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Abstract: Three new tetra-Schiff bases were synthesized and characterized to be used as
photostabilizers for poly(vinyl chloride) (PVC) films. The photostability of PVC films (40 µm
thickness) in the presence of Schiff bases (0.5 wt %) upon irradiation (300 h) with a UV light
(λmax = 365 nm and light intensity = 6.43 × 10−9 ein·dm−3·s−1) was examined using various
spectroscopic measurements and surface morphology analysis. The changes in various functional
groups’ indices, weight and viscosity average molecular weight of PVC films were monitored against
irradiation time. The additives used showed photostability for PVC films, with Schiff base 1 being
the most effective additive upon irradiation, followed by 2 and 3. The atomic force microscopy (AFM)
images for the PVC surface containing Schiff base 1 after irradiation were found to be smooth, with a
roughness factor (Rq) of 36.8, compared to 132.2 for the PVC (blank). Several possible mechanisms that
explain PVC photostabilization upon irradiation in the presence of tetra-Schiff bases were proposed.

Keywords: poly(vinyl chloride); Schiff bases; functional group’s indices; atomic force microscopy;
photodegradation; irradiation; viscosity average molecular weight

1. Introduction

Polymeric materials are produced in huge quantity and are used in everyday applications.
Polyethylene, polypropylene and poly(vinyl chloride) (PVC) are the most produced and used polymers
as plastics. The molecular structure of polymeric materials is unique in controlling their chemical,
physical and mechanical properties [1,2]. Poly(vinyl chloride) can exit in two common forms, known as
rigid and flexible, and has various industrial applications [3]. The rigid PVC can be used in water pipes,
windows, doors, synthetic floor tiles, plumbing fittings, phonograph records, and credit cards [4].
The soft PVC can be used as a replacement for rubber in shower curtains, raincoats, and packaging
films [4]. Photooxidation can lead to the irreversible deterioration of PVC polymeric materials [5].
Irradiation of PVC with a UV light (250–350 nm) for a long period can lead to a change in color, loss of
mechanical and physical properties, reduction in transparency and the formation of cracks and deposits
on the surface [6–8]. In addition, the PVC photodegradation process can lead to dehydrochlorination
and the formation of conjugated double bonds [9]. This is possibly due to impurities during the
synthesis process [10], average molecular weight reduction and crosslinking [11,12]. Therefore,
the photostability of PVC has to be enhanced for outdoor applications, where the polymeric materials
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are exposed to light and high temperatures. Various additives at low concentration have been used
to enhance the PVC photostability upon UV irradiation [4]. The most common additives include
inorganic salts [13–16], heterocycles [17–23] and aromatics [24–28]. Schiff bases [29–31] and titanium
dioxide were found to be the most efficient additives for the photostabilization of PVC [32–34].

In this study, we report the successful synthesis of three tetra-Schiff bases, using a simple and
efficient procedure, and investigate their PVC photostabilization efficiency as a continuation of our
own interest in polymeric materials [35–41]. The synthesized Schiff bases have been proven to be
efficient stabilizers against the photodegradation of PVC samples.

2. Results and Discussion

2.1. Synthesis and Characterization of Schiff Bases 1–3

Schiff bases 1–3 were synthesized based on literature procedures that have been used for
the production of 1 [42,43]. Condensation of biphenyl-3,3′,4,4′-tetraamine and excess aromatic
aldehydes (four mole equivalents), namely 2-hydroxybenzaldehyde, 3-hydroxybenzaldehyde and
4-nitrobenzaldehyde, in ethanol in the presence of acetic acid as a catalyst under reflux for 4 h, gave the
corresponding Schiff bases 1–3 in 78–84% yields (Scheme 1). The physical properties of 1–3 and their
elemental analyses are presented in Table 1.
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3 4-NO2C6H4 Dark red 78 274−276 15.01 (15.23) 3.51 (3.56) 64.34 (64.40) 

The FT-IR spectra of 1−3 show the presence of intense absorption bands at 1600−1624 cm–1 and 
can be attributed to the CH=N bonds (Table 2). They also indicate the absence of NH2 group 
absorption. As an example, Figure 1 shows the FT-IR spectrum for Schiff base 1. 
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The 1H-NMR spectra for 1–3 show singlet signals that resonate within the 9.05–8.01 ppm region 
due to the CH=N protons. They also show all the aromatic protons with the expected multiplicity and 
chemical shifts (Table 3). 
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1 2-HOC6H4 Deep orange 84 234–236 8.88 (8.92) 4.79 (4.85) 76.17 (76.22)
2 3-HOC6H4 Light brown 80 207–209 8.88 (8.91) 4.79 (4.83) 76.17 (76.19)
3 4-NO2C6H4 Dark red 78 274–276 15.01 (15.23) 3.51 (3.56) 64.34 (64.40)

