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Abstract: The nitrogen use efficiency (NUE) of crop plants is limited and enhancing it in rice,
a major cereal crop, would be beneficial for farmers and the environment alike. Here we report the
genome-wide transcriptome analysis of two rice genotypes, IR 64 (IR64) and Nagina 22 (N22) under
optimal (N+) and chronic starvation (N−) of nitrogen (N) from 15-day-old root and shoot tissues.
The two genotypes were found to be contrasting in their response to N−; IR64 root architecture
and root dry weight remained almost equivalent to that under N+ conditions, while N22 showed
high foraging ability but a substantial reduction in biomass under N−. Similarly, the photosynthetic
pigments showed a drastic reduction in N22 under low N, while IR64 was more resilient. Nitrate
reductase showed significantly low specific activity under N− in both genotypes. Glutamate synthase
(GOGAT) and citrate synthase CS activity were highly reduced in N22 but not in IR64. Transcriptome
analysis of these genotypes revealed nearly double the number of genes to be differentially expressed
(DEGs) in roots (1016) compared to shoots (571). The response of the two genotypes to N starvation
was distinctly different reflecting their morphological/biochemical response with just two and
eight common DEGs in the root and shoot tissues. There were a total of 385 nitrogen-responsive
DEGs (106 in shoots and 279 in roots) between the two genotypes. Fifty-two of the 89 DEGs
identified as specific to N22 root tissues were also found to be differentially expressed between
the two genotypes under N−. Most of these DEGs belonged to starch and chloroplast metabolism,
followed by membrane and signaling proteins. Physical mapping of DEGs revealed 95 DEGs in roots
and 76 in shoots to be present in quantitative trait loci (QTL) known for NUE.

Keywords: nitrogen-responsive genes; rice; RNA-seq; nitrogen use efficiency; DEG-QTL integration

1. Introduction

Nitrogen (N), being the constituent of most biomolecules, viz. amino acids, nucleotides, proteins,
chlorophyll, and many plant hormones, it is considered the major essential nutrient required for plant
growth and development [1,2]. Plants exhibit various changes in phenotype under N starvation,
including reduced seed production (yield), leaf chlorosis, stunted growth, modulation in root
architecture, etc., underlining the importance of N to plant growth and development [3]. In the
last few decades, the development of N-responsive varieties and the extensive use of N fertilizers has
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resulted in increased biomass and subsequently the yield of crop plants [1,4]. However, of the total
applied N fertilizer, plants are able to use only 30–40%, with the rest of the N fertilizers being lost
to the atmosphere, groundwater, and rivers through various physicochemical processes, resulting in
economic loss to farmers. The loss of N also results in the eutrophication of fresh water, the acidification
of soil, and the release of greenhouse gases like nitrous oxide (around 300 times more toxic than CO2),
leading to adverse impact on the environment [5,6]. The increase in the world’s population from
5 billion to 9 billion in the last 50 years demands increased production of staple foodstuffs. This in
turn requires a huge quantity of N fertilizers, notwithstanding the fact that the production of N is
an energy-demanding process. Thus, increased efficiency of N application in plants would not only
result in higher crop yield under limited N supply, benefiting the farmers via higher net profit, but also
mitigate the environmental risks arising due to an excess of fertilizers used on agricultural land. In this
context, improving the nitrogen use efficiency (NUE) of rice, a dominant dietary source in almost every
part of the world, would be worthwhile.

NUE of plants, in general, is defined as their efficiency at utilizing N from the soil. NUE has two major
component traits, namely N uptake and N utilization. To be an N-efficient plant, both components are
crucial. N uptake is mainly determined by various N transporters and probably also by the root architecture
of the plant, whereas utilization is determined by assimilation, mobilization, and remobilization of the
assimilated N for the purpose of economic yield. Agriculturally important crops take up N mainly in the
form of nitrate (NO3

−) and ammonium (NH4
+) ions from well-fertilized soils. Among them, NO3

− ions
act not only as a nutrient but also as signal molecules, inducing the expression of many genes including
N transport and metabolizing genes, e.g., nitrate transporters (NRT1 and NRT2), nitrate reductase (NR),
nitrite reductase (NiR), glutamine synthetase (GS), and glutamate synthase (GOGAT) [7–9]. Under a low
supply of N, high-affinity transporters NRT2 and NRT3 play a significant role in N uptake, as demonstrated
in maize [10].

Genome-wide expression analysis is an attractive approach to understanding complex traits
like NUE. For genome-wide transcription profiling, RNA sequencing (RNA-seq), a high-throughput
sequencing technology, is the best approach and has replaced microarray even in model plants like rice
and Arabidopsis, which have high-quality whole-genome sequence information available [11,12]. In the
last two decades, efforts have been made to understand the molecular and physiological basis of plants
grown under N stress, which resulted in the identification of a large number of differentially expressed
genes (DEGs) under limited N supply in many crop plants, including rice [13,14], soybeans [15],
sorghum [16], and tea [17]. Most of these studies have concentrated on studying the global gene
expression in a single genotype under low and optimal nitrogen (ammonia or nitrate), except the one on
tea, where two genotypes of tea were compared for their responses under low and optimal ammonical
nitrogen [13–17]. Global gene expression and comparative analysis of genotypes contrasting for NUE
would aid in narrowing down the candidate genes. Moreover, a huge volume of literature is available
on quantitative trait loci (QTL) affecting NUE in rice [18–20]. Integration of these two datasets (QTL
and DEGs in contrasting genotypes) has the potential to identify robust candidate genes that can be
directly deployed in crop improvement for NUE [21]. In the current study, an exhaustive analysis has
been conducted to identify differentially expressed genes in two rice varieties, IR 64 (IR64) and Nagina
22 (N22), and compared with the available QTL data to identify the robust candidate genes for NUE
in rice.

