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Abstract Due to the heterogeneous nature of breast

cancer and the widespread use of single-gene studies, there

is limited knowledge of multi-gene, locus-specific DNA

methylation patterns in relation to molecular subtype and

clinical features. We, therefore, quantified DNA methyla-

tion of 70 candidate gene loci in 140 breast tumors and

matched normal tissues and determined associations with

gene expression and tumor subtype. Using Sequenom’s

EpiTYPER platform, approximately 1,200 CpGs were

interrogated and revealed six DNA methylation patterns in

breast tumors relative to matched normal tissue. Differen-

tial methylation of several gene loci was observed within

all molecular subtypes, while other patterns were subtype-

dependent. Methylation of numerous gene loci was inver-

sely correlated with gene expression, and in some cases,

this correlation was only observed within specific breast

tumor subtypes. Our findings were validated on a larger set

of tumors and matched adjacent normal tissue from The

Cancer Genome Atlas dataset, which utilized methylation

data derived from both Illumina Infinium 27 and 450 k

arrays. These findings highlight the need to control for

subtype when interpreting DNA methylation results, and

the importance of interrogating multiple CpGs across var-

ied gene regions.
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Abbreviations

TCGA The Cancer Genome Atlas

MP Methylation pattern

UNC University of North Carolina

GEO Gene expression omnibus

NaBi Sodium bisulfite

HCA Hierarchical clustering analysis

SD Subtype-dependent

SI Subtype-independent

HypoB Hypomethylated in basal tumors

HyperN Hypermethylated in normals

HypoN Hypomethylated in normals

DMinNB Differentially methylated in non-basal tumors

InfreqM Infrequently methylated

NotDM Not differentially methylated

Introduction

Breast cancer is one of the most prevalent and well-studied

forms of cancer. Despite abundant research, knowledge of

the molecular basis of breast cancer subtypes is still

incomplete, due in large part to the heterogeneous nature of

the disease. Aberrant patterns of DNA methylation are

consistently observed in human cancers [1, 5, 7], and

increasing attention is being placed on the varied roles
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DNA methylation can play in gene expression regulation

and DNA–protein interactions [9, 10, 25].

Much of the progress that has been made in the char-

acterization of altered DNA methylation patterns in breast

cancer has used a candidate-gene approach, and has con-

sistently shown numerous methylated genes in breast

cancer cell lines and tumors such as RASSF1, RARB,

ESR1, BRCA1, CCND2, and CDKN2A [2, 8, 20].

Recently, ‘‘genome-wide’’ methylation studies have found

DNA methylation patterns associated with molecular sub-

types of breast cancer; namely lower overall levels of

methylation in basal-like tumors, and higher levels of

methylation in a subset of luminal B tumors [3, 12]. A

sizeable number of these observed methylated loci have

also been shown to be associated with decreased gene

expression [2, 19, 22, 23].

The Cancer Genome Atlas (TCGA) breast consortium

(2012) reported five methylation groups defined by breast

tumor sample clustering; groups 1–4 were enriched for

ER?, PR? tumors, while group 5 had the lowest levels of

methylation and was enriched for triple-negative, basal-like

tumors. Group 3 tumors had the highest levels of methyl-

ation and were enriched for the luminal B subtype [3].

Nevertheless, each of the five methylation groups described

by the TCGA were represented by an admixture of multiple

tumor subtypes. Overall, previous studies have had limited

descriptions of methylation patterns and their relation to

subtype, and few have explored the similarities and dif-

ferences between methylation patterns at different loci in

relation to methylation in matched normal breast tissues.

Therefore, the purpose of this study was to quantify

DNA methylation in a set of 70 candidate genes from

n = 140 breast tumors and matched normal tissues, and to

test associations with gene expression, and breast tumor

subtype (e.g., Basal-like, HER2-enriched, Luminal A and

B tumors). In parallel, we also sought to determine if two

different detection assays, Sequenom’s EpiTYPER Mass-

ARRAY and the Illumina Infinium platforms, provided

comparable methylation values for identical CG loci. In

contrast with the approach used to define methylation

groups by the TCGA consortium, we a priori stratified our

methylation analyses based on PAM50 subtype calls from

Agilent microarrays previously run in the UNC tumors.

Subsequently, we statistically validated our findings in the

TCGA dataset by molecular subtype. We took care to

insure that our validation in the TCGA dataset was as

equivalent as possible to the UNC dataset by only ana-

lyzing those TCGA samples for which Agilent microarray

data were used to determine relative gene expression and to

make the PAM50 calls.