The FT-IR spectra of 1–3 show the presence of intense absorption bands at 1600–1624 cm−1 and
can be attributed to the CH=N bonds (Table 2). They also indicate the absence of NH2 group absorption.
As an example, Figure 1 shows the FT-IR spectrum for Schiff base 1.

Table 2. Some FT-IR spectral data for Schiff bases 1–3.

Schiff Base
FR-IR (υ, cm−1)

OH CH=N C=C (Ar) C-N

1 3414 1616 1558 1273
2 3417 1600 1527 1273
3 - 1624 1516 1342



Molecules 2017, 22, 1506 3 of 16

Molecules 2017, 22, 1506 3 of 16 

 

 
Figure 1. FT-IR spectrum of Schiff base 1. 
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Figure 1. FT-IR spectrum of Schiff base 1.

The 1H-NMR spectra for 1–3 show singlet signals that resonate within the 9.05–8.01 ppm region
due to the CH=N protons. They also show all the aromatic protons with the expected multiplicity and
chemical shifts (Table 3).

Table 3. 1H-NMR spectral data for Schiff bases 1–3.

Schiff Base 1H-NMR (400 MHz: DMSO-d6, δ, ppm, J in Hz)

1
9.17 (s, exch., 4 H, OH), 9.08 (s, 4 H, CH), 7.93 (s, 2 H, Ar), 7.71 (d, J = 8.2 Hz, 4 H, Ar),

7.64 (d, J = 8.5 Hz, 2 H, Ar), 7.44 (t, J = 8.2 Hz, 4 H, Ar), 7.25 (d, J = 8.5 Hz, 2 H, Ar),
7.00 (t, J = 8.2 Hz, 4 H, Ar), 6.99 (d, J = 8.2 Hz, 4 H, Ar)

2
8.08 (s, exch., 4 H, OH), 8.01 (s, 4 H, CH), 7.63 (s, 2 H, Ar), 7.53 (d, J = 8.1 Hz, 4 H, Ar),

7.48 (d, J = 8.5 Hz, 2 H, Ar), 7.48 (s, 4 H, Ar), 7.35 (d, J = 8.5 Hz, 2 H, Ar),
7.18 (t, J = 8.1 Hz, 4 H, Ar), 6.95 (d, J = 8.1 Hz, 4 H, Ar)

3 8.61 (s, 4 H, CH), 8.32 (d, J = 8.3 Hz, 8 H, Ar), 8.05 (d, J = 8.3 Hz, 8 H, Ar), 7.70 (s, 2 H, Ar),
7.50 (d, J = 8.4 Hz, 2 H, Ar), 7.35 (d, J = 8.4 Hz, 2 H, Ar)

2.2. Photodegradation of PVC Films by FT-IR Spectroscopy

Previous reports show that the most effective concentration of Schiff bases to be added to stabilize
PVC was 0.5 wt % [21]. Therefore, Schiff bases 1–3 (0.5 wt %) were used as additives to improve the
photostability of PVC polymeric materials. The PVC films (40 µm thickness) were irradiated with
UV light (λmax = 365 nm and light intensity = 6.43 × 10−9 ein·dm−3·s−1) for up to 300 h. The FT-IR
spectroscopy (400–4000 cm−1) was used to evaluate the changes in certain functional groups within
the PVC films. The photostability of PVC films was studied by monitoring the changes in intensity
for polyene (1602 cm−1), carbonyl (1722 cm−1), and hydroxyl (3500 cm−1) peaks, as compared to a
standard peak (1328 cm−1) upon irradiation [44]. The FT-IR spectra of pure PVC films before and after
irradiation (300 h) are shown in Figure 2.