2. Materials and Methods

2.1. Plant Materials and Treatment

Two rice genotypes, viz., IR64, a mega rice variety suitable for lowland ecosystems and N22,
an upland traditional and tall rice genotype, were used in all experiments. Uniform size seeds of both
varieties were surface-sterilized using 0.5% HgCl2 for 1 min, followed by germination in de-ionized
aerated water at 25 ± 1 ◦C in the dark. Rice seedlings of uniform length were then transferred to pots
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(five plants/pot) containing a mixture of perlite and vermiculite (in 1:2 ratio v/v) and grown under
natural conditions for 15 days during the rice growing season. Seedlings were grown in a Yoshida
medium containing 4 mM (N+) and 0.04 mM (N−) of nitrogen using NH4NO3 as the source. For each
treatment, five pots were maintained.

2.2. Plant Phenotyping and Enzyme Assay

On the 16th day, three plants from each pot were sampled for phenotyping and enzyme analysis.
Root and shoot tissues were separated and their length, fresh weight, and dry weight were measured.
The dry weight of root and shoot tissues was measured after drying them at 50 ◦C. Chlorophyll was
extracted in dimethyl sulfoxide and the content was measured according to Hiscox and Isarelstam [22].
Root system architecture (RSA) parameters such as the total root size (TRS; sum of path length of
seminal and lateral roots), main root path length of seminal root (MRP), lateral root size (LRS; sum of
path length of lateral roots as fraction of TRS), first-order LR number (FOLRN; emerging from seminal
and roots), second-order LR number (SOLRN; emerging from first-order LRS), and lateral root density
(LRD: sum of number of total lateral root as fraction of TRS) of the plants were captured using a flatbed
root scanner (Epson Perfection v700 Photo-Dual lens system, Seiko Epson Corporation, Nagano, Japan)
at 400 dpi.

Enzyme assay of leaf tissues for NR, glutamate dehydrogenase (GDH), GS, GOGAT, and pyruvate
kinase (PK) was carried out as per Sinha et al. [23]. NiR assay was carried out according to Joy and
Hageman [24] with some modifications. The enzyme extract and reaction mixture (Tris-Cl 0.5 M,
pH 7.5; sodium nitrite; methyl violagen) were mixed and the reaction was initiated by adding sodium
dithionate bicarbonate, which resulted in the violet color of the reaction mixture. The nitrite content
was estimated colorimetrically after the disappearance of the color upon incubation and subtracting
the blank value from it. The specific activity was expressed as µmoles of NO2

− reduced mg−1 protein
min−1. NADP-ICDH activity was measured by monitoring the isocitrate-dependent rate of NADP+
reduction at 340 nm [25]. One unit of activity was defined as the amount of enzyme that catalyzed the
production of 1 mmol NADPH min−1.

The citrate synthase (CS) assay was carried out by Srere [26] with some modifications, based on
the reaction between 5′,5′-dithiobis 2-nitrobenzoic acid (DTNB) and Coenzyme A (CoA-SH) to form
2-nitrobenzoic acid (TNB) that shows maximum absorbance at 412 nm. The intensity of the absorbance
is proportional to the CS activity. The absorbance was measured at 412 nm using the continuous
spectrophotometric rate determination method. The change in absorbance at 412 nm was recorded
immediately in the UV spectrophotometer for 3 min. Enzyme activity was expressed as the change
in absorbance at 412 nm g−1 fresh weight sample min−1 and specific activity was expressed as the
change in absorbance at 412 nm mg−1 protein min−1.

2.3. RNA Extraction and Sequencing

Total RNA from two seedlings from each pot was extracted using RNeasy Plant Mini Kit (Qiagen,
Qiagen India Pvt. Ltd., New Delhi, India). RNA quality assessment was performed by using a RNA
6000 Nano assay kit in Bio analyzer 2100 (Agilent, Santa Clara, CA, USA). RNA samples from across
replications were pooled in equimolar concentration before library construction. Separate libraries
for each treatment (N+ and N−), tissue (root and shoot) and variety (IR64 and N22) was constructed
using Truseq RNA Sample prep kit (Illumina, Woodslang, Singapore) according to the manufacturer’s
protocol. Thus, a total of eight libraries were constructed and each library was represented by five
biological replications. The libraries were sequenced using paired end Illumina (HiseqTM 2500)
sequencing technology. The raw sequence reads were submitted to NCBI short archive reads bearing
accession number SRP131558.
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2.4. RNA Sequencing Data Processing, Read Alignment, and Analysis

The paired ends reads generated were first subjected to quality check to trim ambiguity reads,
adapters, and base to remove a specified number of bases at either 3′ or 5′ end of the reads. Further,
raw reads were trimmed to remove low-quality reads (with Phred Score < 30 and read length < 36 bp)
using Trimmomatic-0.36 [27]. We used open-source software, namely the TopHat (Bowtie for aligning
the reads with the reference genome) and Cufflinks packages [28,29] for transcript assembly and
differential expression analysis [29,30]. The high-quality reads were aligned to the annotated rice
reference genome [31] using default parameters. Expression analysis to identify the DEGs was
performed using Cuffdiff available in the Cufflinks package [29]. A rigorous comparison at FDR (False
Detection Ratio) p value≤ 0.05, and log2 fold change≥ 2 (for upregulation),≤−2 (for downregulation)
was performed to select DEGs. For biologically meaningful comparisons, the DEGs between N+
and N− conditions were identified for each tissue within a genotype. Thus there were a total of
four comparisons for the two genotypes. Furthermore, the two genotypes were compared separately
for root and shoot tissues, under both N+ and N− conditions. For identification of N-responsive
transcripts between the two genotypes, the DEGs from N+ conditions were subtracted from the total
DEGs identified. For functional descriptions of the DEGs identified, the Cufflink gene IDs were first
converted into both the Michigan State University (MSU) and the Rice Annotation Project Database
(RAP-DB) IDs and the functional descriptions available in these two databases were made use of.
For further understanding of the coordination of the gene expression under nitrogen stress, Gene
Ontology (GO) terms enrichment analysis was carried out [27].