We observed six distinct patterns of DNA methylation

within our candidate gene loci in breast tumors relative to

molecular subtype and matched normal tissue. These

methylation patterns (MPs) have unique distributions,

either by virtue of tumor subtype, and/or their level of

methylation in matched normal breast tissue. Methylation

patterns interrogated by MassARRAY in the UNC dataset

were validated in matched CGs in tumor and normal breast

tissues obtained from TCGA using the Illumina Infinium

platform. Many of the gene loci analyzed were inversely

associated with gene expression in breast tumors, and often

novel or stronger correlations were observed when the data

were stratified by molecular subtype. Importantly, corre-

lations of methylation with gene expression were inde-

pendent of methylation pattern group membership. These

results may help to further our understanding of the genetic

and epigenetic contributions to breast cancer heterogeneity.

Methods

UNC sample and previous gene expression data accrual

University of North Carolina (UNC) breast tissue samples

consisted of n = 140 specimens, n = 83 tumors, and

n = 57 paired normal breast tissues, collected in accor-

dance with Biomedical Institutional Review Board

approval through the UNC Office of Human Research

Ethics. All breast tissues for this methylation study were

collected from fresh frozen samples. All tumors had greater

than 50 % tumor cells, and on average 70 % tumor epi-

thelium, as determined by pathological/histological ana-

lysis. Adjacent matched normal tissues from the ipsilateral

breast were processed in the same manner as the tumors.

Additionally, oligonucleotide gene expression micro-

arrays (Agilent Technologies, Santa Clara, CA, USA) [13]

had previously been performed on these samples prior to

this study and deposited in the Gene Expression Omnibus

(GEO) under the accession number GSE35629. The

PAM50 algorithm [15] was used to assign molecular sub-

types of n = 83 breast tumors, consisting of 29 % Luminal

A, 28 % Luminal B, 27 % Basal-like, 12 % HER2-enri-

ched, and 2 % Normal-like, as previously described [15].

The two Normal-like tumors were excluded from all sub-

sequent analyses. Clinical and demographic data, PAM50

molecular subtypes, and GEO accession numbers for the

UNC sample set are listed in Online Resource 1.

Finally, Lowess normalized log2 ratios (Cy5 sample/

Cy3 control) of the 70 genes interrogated for methylation

in this study were median-centered prior to generating

relative gene expression values. Multiple probes for the

same gene were collapsed by averaging before median-

centering. Subsequently, gene expression values were

correlated with percent methylation values for the CpG

units interrogated on the MassARRAY platform

(Table 1, 2).
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Candidate gene selection

The candidate genes selected for this study were carefully

chosen due to their pivotal roles in cancer biology in gen-

eral, and/or because they represent PAM50 genes such as

MIA, PHGDH, KRT5, GRB7, EGFR, and CDH3. For

example, we chose to interrogate methylation in ‘‘BRCA1

related’’ genes (such as BRCA1 and BRCA2), genes

involved in epithelial–mesenchymal transition (such as

VIM, TWIST, and CDH1), genes which direct methylation

metabolism or histone modifications (such as DNMT3b and

HDAC9), or genes that previous studies have repeatedly

identified as being significantly methylated in breast cancer

(such as RASSF1, APC, CCND2, PTEN, and RARB).

DNA extraction and sodium bisulfite conversion

DNA extraction was performed on the UNC n = 140

sample set using either the Qiagen Puregene� Core Kit A

or the Qiagen DNAeasy� Blood & Tissue Kit (Qiagen,

Germantown, MD, USA). Sodium bisulfite (NaBi) con-

version of genomic DNA extracted from breast tissue was

carried out using the EZ DNA Methylation-Direct Kit

(Zymo Research, Irvine,CA, USA) as previously described

[21].

Quantification of DNA methylation using mass

spectrometry

Mass spectrometry was used to quantify percent methyla-

tion for 70 candidate gene loci on the SEQUENOM

MassARRAY platform using the EpiTYPER� T complete

reagent kit as previously described [21]. Custom primers

were designed for amplicons representing 70 genes with a

total coverage of approximately 1,200 CGs. PCR was

carried out on 5–10 ng of NaBi-converted DNA using

NaBi conversion specific primers (Online Resource 2), in

5 ll volumes with PCR conditions as previously described

[21]. As per the EpiTYPER protocol, shrimp alkaline

phosphatase was used to dephosphorylate unincorporated

dNTPs. Finally, RNase-A was added in the T-cleavage

reaction, rendering methylated and unmethylated CG

containing fragments subsequently quantified by mass

spectrometry.

