames used to calculate the model based tsvd
connectivity map on the Markov atlas. A connection density of 20% (i.e. strongest 20% of coefficients) was used. Seed based analysis shows that
fronto-parietal and default mode networks are well represented at the group level even down to 20 frames. Similar phenomena can be demonstrated
in an individual subject (Figure S8 in File S1).
doi:10.1371/journal.pone.0111048.g011
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that obtained in humans; however, the model is still able to

discriminate between itself and others and the tsvd improves the

classification. The model obtained by the tsvd method was able to

account for about 58% of the variance in the same subject where it

accounted for only about 36% of the variance in other macaques

(see Figure 7).

Common versus variable features across participants
While the connectotype of an individual is most predictive of

that same individual, it is clear that any given model can account

for much of the variance in other individuals. This suggests that

the model structure for a given person is also highly overlapping

with other individual model structures. Thus, we set out to

determine what model based connections are typically most

conserved across the population versus those that are more

variable across the population. To determine the connections that

are more preserved versus the more variable, we calculated a tsvd-

based functional connectivity matrix for each one of the subjects in

the H5 group. In this case, the tsvd model was obtained by finding

stable norms of the residuals and estimations. Then, we calculated

the variance across subjects for each one of the ROI x ROI

connections. From the cumulative distribution of the variance, we

incrementally selected the most consistent coefficients across

subjects (lower variance) and set to zero the remaining connections

for each model to make a mask. For each iteration we applied the

resulting mask to each subject’s model. The resulting ‘‘masked’’

model was used to predict the second-day scan. Presumably the

connections with lower variance across subjects should have a

limited ability to distinguish between individuals. On the other

hand when more variable links are added to the model, the ability

to distinguish individuals should improve. Indeed, this is the case -

shown when predicting second scan dates using both tsvd

(Figure 8) and the pseudo inverse (Figure S5 in File S1). The

phenomenon where regions of higher variance contribute more

strongly to the self vs other prediction is also found when using

fresh data on the set of 27 participants (see Figure S6 in File S1

and S7 in File S1).

Next, we used the variance matrix from group H27 to visualize

on the brain, each connections variance across participants using

the Markov parcellation. Figure 9 shows the sum of the variance

per row (in log base 10), which is an indication of how stable the

connections are to the targeted ROI. Notice that nodes of higher

order task control systems in frontal and parietal cortices and areas

along the midline are those with the highest variance among

individuals.

Required frames to make estimations
Next, we highlight yet another important benefit of this

modeling approach. In contrast, to many functional connectivity

methodologies, the methods proposed here do not require

continuous timeseries data. Here we explored how much data is

required to generate a stable model. To examine this, we used the

group H27 to test how the predictions and the tsvd models reach

their final value as a function of the number of frames included in

the model. In this experiment, we sequentially increased the

number of frames, starting with 20 randomly selected frames and

incrementally increase the number of frames by 20 until a total of

400 frames were included in the model. On each iteration, the

frames were selected randomly for each subject and a tsvd model

was obtained. Then, the model was used to predict all the subjects

in the group. This approach was repeated 10 times. As seen in

Figure 10, robust prediction is obtained with between 40 and 60

frames. Surprisingly, between 60–100 frames seems to render

estimations similar to the ones obtained when the entire data set is

used. These results highlight the stability of the estimations with

very limited amounts of data. The results also suggest that a strong

and generally robust model for a given individual can be obtained

with just over a minute of data.

Preserved versus personalized connections
Finally, we assessed the ability of the connectotype model to

recapitulate traditionally derived resting state networks (i.e.,

default, and fronto-parietal networks) at both the group (Fig-

ure 11, data visualized on the Markov parcellation) and individual

subject level (Figure S8 in File S1). Default mode was derived by

placing a seed in the anterior node of the default system (right

hemisphere area 10) and the frontoparietal network by a seed in

the parietal cortex (right hemisphere area LIP). We found that at

the group level, the fronto-parietal and default mode networks are

well represented with as little 20 frames of data. When choosing an

individual subject at random, the default network is identified with

20 frames and above, but the fronto-parietal network is only

partially represented at 60 and the full number of frames for this

subject (Figure S8 in File S1). This may suggest that 60 frames is a

sufficient amount of data for this method, but also highlights

possible individual variability in traditional resting state networks.