2.5. Validation of RNA Sequencing Results Using Real Time Reverse Transcription Polymerase Chain Reaction

Primers for 14 DEGs identified by the DEG analysis pipeline and genes known to play a role
in N uptake and utilization were selected. Primers were designed using Primer 3 version 4.0.0 [32].
Total RNA was isolated from root and shoot tissues of IR64 and N22 seedlings grown under optimal
(control; N+) and deficient (stress; N−) N supply. RNA quality and quantity were checked by
agarose gel electrophoresis and Nanodrop spectrophotometer (Thermo Scientific, Waltham, MA, USA).
To construct a first-strand complementary DNA (cDNA) template, reverse transcription reaction (25 µL)
was set up using 2 µg of total RNA according to the manufacturer’s protocol (cDNA synthesis kit,
Invitrogen, Carlsbad, CA, USA). Real time reverse transcription polymerase chain reaction (qRT-PCR)
amplifications were performed in an optical 96-well PCR plate using a One-Step Plus Real-Time PCR
system (Eppendorf realplex, Hamburg, Germany). The first-strand cDNA reaction was diluted 10-fold
and 2.5 µL of it was used as a template along with Power SYBRGreen Master Mix (Applied Biosystems,
Warrington, UK) and 500 nM of gene specific primer in a 25 µL qPCR reaction. The qRT-PCR cycling
conditions (10 min 95 ◦C, 40 cycles of 15 s 95 ◦C and 60 s 60 ◦C) were followed by the generation of
a melting curve (obtained by heating the PCR product from 60 ◦C to 95 ◦C) to check the specificity of
amplification. The amount of actin, a constitutive transcript (endogenous control), was normalized to
check the fold change in the expression of the target genes. No template control (NTC) reaction was
included to check whether the amplification is genuine from the cDNA sample.

2.6. Co-Localization of Differentially Expressed Genes Identified with Quantitative Trait Loci for Nitrogen
Use Efficiency

From the literature available in the public domain, we made a comprehensive list of all the
QTLs identified for NUE in rice along with their physical locations, robustness, and contribution in
explaining the phenotype variance. We localized the DEGs identified in the present study to the QTL
regions and the results were visualized using MapChart2.2 [33].
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3. Results

3.1. Plant Phenotyping and Enzyme Assay

3.1.1. Effect of N Stress on Biomass and Chlorophyll Pigment

N deprivation caused a substantial increase in root length in IR64, i.e., from 10.43 cm to 16.16 cm
(54.94%) but not in N22, though the root length of N22 was considerably longer than IR64 under both
N conditions (Figure 1A). Interestingly, the root fresh weight of IR64 was found to be less sensitive
to N stress than N22, with almost negligible change (58.86 mg to 58.96 mg; 0.16%), whereas N22
showed a drastic (49.72%) reduction (Figure 1B). A similar trend was observed for root dry weight,
with IR64 showing less sensitivity (4.43%) to N stress compared to N22 (43.97%). Although N22 had a
higher root dry weight (19.56 mg) in N+ condition, the reduction was much greater (10.96 mg) in the
N− condition compared to IR64 (16.7 mg under N+ to just 15.96 mg under N−; Figure 1C). N stress
caused a significant reduction in shoot length in both genotypes; however, the reduction was more
prominent in N22 (35.6 to 23.93 cm) than in IR64 (30.9 cm to 24.2 cm) (Figure 1D). Following a similar
trend of shoot sensitivity to N stress, both genotypes showed an almost equal proportion of reduction
for shoot fresh weight (27–28%) and shoot dry weight (29.6–30.3%; Figure 1E,F). When chlorophyll
pigments (Chla, Chlb, total Chl and carotenoids) under both treatments were compared, IR64 was
found not to be sensitive upon N stress compared to N22, in which all pigments were drastically
reduced from N+ to N− condition except carotenoids (Figure 2). Besides being not degraded upon
N stress, these pigments were present in a higher amount in IR64 than in N22 even when no stress was
imposed. For instance, the Chla content was 1.9 mg g−1 and 1.2 mg g−1 under N+ while it was 2.1 mg
g−1 and 0.69 mg g−1 under N− in IR64 and N22, respectively. Thus, based on both shoot and root
parameters and pigment content, N22 was found to be more sensitive to N stress than IR64.

Figure 1. Root and shoot biomass parameters in two rice genotypes, IR 64 and Nagina 22, under
optimal (N+) and low nitrogen (N) (N−). (A) Root length; (B) Root fresh weight; (C) Root dry weight;
(D) Shoot length; (E) Shoot fresh weight; (F) Shoot dry weight.
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Figure 2. Chlorophyll and carotenoid pigments in IR 64 and Nagina 22 under optimal (N+) and
low N (N−). (A) Chlorophyll a content; (B) Chlorophyll b content; (C) Total chlorophyll; (D)
Carotenoid content.

3.1.2. Effect of N Stress on Root System Architecture

The root system architecture of the two genotypes under optimal and low N conditions is shown in
Figure 3A–D. Although the TRS was higher in N22 under both the conditions, i.e., 187.37 cm (N+) and 203.65
cm (N−) than IR64, N stress caused a significant increase in TRS only in IR64, from 98.03 cm (N+) to 173.03
cm (N−) (Figure 3E). The MRP of IR64 slightly increased from 10.76 cm (N+) to 12.59 cm (N−), while there
was a negligible change in N22 under different N conditions (Figure 3F). Both first- and second-order
lateral root lengths were found to be significantly different under different N stress conditions between the
two genotypes, with better FOLRN in IR64, whereas under optimal N the genotypes showed negligible
differences (FOLRN 40.83 cm (N+) to 44.05 cm (N−); and SOLRN: 112.20 (Figure 3G,H). Lateral root density
and size were less sensitive to N treatment; however, both these parameters were higher in IR64 in both
conditions compared to N22 (Figure 3I,J). The LRD in IR64 was 112.69 (N+) and 151.11 (N−), while in N22
it was 73.17 (N+) and 74.5 (N−). LRS also showed a similar trend, with 1.56 (N+) and 1.44 (N−) in IR64 and
0.844 (N+) and 0.678 (N+) in N22.