The EpiTYPER� software identifies methylated versus

unmethylated CGs based on detection of a 16-Dalton mass

shift between the two peaks. The software then calculates

the percent methylation based on the relative ratio of

methylated to unmethylated CGs within a margin of 5 %

methylation confidence interval [4, 6, 16]. In some cases,

fragments resulting from the T-cleavage reaction may

contain more than one CpG dinucleotide, and are thus

referred to as ‘‘CpG units.’’ Percent methylation of such

CpG units are calculated as previously described [4]. Some

values for CpG containing fragments fall near or outside

the 1,000–8,000 Dalton window in which the MassArray

platform performs accurate percent methylation, and thus

calculations are assigned an ‘‘N/A’’ as these values cannot

be quantified reliably.

Hierarchical clustering in the UNC tumor set

Nucleic acids derived from the UNC tumors and matched

normal breast tissues had previously been used for separate

molecular studies, including the gene expression analysis

described below. Therefore, there was limited DNA

remaining from the n = 81 UNC tumor dataset to perform

the methylation assays. The result was that we were able to

quantify methylation for 33 gene loci in 81 tumors (UNC

set A), and an additional 37 genes in a subset of 53 of the

81 tumors (UNC set B). As complete data are needed for

clustering analysis, we performed unsupervised hierarchi-

cal clustering (HCA) separately on these two distinct gene/

tumor sets (Online Resource 3). HCA of MassARRAY

methylation data in the UNC tumor/matched normal

dataset, followed by validation of methylation patterns in

TCGA tumors and matched normal tissues revealed the six

methylation patterns described herein.

Independent validation in TCGA breast tumor

and normal samples

Methylation and gene expression data accession

from TCGA

The MassARRAY methylation findings from the UNC

study of breast cancer patients were compared with a

publically available, open-access dataset of invasive breast

adenocarcinoma from The Cancer Genome Atlas (TCGA).

Each tumor and adjacent normal tissue specimen (if

available) was embedded and a histologic section was

obtained for review. A board-certified pathologist reviewed

each H&E-stained case to confirm that the tumor specimen

was histologically consistent with breast adenocarcinoma

and the adjacent normal specimen contained no tumor

cells, in accordance with TCGA protocol requirements [3].

DNA methylation data were generated using the Illumina

Infinium Meth27K or Meth450K platform and presented as

b values, with 0 indicating 0 % DNA methylation and b
values of 1 indicating 100 % DNA methylation. Methyla-

tion data from 21,986 CpG sites from 813 breast tumors

and 123 adjacent non-tumor breast tissue samples was

obtained from the TCGA Data Portal (https://tcga-data.nci.

nih.gov/docs/publications/brca_2012/) in the file BRCA.

methylation.27k.450k.zip (Data freeze: November 11,
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2011). In order to insure equivalent comparisons between

UNC and TCGA samples, only those tumors with PAM50

subtype calls from Agilent arrays were utilized for this

study, leaving 455 tumor tissue samples and 70 matched

normal samples (Online Resources 4 and 5).

Inclusion of data for specific CpG sites were chosen

based on proximity to the CpG units that were interrogated

by MassArray. Data for CpG sites with direct matches with

MassArray amplicons were included in the dataset, and are

labeled in Tables 1 and 2 by the CpG unit they correspond

to in the MassArray amplicon. If there was no direct match

for the CpG unit in the TCGA dataset, then CpG sites

closest to the MassArray amplicon were included, with the

base pair distance from the MassArray amplicon listed in

Table 2.

Statistical analyses

Unsupervised hierarchical clustering based on complete

linkage and Euclidean distance of percent methylation

values in the UNC dataset was performed and displayed

using MeV (version 4.8.1) of the TM4 software suite [17]

(Fig. 1a–d). Relative gene expression in both UNC and

TCGA sample sets was measured by normalized log2 ratios

(Cy5 sample/Cy3 control) for each of the 70 genes inter-

rogated in this study. In the cases where there were multiple

probes per gene, log2 values were averaged. The Pearson r

statistic was used to correlate relative gene expression and

percent methylation in the UNC dataset, and by Illumina b
methylation values in the TCGA dataset (Tables 1, 2).

Pearson correlation values greater than (? or -0.2) with a

p value equal or less than 0.05 were considered significantly

correlated. In order to validate each of the six unique

methylation pattern features observed in the UNC tumor/

matched normal pairs, ANOVA was used to assess differ-

ences in mean percent methylation or b values in the UNC

and TCGA datasets, respectively (Figs. 2, 3, 4, 5, 6).