The carbonyl (ICO), polyene (IPO) and hydroxyl (IOH) indices were calculated and plotted against
irradiation time (Figures 3–5). Such indices were lower for the PVC films containing Schiff bases 1–3
compared to the ones for the blank PVC. Clearly, Schiff bases 1–3 and in particular 1 could be used as
efficient photostabilizers for PVC films.
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2.3. Photodegradation of PVC Films by Weight Loss 

Dehydrochlorination, elimination of hydrochloride (HCl), is a major cause of PVC 
photodegradation and leads to weight loss [45]. The degree of photodegradation of PVC can be 
measured from the percentage of PVC weight loss after irradiation. The effect of irradiation time on 
the percentage of PVC films weight loss is shown in Figure 6. Clearly, the weight loss in PVC was 
lower in the presence of Schiff bases 1–3 compared to the blank PVC film. Schiff base 1 was the most 
efficient additive since it could act as an effective radical scavenger, possibly due to the presence of 
the ortho-hydroxyl group, which increases the stability through resonance. During irradiation of PVC 
films containing Schiff bases, not only was weight loss reduced but the discoloration was less 
noticeable [46]. 
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2.3. Photodegradation of PVC Films by Weight Loss

Dehydrochlorination, elimination of hydrochloride (HCl), is a major cause of PVC
photodegradation and leads to weight loss [45]. The degree of photodegradation of PVC can be
measured from the percentage of PVC weight loss after irradiation. The effect of irradiation time on
the percentage of PVC films weight loss is shown in Figure 6. Clearly, the weight loss in PVC was
lower in the presence of Schiff bases 1–3 compared to the blank PVC film. Schiff base 1 was the most
efficient additive since it could act as an effective radical scavenger, possibly due to the presence of the
ortho-hydroxyl group, which increases the stability through resonance. During irradiation of PVC films
containing Schiff bases, not only was weight loss reduced but the discoloration was less noticeable [46].
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2.4. Photodegradation of PVC Films by Variation in Molecular Weight

The Mark–Houwink equation [44,47,48] was used to calculate the viscosity average molecular
weight

(
MV; g/mol

)
. Viscosity average molecular weight is directly proportional to the intrinsic

viscosity [η] [49]. The variation in MV for PVC films containing 1–3 (0.5 wt %) during the irradiation
process was measured (Figure 7). The decrease in MV was higher for the blank PVC film compared to
the ones containing 1–3, in which Schiff base 1 was again the most efficient additive. The reduction
in MV during the irradiation process may be due to the degradation of PVC chains producing low
molecular weight polymeric chains [50,51].
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During the photolysis process, insoluble residue in tetrahydrofuran (THF) was observed and
was believed to be due to the PVC chains branching or crosslinking [52]. To confirm this conclusion,
the average chain scission (S) was calculated using Equation (1) and plotted against irradiation time
(Figure 8). The S value is dependent on the viscosity average molecular weight at irradiation time 0
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(MV,O) and t (MV,t). The results indicate that the degree of branching and/or crosslinking was higher
for the PVC (blank) compared to the ones containing Schiff bases. The S values for the PVC film
containing Schiff base 1 were minimal.

S = MV,O/MV,t − 1 (1)
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At the initial stage of PVC photodegradation, weak bonds, randomly distributed along the
polymeric chains, break dawn rapidly. The degree of PVC photodegradation is directly proportional
to the degree of deterioration (α). The α values were calculated using Equation (2) from MV, S and
molecular weight (m). The increase in α for the PVC samples was very low in the first 150 h and
became sharp afterwards (Figure 9). The α values for the PVC samples containing 1–3 were very low
compared to the ones obtained for the blank PVC sample.

α = m× S/MV (2)

Molecules 2017, 22, 1506 7 of 16 

 

for the PVC (blank) compared to the ones containing Schiff bases. The S values for the PVC film 
containing Schiff base 1 were minimal. = , / , – 1 (1) 

 

Figure 8. Effect of irradiation of PVC films on S. 

At the initial stage of PVC photodegradation, weak bonds, randomly distributed along the 
polymeric chains, break dawn rapidly. The degree of PVC photodegradation is directly proportional 
to the degree of deterioration (α). The α values were calculated using Equation (2) from , S and 
molecular weight (m). The increase in α for the PVC samples was very low in the first 150 h and 
became sharp afterwards (Figure 9). The α values for the PVC samples containing 1−3 were very low 
compared to the ones obtained for the blank PVC sample. = × /  (2) 

 
Figure 9. Effect of irradiation of PVC films onα. 

  

Figure 9. Effect of irradiation of PVC films on α.