Figure 3. Cont.
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Figure 3. Root system architecture (RSA) parameters of the two rice genotypes, IR 64 and Nagina 22,
under optimal (N+) and low N (N−). (A–D) RSA images of IR64 and N22 under N+ and N−; (E) Total
root size; (F) Maximum root length; (G) First order root length; (H) Second order root length; (I) Lateral
root density; (J) Lateral root size.

3.1.3. Effect of N Stress on Carbon and Nitrogen Metabolizing Enzymes

Of the eight enzymes studied for their specific activity, NR, PK, and ICDH showed reduced activity
in both genotypes under low N while NiR and CS showed enhanced activity (Figure 4A). For GDH
and GOGAT, only N22 showed reduced activity under N starvation, while IR64 had no change. On the
other hand, for GDH, IR64 showed enhanced activity while N22 had no change. Thus, in cases where
enzymes showed differential response between the genotypes, IR64 was the least affected or positively
regulated. Interestingly, for six of the eight enzymes studied (NR, GS, GOGAT, PK, CS, and ICDH),
genotype differences existed even under optimal N conditions in the study material. However, these
genotype differences disappeared under N− for four enzymes (NR, GS, PK, and ICDH) but not for
GOGAT and CS. NiR activity in both genotypes remained the same irrespective of the stress, though N
stress resulted in significant enhancement. Among all the enzymes analyzed, NR was the most severely
affected in both genotypes, with almost negligible activity (IR64: 0.0054 µmol/mg protein/min and
N22: 0.0086 µmol/mg protein/min) under N stress.

3.2. RNA Sequencing Data Analysis: Quality Control, Assembly, and Mapping

We constructed eight libraries to compare the changes occurring at transcriptome level in the
shoot and root tissues of IR64 and N22, under N starvation and optimal N conditions. Approximately
575 million raw reads were obtained from across the eight libraries, ranging from 59.3 million to
maximum 85.5 million reads from each library (Table 1). After a check for read quality and removal
of contamination, a huge proportion (88.56%), of high-quality (HQ) reads (510 million) remained for
assembly and further downstream analysis. Thus, on average, 63.75 million HQ reads were used from
each library for transcriptome analysis. The HQ reads were mapped to the rice reference genome
and the detailed mapping output is summarized in Table 1. In all, 47.35% of the HQ reads uniquely
mapped to the reference genome.
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Table 1. Summary of trimming and read mapping results of the sequences generated from
eight complementary DNA (cDNA) libraries of root (R) and shoot tissues (S) from two rice genotypes
under optimal (A) and low nitrogen (D).

Library Number of
Raw Reads

Number of
Trimmed Reads

Number of Uniquely
Mapped Reads

IAR 66,536,324 50,191,956 37,645,788
IAS 70,824,528 55,136,806 41,531,371
IDR 71,789,678 65,991,386 12,203,558
IDS 59,320,262 54,086,464 14,888,256

NAR 85,535,858 78,152,624 40,574,926
NAS 80,808,216 74,622,520 13,694,430
NDR 68,228,978 64,247,540 40,574,926
NDS 72,947,448 67,688,471 50,455,258

I: IR 64; N: Nagina 22.

3.3. Identification of Differentially Expressed Genes and Their Validation

A rigorous comparison at p value ≤ 0.05, and log2 fold change ≥ 2 (for upregulation), ≤ −2
(for downregulation) was made to identify the number of DEGs for different pairs of biologically
meaningful comparisons. The list of DEGs, along with their fold change, annotation, and physical
coordinates is presented in Table S1. The number of DEGs in root tissues (1016) was nearly twice
that in shoot tissues (571) under both N treatments, suggesting the importance of roots in NUE
(Table 2). In all, 209 genes in IR64 and 188 genes in N22 were identified as differentially expressed in
response to N stress across both the tissues, and the number of upregulated genes was significantly
higher than downregulated ones in all cases except the root tissues of IR64 (Table 2). Furthermore,
the number of DEGs in roots of IR64 (between optimal and low N) was much lower (43 genes),
while it was nearly three times that of shoots (116). In N22, the number of DEGs between low and
optimal N was nearly identical with 89 (root) and 85 (shoot) genes. There were only two genes among
the DEGs common to roots of the two genotypes in N+ and N− comparisons (LOC_Os04g56560
encoding for putative proton-dependent oligopeptide transport and LOC_Os06g44220 encoding
for OsRCI2-9—putative low-temperature and salt-responsive protein) while eight such genes
were in shoots (LOC_Os01g10490 encoding for keratin, type I cytoskeletal 9, LOC_Os03g53690
encoding for oxidoreductase, short-chain dehydrogenase/reductase family domain containing
protein, LOC_Os04g32320 encoding for glycerophosphoryl diester phosphodiesterase family protein,
LOC_Os05g44200 encoding for GDSL-like lipase/acylhydrolase, LOC_Os10g07290 encoding for
glycosyl hydrolases family 17, LOC_Os11g02240 encoding for CAMK calcium/calmodulin dependent
protein kinases, LOC_Os12g24020 encoding for rhodanese-like domain containing protein and
LOC_Os12g41910 encoding for broad Complex BTB domain with non-phototropic hypocotyl 3 NPH3
and coiled-coil domains). Furthermore, LOC_Os01g10490 encoding for keratin, type I cytoskeletal 9
was found to be a DEG common to both root and shoot tissues.