Overall, the resulting beta matrices obtained by this method are

advantageous not only for their ability to ‘fingerprint’ an

individual’s connectome but also in their ability to provide a

biologically plausible connectivity profile with limited amounts of

data (Data visualized on the Markov parcellation).

Discussion

In the current report we show that the presented modeling

approach on rs-fcMRI data is able to obtain a personalized

connectivity profile for an individual. Importantly, the model,

which can be obtained in less than two minutes of non-sequential

resting state data, is able to reliably identify an individual on a

subsequent scan with high precision. In addition, the proposed

approach recapitulates established connectivity networks across

the entire study population and in individuals. As a benefit to

future translational and mechanistic studies, we show this

phenomenon is not unique to humans but is also present in

sedated non-human primates.

Benefits of the current approach
The strength of the current approach lies in its simplicity. We

propose a simple linear model to infer brain activity, where the

activity of each ROI can be predicted as the weighted sum of all

other ROIs (after removing spurious autocorrelations [34,35] -

sometimes overlooked in traditional fMRI studies). Removal of

autocorrealtions is critical if historical information needs to be

added. Autocorrelations render on average a correlation coeffi-

cient of 0.8540. When autocorrelations are removed, the obtained

model is able to predict with high specificity residuals’ data coming

from the same subject and also to find shared variance in the

group. This phenomena is observed regardless of species or

parcellations used in this study. We are aware that the brain does

not process information linearly [38]; however, a completely

accurate mathematical representation of functional interactions is,

as of now, out of reach. Nonetheless the proposed model is capable

of predicting with relatively high precision the activity of a given

brain region at any given time point and the same individual upon

a second scan.

PCA, ICA [6–9] and other multivariate methods [4,5] have

been used extensively to analyze fMRI, looking for individual and

group biomarkers, and also to predict timeseries, having moderate
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to high levels of accuracy. These methods have also been used to

examine test-retest reliability in these types of data [6]. While our

method is not PCA or ICA, our approach is similar in that they

pose the problem in terms of the linear y~MC, where y is the

fMRI data and M and C correspond to the fMRI centered data

and its eigenvectors in PCA or the weights and the data

components in ICA, respectively. As this linear has no unique

but infinite number of solutions, constrains needs to be added to

solve the problem. Constrains and assumptions such as these make

the different flavors of PCA and ICA. In our case, we assume that

we can predict the ROI’s activity on each time point by the

weighted contribution of the remaining ROIs. Next, we solved the

resulting set of linear equations by regularization in order to

minimize the effect of noise and overfitting. This modeling

approach can be obtained with limited amounts of data and is able

to account for a most of the observed variance in fresh in-sample

and out-of-sample data, rendering it a strong approach to

characterize individual connectomes.

A few recent studies have examined the ability of various

functional connectivity models to predict particular aspects of

brain activity [4,39,40]. While none of these efforts have reliably

demonstrated an ability to identify an individual subject based on

a given model, they all point out that such modeling can be

complicated, in part because the number of brain regions to be

modeled is much greater than the number of observations. This

circumstance results in an underdetermined system of linear

equations which are unable to be solved uniquely. However, this

problem can be solved with various methods including dimen-

sionality reduction [34,41], frameworks such as statistical learning

theory [39], feature selection, or regularization based algorithms

[4,40,42]. Here we chose to solve the problem using the pinv and

regularization methods, i.e. tsvd [36]; however, other frameworks

may be equally informative with regard to generating individu-

alized models.

Regional variation that drives an individual’s
connectotype

We note that a given individual’s model was not completely

unique relative to other individuals. In other words, large portions

of variance from another subjects scan could be explained by any

given individual model. This fact is not surprising considering that

we know that functional and structural brain organization is highly

overlapping amongst individuals [43]. Determining what links are

more similar across individuals versus those that are shared

between individuals is thus an important consideration. In this

regard, and consistent with recent work [43] we show in Figure 9

that the regions which have the most variable connections between

individuals are those from higher order heteromodal association

areas. Interestingly, these are phylogenetically late-developing

regions that underwent a disproportionate enlargement during

human evolution [29,43–45] as compared to phylogenetically

early developing, evolutionarily shared, and unimodal areas, for

which we show to have the least functional variability. These

finding suggest that the individualizing aspect of the connectotype

phenomena is highly dependent on these systems. Thus, these

networks are potential targets for tailoring investigations aimed at

characterizing individual differences [43] in both research and

clinical settings.