Finally, R (http://www.R-project.org) was used to plot the

contributors to significant inverse correlations of methyla-

tion with gene expression (Figs. 7, 8).

Results

Unsupervised clustering of methylation data reveals

distinct methylation patterns in breast cancer subtypes

Unsupervised hierarchical clustering of DNA methylation

data within candidate gene loci was performed on the two

UNC datasets and revealed six distinct methylation pat-

terns relative to breast cancer subtype and matched normal

breast tissues. Consensus clustering was not possible when

attempting to validate methylation patterns in the TCGA

dataset due to a lack of equivalence between methylated

loci in the UNC and TCGA samples. The methylation data

used for this validation study were derived from both 27

and 450 k Illumina Infinium platforms that, once normal-

ized and filtered by the TCGA investigators, resulted in

methylation data for only *22,000 probes covering the

entire human genome (BRCA.methylation.27k.450k.zip)

[3]. Therefore, this publically available methylation data

file had far fewer methylation probes than the *480,000

CG sequences originally interrogated. We were, therefore,

fortunate to have been able to match 61 (see Online

Resource 6), corresponding Illumina CG probes in the

published TCGA dataset relative to the 1,200 CGs inter-

rogated in the UNC dataset. Specifically, MassARRAY is

more of a fine mapping platform which allows interroga-

tion of many consecutive CpG sequences within a single

amplicon, while the Illumina platform has a ‘‘genome

wide’’ application, and consequently interrogates fewer

CpGs per gene. Using the available TCGA methylation

data described, observed methylation patterns were statis-

tically validated in the TCGA by hypothesis testing of each

of six unique pattern features.

Methylation pattern 1 (MP1) gene loci were subtype-

dependent (SD) and characterized by a subset of relatively

hypomethylated basal-like tumors ‘‘SD-HypoB.’’ This

group included MIA, KRT17, and KRT5, (Fig. 1b,d) which

were hypermethylated in all normal tissues and tumor

subtypes, except for a subset of basal-like tumors that were

relatively hypomethylated as exemplified by MIA (Fig. 2).

MP2 gene loci such as SFN, SERPINB5, and DIRAS3

(Fig. 1a,c) were differentially methylated across all sub-

types, and thus methylation patterns were subtype-inde-

pendent (SI). In addition, MP2 loci were differentially

methylated in tumors, had high methylation levels in nor-

mal tissue that typically ranged from 30 to 60 % (Fig. 3),

and, therefore, were referred to as ‘‘SI-HyperN.’’ Differ-

ential methylation for MP3 gene loci such as GRB7, TCF4,

MGMT, TWIST, and TERT was also independent of

subtype; however, this pattern was distinguished by hy-

pomethylation in matched normal tissues, in contrast to the

hypermethylation in normal tissues observed at MP2 loci

(Fig. 4). Therefore, we describe MP3 loci as ‘‘SI-HypoN’’

(Fig. 4).

MP4 gene loci were hypomethylated in the majority of

basal-like tumors, and differentially methylated across non-

basal-like subtypes (e.g., HER2-enriched and Luminal A

and B tumors), with relative hypomethylation in matched

normal breast tissue (Figs. 1a–c, 5). Therefore, these sub-

type-dependent, differentially methylated in non-basal-like

tumor loci were designated as ‘‘SD-DMinNB.’’ MP5 genes

such as PHGDH, PGR, CDKN2A, RARB, and BRCA1

were infrequently methylated at the loci interrogated,

reaching a level of 20 % methylation or higher in fewer
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than 15 % of all tumor samples (Figs. 1a,b, 6). These

subtype-dependent, infrequently methylated loci (desig-

nated SD-InfreqM) were hypomethylated in matched nor-

mal breast tissues. Finally, MP6 gene loci were not

differentially methylated (NotDM), and, therefore, unin-

formative (Fig. 1a–d). Thus MP6 loci were excluded from

further analyses (see Online Resource 2).