Table 2. Number of differentially expressed genes (DEGs) at p value≤ 0.05, and log2 fold change: within
and between genotype comparisons for shoot and root tissues under optimal (N+) and low (N−).

Comparisons Number of
Upregulated Genes

Number of
Downregulated Genes

Total Number
of DEGs

Roots +
Shoots

IR64 root (N+/N−) 43 40 83
209IR64 shoot (N+/N−) 102 24 126

N22 root (N+/N−) 86 6 92
188N22 shoot (N+/N−) 66 30 96

IR64/N22 root (N+) 151 267 418
732IR64/N22 shoot (N+) 218 96 314

IR64/N22 root (N−) 294 304 598
855IR64/N22 shoot (N−) 138 119 257

IR64/N22 root (N-responsive) 28 251 279
385IR64/N22 shoot (N-responsive) 73 33 106
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A total of 732 DEGs were identified between the two rice genotypes under optimal N,
while 855 DEGs were obtained under N stress (Table 2), signifying that the two genotype were quite
different not only in their response to N stress but also in their complete genetic background. To identify
the genes that were specific to N stress, the DEGs obtained under optimal N were subtracted from the
DEGs from low N and this gave rise to 385 nitrogen-specific genes that were named as N-responsive
genes contrasting between the two genotypes (Table 2). Of these 385 genes, 106 were specific to shoots,
while 279 were specific to roots (Tables 2 and 3). Interestingly, nearly 58.43% of the DEGs identified as
specific to N22 root tissues (52 out of 89) were also found to be differentially expressed between the
two genotypes under N stress (Table 3), while IR64 had only five such common genes (Os01g0155800
encoding for glycine-rich cell wall structural protein precursor, Os05g0163300 encoding for fasciclin
domain containing protein, and three conserved hypothetical genes with no annotation: Os06g0225600,
Os07g0215050, and Os07g0560700) out of the total of 43. This suggests that N22 roots play a major role
in the unfavorable response to N stress and these 54 genes could be major candidates for improving
the use efficiency of N under low N supply. In shoot tissues, no such trend could be observed,
with just two (LOC_Os01g44260 encoding for dihydroflavonol-4-reductase and LOC_Os06g21270
encoding for glycine-rich protein family protein) and 12 DEGs identified in N22 and IR64, respectively,
being common with those identified as DEG between the two genotypes (Table 3). Furthermore,
on overall comparison of the DEGs between root and shoot tissues, we identified 25 genes, of which
12 were unknown proteins with no known function, while the rest encoded for methyl chloride
transferase, acid phosphatase, ion channel containing ankyrin repeat protein, acyl-coA reductase,
dihydroflavonol-4-reductase, keratin type I cytoskeletal 9 protein, HAD superfamily protein, BLE2
like protein, AP2 domain-containing protein, and GDSL-like lipase/acylhydrolase.

Table 3. Chromosome-wise summary of DEGs identified between optimal and low N in IR 64, Nagina
22 and the N-responsive DEGs between the two genotypes.

Chromosome IR 64 (1) Nagina 22 (2) IR 64 vs. Nagina 22 (3)

Root

1 9 (1) 12 (7) 34
2 2 15 (9) 26
3 3 (1) 6 (1) 34
4 4 (1 *) 12 (6 + 1 *) 20
5 3 4(4) 22
6 6 (1 + 1 *) 8 (5 + 1 *) 21
7 4 (2) 7 (5) 30
8 2 6 (3) 27
9 1 4 (3) 18
10 5 10 (8) 20
11 3 3 (1) 13
12 1 2 (2) 14

Total 43 (5 + 2 *) 89 (52 + 2 *) 279

Shoot

1 10 (1 **) 10 (1 + 1 **) 9 (1 **)
2 13 (2) 10 9
3 18 (2 + 1 *) 8 (1 *) 10
4 17 (2 + 1 *) 11 (1 *) 11
5 6 (2 + 1 *) 4 (1 *) 9
6 12 (1) 6 (1) 11
7 3 6 5
8 7 5 2
9 6 (1) 9 10
10 10 (2 + 2 *) 6 (2 *) 9
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Table 3. Cont.

Chromosome IR 64 (1) Nagina 22 (2) IR 64 vs. Nagina 22 (3)

11 4 (1 *) 6 (1 *) 12
12 10 (2 *) 4 (2 *) 9

Total 116 (12 + 8 * + 1 **) 85 (2 + 8 * + 1 **) 106 (1 **)
Grand total 159 (22 + 13 *) 174 (60 + 13 *) 385

Note: The number in parentheses indicates the number of DEGs common to that column and column 3. * Represents
the number of DEGs common between column 1 and 2. ** Represents the number of DEGs common to all the
three columns.

The genes encoding the eight enzymes studied in this report and those of alanine amino transferase
and PEP carboxylase were fetched from the rice genome browser and their fragments per kilobase per
million mapped reads (FPKM) values were compared and represented in a heat map (Figure 4B and
Table S2). This included a set of 71 genes out of which only 38 were included in the heat map as the rest
hardly had any expression under both N+ and N− conditions. Under N− conditions, NR encoding
coding genes were severely downregulated, as we observed by the enzyme activity (Figure 4A,B).
However, we did not observe any upregulation in NiR gene expression under low N, though our
enzyme activity suggested otherwise. The genotype differences we observed in NADH-GOGAT even
under optimal N conditions for enzyme activity were also reflected in the RNA-seq results. As enzymes
like CS, GDH, and PK were encoded for by multiple genes that were also expressed in the seedling
stage, the differential expression between the two genotypes under low N compared to optimal N
could not be clearly deciphered. This is because the enzyme activity could be studied as a single
value while the individual gene expression encoding the same protein differed. In IR64 shoots, one
of the genes encoding for GDH (Os2g115950) showed upregulation under N− conditions but not
in N22, again validating the enzyme activities measured. Similarly, upregulation was observed for
two GS-encoding genes in both genotypes under low N (GLN1-1 and Os1g682001). In the case of PK,
though there was downregulation in both genotypes under low N, the level of downregulation was
lower in IR64. The only major exception was ICDH gene expression, wherein IR64 showed no change
under N− while N22 showed upregulation.