Molecules 2017, 22, 1506 8 of 16

2.5. Surface Morphology of PVC Films

The surface morphology provides information about defects, roughness, and irregularity within
the polymeric materials [53]. Also, it can detect the changes in polymer surface upon irradiation where
decomposition takes place as chain scission [54]. The surface morphology images for PVC films before
and after irradiation (300 h) are shown in Figure 10. Compared to before irradiation, the PVC (blank)
image shows the presence of grooves, white spots and cracks on the surface following irradiation.
Also, the surface was rough and underwent a color change. Such surface irregularity is a result of
photodegradation of PVC due to dehydrochlorination. Comparatively, the images for PVC films
containing Schiff bases, in particular 1, were nearly smooth and have only a few white spots. Clearly,
1–3 can inhibit elimination of HCl and enhance the photostability of PVC films upon irradiation.
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Atomic force microscopy (AFM) provides two- and three-dimensional images for sample surface
and does not require a vacuum environment. It is a simple technique that can be applied in various
fields [55]. The 2D and 3D AFM images for the PVC film (bank) which contain Schiff base 1 (0.5 wt %)
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after irradiation (300 h) are shown in Figures 11 and 12, respectively. The AFM images for the surface
of the PVC film (area = 5.0 × 5.0 µm2) containing Schiff base 1 after irradiation show it to be very
smooth with a low roughness factor (Rq = 36.8 nm). Comparatively, the surface of the PVC (blank)
film was very rough (Rq = 132.2). The rough surface of the blank PVC film after irradiation could be
due to bonds breaking [56] and/or dehydrochlorination [57]. Dehydrochlorination of PVC usually
takes place at high temperatures [57].
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2.6. Proposed Mechanisms of PVC Film Photostabilization

The synthesized Schiff bases 1–3 act as photostabilizers for PVC films upon irradiation with a
UV light. The results show that the efficiency of such additives follows the order 1 > 2 > 3. Various
mechanisms could be suggested to explain the role that Schiff bases 1–3 play in the photostabilization of
PVC films. The performance of compounds 1–3 varies in their stabilization effect on PVC films due to
the nature and position of substituents on the aryl rings. Schiff base 1 was the most efficient additive to
stabilize PVC films. This is possibly due to the hydroxyl groups at the ortho-positions of the aryl rings.
Schiff bases can dissipate the UV radiation into harmless heat via a proton transfer for the Schiff base
singlet excited state (S1 *) and internal conversion (IC), followed by proton transfer. Also, it is possible
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that the UV energy could be released as harmless heat via intersystem conversion (ISC) of the additive
S1 * state to the triplet excited state (T1 *), followed by a proton transfer, followed by conversion
to the ground state (S0) [19,30]. Scheme 2 represents the possibility of PVC photostabilization via a
proton transfer and ISC in the presence of Schiff base. For most photochemical reactions, only the
lowest S1 * and T1 * states have to be considered for the initiation step [58]. Excited singlet states
are short-lived species with a lifetime in the range 10−9–10−6 s. Photodegradation of polymers often
proceeds from T1 * states which have a longer lifetime than S1 * states, since the return to a S0 state
is spin-forbidden [58]. The bond breaking within polymeric chains only takes place when the bond
dissociation energy is lower than the excitation energy, or when the excited state is a repulsive one.
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Schiff bases 1–3 could act as radical scavengers in the presence of a chromophore (POO•) to
stabilize the PVC. When excited, a stable complex between the chromophore and Schiff base could be
formed, in which energy can be transferred. The stable charge transfer complex would be stabilized
via resonance of aryl rings within the Schiff bases (Scheme 3) [59].
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Tetra-Schiff bases 1–3 are electron rich (six aryl rings) and can absorb the UV radiation energy
directly and dissipate it into harmless heat energy (Scheme 4). Aromatic compounds commonly act as
UV absorbers [60].
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Scheme 4. PVC photostabilization of PVC via direct absorption of UV radiation. * represents the
excited state.

The possible attraction between polarized CH=N bonds within Schiff bases 1–3 and polarized
C-Cl bonds within PVC chains could stabilize PVC (Scheme 5). Such attraction could allow efficient
transfer of the PVC excited energy to Schiff bases and then to a harmless level of energy.
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3. Experimental Section