Considerations for Model-Based Connectotyping
We note that our model-based connectivity maps were derived

from four ROI atlases, all of which were based on histological

studies done in macaque and deformed to fit homologous areas on

the human brain. Some atlases performed better than others (see

Figure S3 in File S1, median R-values are LVE: 0.824, Markov:

0.813, FVE: 0.794, and Paxinos: 0.788, in decreasing order),

suggesting that some areal demarcations may be more sensitive to

capturing individual differences in connectivity. With that said our

results do not appear to be driven by relative number of ROIs.

A potential cofound of our current approach may be that

individual differences in anatomy are responsible for the unique

models across individuals. To address this concern individualized

ROIs were created that account for each subject’s individual

anatomy. Interestingly, individualized ROIs had a positive effect

in discriminating self versus others, as indicated by the increased

average correlation coefficient between the predicted and mea-

sured bold activity. Furthermore, individualized ROIs left the

estimated shared variance in the group unchanged. This indicates

that the identified features for each subject are not driven by

anatomical differences and highlights that going forward with this

approach it might be best to use surface registered regions of

interest.

We note that other confounds of human data might also be

contributing to the ability to detect a connectotype in individuals.

For example, systematic ‘‘free thinking’’ during the resting state, or

synchronous movement patterns across time or scan days could

lead to a false impression of the data. In accordance with this

potential, we have shown that the predictive power and the other

properties of this method are also observed on macaque data,

whereby animals are lightly anesthetised with little to no

movement. While a systematic comparison between the human

and macaque connectomes is out of the scope of this manuscript

these results highlight the robustness of the technique and also

highlight potential benefits to future translational and mechanistic

studies [21].

As noted above, in recent years it has been recognized that

motion artifacts are one of the biggest challenges facing rs-fcMRI.

Given that children and certain patient populations tend to move

more than healthy adult subjects, analyses often take extreme

precautions by removing frames where even the slightest

movement is detected [19,20]. Prior work has suggested that the

removal of frames that contain movement artifact (motion

censoring) is sufficient to reduce the noise [19,20]. However,

motion censoring often render entire scans unusable because of the

limited data remaining for analyses [19]. Furthermore, these

simulations also suggest that after removal of frames up to

approximately 4–5 minutes of data remaining, the correlation

structure begins to erode [11]. Our approach is able to generate a

stable model with as little as 40–60 non-sequential frames

(,2 min); thus, allowing for the most stringent motion censoring

techniques while continuing to salvage participants that would

otherwise be removed. Similar to these reports, here, we simulate

the random removal of frames (as would be the case if a subject

was moving) to show that our models are robust to the removal of

frames up to a point of ,2 minutes remaining. While we also note

that there are other methods to correct for motion [19,46,47],

frame removal is currently quite popular and thus our approach

may be an advantage to those who conduct their analyses in this

way. This ability is particularly valuable for expensive, difficult to

attain, MR data sets of special populations and in publically

available databases where the amount of movement in the data is

of high concern [19,48].

Although the current model produces robust individual

prediction, it can be improved. For instance, the number of

singular values to be truncated is a parameter that it could be

optimized. Further, the use of adaptive models, like Kalman filters

and the incorporation of historical information into the model (i.e.
using the actual and historical activity of the functional neighbors
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to model the activity of each node) will likely improve the

approach. Despite these potential improvements, the model was

able to precisely characterize a ‘connectotype’ that is tailored to

the individual. In addition, we note that smoking, caffeine, alcohol

consumption, and/or alertness may contribute to our results

regarding the connectotype. However, self-reported data shows no

evidence of great heterogeneity on these variables (data shown in

Table S1 in File S1 and Table S2 in File S1), which is highly

suggestive that these measures alone are not able to classify an

individual.

Conclusions

Considering the vast heterogeneity in both typical and atypical

populations, the present approach may allow for significant

improvement in our ability to understand individual differences

in brain organization. We propose that a better understanding

functional brain organization and how it relates to complex

behaviors may require investigations starting from the individual

[2,49,50]. An individual, and the functional circuits that drive

their behavioral phenotype, is product of complex brain organi-

zation resulting from a combination of unique genetics and

environmental exposures. Future work may not only be able to

characterize individual connectivity patterns associated with

human disease, but also provide individual level targets under-

standing the influence of environmental and genetic factors. The

connectotype may play a role in elucidating these links. While the

work requires further development, the findings instills confidence

that functional neuroimaging based techniques may have a place

in the coming era of personalized medicine.
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