To validate the DEGs identified in the above analysis, 14 genes were chosen and primers for
qRT-PCR analysis were synthesized (Table S3). The qRT-PCR results (Figure 5B) were in agreement
with the RNA-seq data under N stress (Figure 5A) apart from a few variations.
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Figure 4. Cont.
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Figure 4. Enzyme activities and gene expression pattern in two rice genotypes, IR 64 and Nagina
22, under optimal (N+) and low N (N−). Specific enzyme activities of nitrate reductase (NR),
nitrite reductase (NiR), pyruvate kinase (PK), citrate synthase (CS), glutamate synthase (GS),
glutamate dehydrogenase (GDH), glutamine oxoglutarate amino transferase (GOGAT), and isocitrate
dehydrogenase (ICDH) (A). The expression patterns of genes encoding for enzymes involved in
nitrogen and carbon assimilation in root and shoot tissues. The heat map represents the relative
expression levels of 38 genes out of the total 71 genes examined based on FPKM values (> 5 in at least
one of the samples) using RNA sequencing (RNA-seq) data (B).

Figure 5. Cont.
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Figure 5. Validation of 14 differentially expressed genes (DEGs) identified from transcriptome analysis
by q-PCR (A) RNA-seq based expression profiling; (B) q-PCR based expression profiling.

3.4. Gene Ontology Enrichment Analysis for Differentially Expressed Genes

To assess whether the identified DEGs may be regulated in a functionally coordinated manner in
response to N stress, the DEGs were tested for significant enrichment for a specific GO term. For this
analysis, six sets of DEGs identified from root and shoot tissues of IR64, N22, and IR64 vs. N22
were used. All the DEGs identified in both genotypes (IR64 and N22) and between the genotypes
(N22 N−/IR64 N−) were classified into 118 functional groups by GO analysis (Table S4). The most
striking observation was the predominance of genes in root tissues across most of the functional classes
of Biological Processes, Molecular Function, and Cellular Component categories (Figure 6). Under
Biological Process, physiological processes, metabolism, cellular processes, and cellular physiological
processes were the most abundant functional groups in most of the comparisons, with maximum
abundance in the ‘between-genotype DEGs under N stress’ followed by either IR64 root or N22
shoot tissue DEGs. IR64 root tissues were conspicuous by their absence in all functional groups
except for a few genes in carbohydrate metabolism and cellular processes (Figure 6A). Under the
molecular function category, catalytic activity (GO:0003824) was found to be enriched in all six sets of
comparisons made (Figure 6B and Table S4). Furthermore, in the root tissues of ‘between-genotype
comparison’, binding (GO:0005488), both protein and lipid binding groups were enriched. IR64 and
N22 roots also showed enrichment in the catalytic and binding activities. Under Cellular Component
cell (GO:0005623) and cell part (GO:0044464) were found to be enriched in all six sets of comparisons.
This was followed by enrichment in almost all categories, especially, intracellular, organelle, cytoplasm,
membrane, and thylakoid categories in root tissues of ‘between-genotype comparison’ as in the other
cases. N22 root was the next most important comparison, which was present in most of the functional
groups under this category (Figure 6C). In other words, IR64 was not affected by N stress very much
compared to N22.
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Figure 6. Functional classification of DEGs identified under optimal (N+) and low N (N−) in IR64,
Nagina 22 and IR64 vs. N22 based on Gene Ontology (GO) terms, showing GO category distribution.
(A) Biological process; (B) Molecular function; (C) Cellular component.
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3.5. Nitrogen Use Efficiency Quantitative Trait Loci in Rice and Co-Localization of Differentially Expressed
Genes to the Quantitative Trait Loci Regions

From the literature, the studies that identified nitrogen-responsive QTLs in rice under different N
regimes were compiled (Table S5). Wherever QTLs from both conditions have been reported, only the
relative trait QTLs were used for analysis [19,34,35]. In studies where such relative QTLs have not been
reported, those QTLs specific to the low nitrogen regime alone were selected [18]. Those studies that
attempted testing under only one nitrogen condition without emphasis on low N were removed from
the analysis [36]. Furthermore, to select the robust QTLs from these reports, only those with LOD score
>3 and phenotypic variance explained >10% were considered. Moreover, studies that used anonymous
markers whose physical locations cannot be determined based on the respective genetic linkage maps
were also not taken into account. Finally, there were 48 QTLs for relative root or shoot weight, biomass,
grain yield, grain nitrogen, single plant yield, and harvest index, comprising 29 distinct QTL regions
found across 12 chromosomes (Table S5). DEGs identified in the present study were co-localized
on the QTL regions and there were a total of 95 such genes in roots and 76 in shoots (Figure 7 and
Table S6). This was visualized separately for root and shoot tissues on Mapchart (Figure 8A,B). Of the
95 genes in identified from root tissues, 11 were specific to IR64 and 22 to N22, while the rest (62)
were N-responsive genes between IR64 and N22 that could be major ones for crop improvement.
Interestingly, of these 62 N-responsive genes, only one was in common with IR64 while 13 of them
were in common with N22 (Figure 7). Nearly 40% of these 62 genes were uncharacterized proteins,
while others were found to be related to the GOGAT cycle (malate/oxoglutarate dehydrogenase),
starch biosynthesis, lipid biosynthesis, membrane proteins, etc., based on their annotations (Table S6).
A similar analysis in shoot tissues revealed a nearly equal number of N-responsive genes in IR64 (28),
N22 (23), and IR64 vs. N22 (25), with just two genes in common between IR64 and N22. Again, 17 of
the 25 genes (68%) were expressed but uncharacterized proteins, while those with annotations showed
the involvement of methyl chloride transferase, phosphate-induced protein, IQ calmodulin-binding
motif family protein, and growth regulator-related protein.