3.1. General

Chemicals were obtained from Sigma-Aldrich Chemical Company (Gillingham, UK). Melting
points were recorded on a hot stage Gallenkamp melting point apparatus. The Fourier transform
Infrared (FT-IR) spectra (400–4000 cm−1) were recorded on a Shimadzu 8400 Spectrophotometer
(Shimadzu Cooperation, Kyoto, Japan) using the KBr disk technique. Proton nuclear magnetic
resonance (1H-NMR) spectra (400 MHz) were recorded on a Bruker DRX400 NMR Spectrometer
(Bruker, Zürich, Switzerland) in DMSO-d6 related to tetramethylsilane. The elemental analyses were
performed on the Vario EL III Elementar instrument. An accelerated weather-meter QUV tester
(Q-Panel Company, Homestead, FL, USA) was used to irradiate PVC films at room temperature with a
UV light (λmax = 365 nm and light intensity = 6.43 × 10−9 ein·dm−3·s−1). The morphology images
of PVC films were recorded on Meiji Techno Microscope (Meiji Techno, Tokyo, Japan). Atomic force
microscopy (AFM) images were recorded on the Veeco instrument (Veeco Instruments Inc., Plainview,
New York, NY, USA).

3.2. Synthesis of Schiff Bases 1–3

A mixture of biphenyl-3,3′,4,4′-tetraamine (2.14 g, 10.0 mmol) and appropriate aromatic aldehyde
(40.0 mmol) in anhydrous ethanol (25 mL) in the presence of glacial acetic acid (0.5 mL) was stirred
magnetically under reflux for 4 h. The mixture was left to cool down to room temperature and the
solid obtained was filtered, washed with ethanol and dried to give pure 1–3 in 78–84% yields.

3.3. PVC Films Preparation

The PVC films were prepared using a solution-cast technique at room temperature. Schiff bases
1–3 were added to PVC at a concentration of 0.5% by weight in THF. The solvent was removed by
evaporation at room temperature for 24 h. The thickness of PVC films (40 µm) was fixed using a Digital
Vernier Caliper 2610A micrometer (Vogel GmbH, Kevelaer, Germany).

3.4. Light Exposure

A UV Light (λmax = 365 nm and light intensity = 6.2 × 10−9 ein·dm−3·s−1 nm) was used to
irradiate the PVC using an accelerated weather-meter QUV tester (Philips, Saarbrücken, Germany) at
room temperature. The PVC films were rotated occasionally to ensure that the incident light intensity
was the same on all sides.
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3.5. Photodegradation of PVC Films by FT-IR Spectrophotometry

The changes in IR absorption bands for carbonyl (1722 cm−1), polyene (1602 cm−1) and hydroxyl
(3500 cm−1) groups were monitored and compared to a reference peak (1328 cm−1). The indices
for carbonyl (IC=O), polyene (IC=C) and hydroxyl (IOH) groups were calculated using Equation (3).
The functional group index (Is) is dependent on both the absorbance peak during the study (As) and
that of the reference peak (Ar) [44].

Is = As/Ar (3)

3.6. Photodegradation of PVC Films by Weight Loss

The weight loss percentage of PVC samples during the irradiation process was calculated by the
weight of the PVC sample before (W1) and after irradiation (W2) using Equation (4).

Weight loss % = [(W1 −W2)/W1]× 100 (4)

3.7. Photodegradation of PVC Films by Viscometry Method

The Mark–Houwink relation, Equation (5), was used to calculate the PVC films’ average molecular
weight (Mα

V) in solution (g/100 mL) using an Ostwald U-tube viscometer [50]. Mα
V is highly dependent

on the intrinsic viscosity [η] of PVC and constants (α and K) related to the polymer–solvent system.

[η] = KMα
V (5)

The relative viscosity (ηre) at a flow time t0 (pure solvent) and specific viscosity (ηsp) were
calculated using Equations (6) and (7) in which the flow time for pure solvent (THF) and PVC sample
was t0 and t, respectively.

ηsp = ηrel − 1 (6)

ηrel = t/t0 (7)

The intrinsic viscosity was calculated using Equation (8) in which C is the PVC concentration in
THF (g/100 mL).

[η] = (
√

2/c
) (

ηsp − ln ηrel)
1/2 (8)

Molecular weight of PVC samples was calculated from [η] using Equation (9).

[η] = 1.38× 10−4 MV
0.77 (9)

4. Conclusions

New tetra-Schiff bases which are highly aromatic were synthesized and characterized using
various techniques. The photostability of PVC films was increased in the presence of new Schiff
bases. The Schiff bases act as photostabilizers for PVC through direct absorption of the UV radiation,
proton transfer and intersystem crossing, radical scavengers or an interaction with PVC chains.
The photostabilization activity of PVC films containing additives follows the order 1 > 2 > 3.
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