Figure 7. Venn diagram depicting the distribution of the DEGs identified under optimal (N+) and
low N (N−) from IR64, Nagina 22 and IR64 vs. N22 co-localized with the quantitative trait loci (QTL)
regions governing nitrogen use efficiency in rice.
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Figure 8. Map chart depiction of DEGs in root and shoot. DEGs identified under optimal (N+) and low N (N−) from IR64, Nagina 22 and IR64 vs. N22 and co-localized
with the QTL regions governing nitrogen use efficiency in rice specific to root tissues (A). DEGs identified under optimal (N+) and low N (N−) from IR64, Nagina 22,
and IR64 vs. N22 and co-localized with the QTL regions governing nitrogen use efficiency in rice specific to shoot tissues (B). Red represents genes differentially
expressed in IR64 under low N, while green represents those from N22 with respective optimal N treatment as control. The genes differentially expressed between the
two genotypes are shown in blue.
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We further selected three major QTL regions on chromosomes 9, 10, and 12 and looked for
their expression to see whether some could be candidate genes for NUE (Figure 9). Based on this
analysis, the genes encoding for S-like ribonuclease, involved in salinity tolerance, abiotic stress
response, and regulation of photomorphogenesis (Os09g0537700); X8 domain-containing protein
(Os09g0347000); chlorophyllase family protein (Os10g0419600); and those similar to chloride channel
protein (Os12g0438600), BTB Superoxide dismutase, copper/zinc binding gene (Os12g0613250),
and lipoxygenase (Os12g0559934), with better regulation in IR64 both under optimal and low N
supply than N22, could be considered as candidate genes for NUE (Figure 9 and Table S7). There were
also some candidate genes that had unknown functions (Os09g0429600, Os09g0498800, Os10g0562900,
and Os10g0382600). We would like to mention here that the gene expression is being compared
between N22 and IR64, while the QTLs identified were from genetic backgrounds other than IR64
and N22. For more meaningful results, the QTLs for NUE between IR64 and N22 (hitherto unknown)
should be considered as and when they are identified.

Figure 9. The expression patterns of the differentially expressed genes identified between two rice
genotypes, Nagina 22 (N22) and IR64, from root and shoot tissues (DEGs from optimal N supply was
the control) in the QTL intervals on chromosomes 9, 10, and 12. The heatmap represents the relative
expression levels of 40 genes examined based on fragments per kilobase per million mapped reads
(FPKM) values using RNA-seq data.

4. Discussion

Though nitrogen starvation-responsive genes have been explored in rice using medium-/
high-density gene chip (microarray) and RNA-seq approaches [13,14,37], these studies confined
themselves to studying the root tissues of one rice genotype at a time, which are popular high-yielding
cultivars, namely Minghui 63 (indica), Dongjin, and Hejiang (japonica), and either short-term (<1 h) or
medium-term (five days) responses to N starvation conditions. With huge genetic variability available
in rice for all traits including response to N fertilizer application, we explored the N-responsive genes
in two rice genotypes (indica and aus type), contrasting their response to chronic N starvation after
confirming their response by phenotyping and enzyme studies. Unlike previous studies that sampled
only root tissues for genome-wide expression analyses [13,14,37,38], except a single one where shoot
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tissues were studied under macronutrient (N, P, and K) deficiency [39], we sampled both root and
shoot tissues in our study.

In general, N starvation affected the overall growth of both rice genotypes; however, below
ground, part of IR64 was either more tolerant or was non-responsive to N stress compared to N22,
i.e., IR64 kept its biomass allocation almost constant in root tissue even in N stress conditions, while N22
increased its foraging ability of nitrogen. Since in the present study a nutrient-free media (vermiculite
and perlite mixture) was used for seedlings growth, which caused heterogeneous nutrient distribution,
these seedlings selectively altered the root growth patterns in nutrient-rich microsites by altering root
biomass allocation [40]. Interestingly, IR64 adapted to this alteration without any significant decrease
in biomass parameters in N stress compared to N22.

The rice root system is mainly composed of nodal roots; however, it develops a seminal (radicle)
root that emerges immediately after germination. Except for the seminal root, other RSA parameters
showed a significant increase under N stress in IR64 compared to N22, wherein these root traits either
showed no change or were reduced. Lateral root traits in terms of number (FOLRN, SOLRN, and LRD)
were found to be modulated more profoundly than their lengths (LRS) in the case of IR64. These lateral
roots play crucial roles in water and nutrient acquisition [41] by exhibiting their foraging ability in
a nutrient-heterogeneous environment. Thus, IR64 perceived the N-deprivation signal more efficiently
than N22, which is exhibited by modulation of its root architecture.

Chlorophyll pigments play a major role in radiation interception and hence affect leaf and canopy
photosynthesis, which ultimately decides the yield of the plant. With N being a major constituent
of these pigments [42], the availability of nitrogen in the leaves has a significant impact on the plant
productivity. Our study demonstrated that IR64 has the unique capability to retain its total chlorophyll
content even after chronic N starvation, as compared to N22. Though these pigments were estimated
at a single stage, the results indicated that IR64 has a mechanism to protect their pigment system even
after 15 days of N stress and hence would have better seasonal canopy apparent photosynthesis (CAP),
which contributes in biomass and yield and consequently nitrogen use efficiency.

The 15-day nitrogen stress invariably caused reduced specific activity for almost all nitrogen-
and carbon-metabolizing enzymes except NiR and CS (Figure 4A), which is quite obvious in the
absence of corresponding substrate during each enzyme-catalyzing step. The nitrogen acquisition,
transport, assimilation mobilization, etc., are highly regulated processes that follow feedback inhibition
depending on the nitrogen and carbon status of the plants. NR, which catalyzes the first step of nitrate
assimilation, was found to be severely reduced under nitrogen stress in both genotypes, indicating
the course regulation of this enzyme under chronic N-stress. GDH was found to be increased under
N stress in both genotypes, indicating its role in glutamate homeostasis in a situation of reduced
GS activity [43].

To our knowledge, this is the first genome-wide expression profiling through RNA-seq report
from both root and shoot tissues on chronic N starvation in rice, especially from two genotypes
that are contrasting in their response to N starvation, though a similar study has recently been
reported in tea [17]. Subsequently, we found a larger number of DEGs in shoot than root tissues
in both genotypes under N stress, suggesting that shoot tissues are equally or more significantly
affected in response to N deficiency. A comparison between genotypes also showed a substantial
number of DEGs under N starvation in shoot tissues, though the number of DEGs was higher in
root tissues (Table 2). Interestingly, the responses of these two genotypes were completely different
to N starvation as only two genes in root tissues and eight genes in shoot tissues were found to be
common between these two genotypes (Table 3). Such a difference in the array of DEGs identified
in the two genotypes under low N could be due to the inherent differences in the genotypes, where
one was a high-yielding genotype (IR64) and the other was a traditional tall genotype (N22). Similar
differences in starch metabolism-related enzymes’ activities (AGPase- ADP glucose pyrophophorylase
and starch branching enzyme II) and their transcription profiles under different N supply were reported



Genes 2018, 9, 206 19 of 22

between an N-responsive japonica genotype (cv. Nipponbare) and N-unresponsive indica genotypes,
Tetep and Johna [44].

RNA-seq results supported the morphological/physiological observations: for example,
chlorophyll metabolism-related genes were not differentially expressed in IR64, while 10 different
genes known to function in chlorophyll metabolism, such as chlorophyllase, chlorophyll A-B binding
domain-containing proteins, and many known chloroplast precursors such as lycopene epsilon cyclase,
photosystem I and II related transport peptides, etc., were differentially regulated in N22. Further
auxin biosynthesis was also differentially expressed in N22, unlike IR64. A comparison of differential
expression between the two genotypes under N starvation also showed downregulation in these genes
in addition to starch biosynthesis-related genes (Table S1, sheet 6). As 75% of the plant’s N is present
in the seat of photosynthesis, i.e., chloroplasts, of which 27% are bound to Rubisco, the major enzyme
of carbon assimilation, the involvement of chloroplast, the genes identified in starch, and chloroplast
metabolism can be explained [45–47]. Furthermore, only a few genes (28 out of 279) were found to
be upregulated in N22, of which 16 (57.14%) had unknown functions. Using microarray analyses of
shoot tissues, similar observations wherein a few genes were upregulated and most of the differential
expression occurring in basic plant development, chloroplast-related gene expression, and starch
biosynthesis have been reported [39]. Most of the studies have implicated N assimilation genes, starch
synthesis-related genes, and gibberellin metabolism genes in nitrogen use efficiency of plants such as
rice, maize, and tea [17,44,47,48]. Interestingly, more of the LTPL lipases that are secretory proteins and
signaling molecules and GDSL like lipases that are known to play a role in biotic [49] and abiotic stress
tolerance such as salt tolerance [50], drought and biotic stress tolerance in transgenic plants [51] have
shown differential regulation in our study. As N starvation is closely linked to starch starvation [52],
a number of glycosyl hydrolases were found to be upregulated in both genotypes; however, IR64 had
five different members of the glycosyl hydrolase family in shoots and one in roots highly upregulated,
while N22 had just two and one members upregulated in shoot and root tissues, respectively. The N
transporter genes were noticeable by their absence in any of the comparisons, probably because of the
chronic N starvation of the seedlings. Still, we did observe the oxoglutarate and malate dehydrogenase
and translocator genes to be N-responsive and differentially expressed in N22 but not IR64. Further
studies on gene sequence comparison including promoter regions of these genes between the two
genotypes could help in ascertaining their role in NUE.

Comparing the expression profiles of two contrasting genotypes for a specific trait under different
treatments is supposed to help in identification of causal genes when genetic analysis (mapping) of
such traits are undertaken [20,53]. Here we have identified 87 such candidate genes (62 from root
and 28 from shoot) in the major QTLs regions for NUE in rice. Based on their FPKM values, some of
them have also been suggested as candidate genes. We expect this will serve as a major resource for
validation of the NUE-related genes in rice.

5. Conclusions

The current study is the first report on root and shoots transcriptome from two genotypes
contrasting in their response to chronic N starvation in rice. We have demonstrated the contrasting
nature of IR64 and N22 to optimal and low N supply through morphological studies including root
system architecture and photosynthetic pigment estimations and the specific activity of enzymes
involved in N metabolism. Furthermore, we have identified the N-responsive genes in both these
genotypes and also DEGs between the two genotypes. The latter belonged to starch and chloroplast
metabolism-related genes. The 95 DEGs in roots and 76 in shoots localized to the QTL intervals known
for NUE in rice will serve as a resource for further detailed studies in rice and in enhancing its NUE.
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results by q-PCR, Table S4: Go enrichment analysis results of the six comparisons made (DEGS from root and
shoot tissues of IR64, N22 and IR64 vs. N22), Table S5: Nitrogen use efficiency QTLs known in rice and used for
co-localization of N-responsive DEGs identified in the study, Table S6: Details of the DEGs co-localized with the
NUE QTLs, Table S7: The FPKM values of the genes differentially expressed between the two rice genotypes,
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