Correlations between gene expression and DNA

methylation are concordant between MassARRAY

and Illumina platforms and vary by breast cancer

subtype

Many of the amplicons analyzed in the UNC dataset

showed significant inverse correlations between DNA

Fig. 1 a–d Unsupervised hierarchical clustering analysis of candi-

date loci methylation in UNC datasets identifies six methylation

patterns. The clustergram is highlighted on the left to display the

major clada for each dataset. The colored bar on the right of the

clustergram displays the methylation pattern group for either each

CpG unit or average methylation per gene (MP1 = yellow,

MP2 = dark blue, MP3 = light blue, MP4 = orange, MP5 = pur-

ple, and MP6 = green). Hierarchical clustering analysis (HCA) by

CpG unit of a 81 tumors and b 53 tumors reveal enrichment of

methylation patterns for each cluster. HCA of averaged methylation

per locus for c 81 tumors and 33 genes and d 53 tumors and 37 genes

show similar clustering groups and methylation patterns compared to

clustergrams based on individual CpG units. See online resource 3 for

a detailed listing of rows (genes, CpG IDs) and columns (tumor

subytpe)
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Fig. 2 a–d MP1 gene loci display hypermethylation in normal tissue

and all tumor subtypes with a subset of basal tumors displaying a

hypomethylated phenotype. Box plots display percent methylation

distributions in normal breast tissue and matched tumors (n = 57

matched pairs for the UNC dataset and n = 70 matched pairs for the

TCGA dataset) where the upper and lower whiskers represent 1.5

times the interquartile range (IQR). Molecular subtype is listed on the

horizontal axis and percent methylation on the vertical axis. Each dot

represents the average percent methylation by MassARRAY across

the amplicon for the UNC dataset, or for the b values of the closest

MIA Illumina probe (cg25152942) in the TCGA dataset, respectively.

Tumors are grouped by PAM50 molecular subtypes assigned from

previous oligoarray analysis (Basal = red, HER2-enriched = pink,

Luminal A = dark blue, and Luminal B = light blue), while normal

tissues are grouped by the molecular subtype of the matched tumor.

The MP1 ‘‘SD-HypoB’’ locus pattern was recapitulated in TCGA

breast samples by t test of methylation differences between basal and

non-basal tumors significant for tumors in both a the UNC dataset and

b the TCGA dataset, while no significant difference was observed in

matched normal tissue in either dataset. MIA methylation in c UNC

breast tumors and matched normal tissue and d TCGA breast tumors

and matched normal tissue are displayed in scatterplots. (Note: similar

or overlapping percent methylation values for each CpG within an

amplicon by MassARRAY will appear as one ‘‘dot’’ in the UNC

scatterplots). T test p values for the basal vs. non-basal test are

provided in the bottom right of each figure
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methylation and gene expression (Table 1). Each CpG unit

was correlated with the log2 gene expression value;

therefore, correlations are displayed from a low–high

range, as well as an overall correlation based on average

methylation over the entire amplicon. While the UNC

dataset was not large enough to examine correlations of

DNA methylation and gene expression by subtype, the

TCGA dataset was large enough to enable stratified ana-

lysis. Many of the CpG units analyzed revealed varying

correlations between DNA methylation and gene expres-

sion that were subtype-dependent, including MIA, DAPK1,

KLK10, BRCA1, and PHGDH (Table 2).

With few exceptions, methylation correlations with gene

expression in the UNC dataset were comparable to corre-

sponding IIlumina probes from TCGA, particularly for

those gene loci having the least variable methylation

throughout the amplicon (Table 1). Low methylation var-

iability for all CGs interrogated within an amplicon is

evidenced by concordance of average, low, and high range

significant Pearson r and p values listed in Table 1, and by

clustering of CGs within the same gene locus (Fig. 1a,b).

We also observed several loci in normal tissues with sig-

nificant correlations (Table 2).

To investigate the major contributors to significant

correlations, we plotted methylation by log2 expression

values for several genes in TCGA tumors and matched

normal pairs (Fig. 7). Figure 7a demonstrates that the

subset of hypomethylated basal-like tumors at the MP1

MIA locus drives the significant correlation in tumors.

Notably, when the subset of basal-like tumors with

methylation b\ 0.5 were removed, the correlation was

no longer significant. Likewise, when the six high

methylation outlier matched normal samples from Lumi-

nal A tumors were removed, MIA methylation was no

longer correlated with the gene expression in normal

tissues (data not shown). Additionally, these plots show

Fig. 3 a–d MP2 gene loci display subtype-independent differential

methylation pattern with tumors exhibiting lower methylation com-

pared to normal tissue. SERPINB5 methylation in a UNC breast

tumors and matched normal tissue and b TCGA breast tumors and

matched normal tissue are displayed in scatterplots of individual CpG

units in the UNC dataset, and by b values for matched SERPINB5

probe cg20837735. MP2 ‘‘SI-HyperN’’ gene loci display significantly

lower average percent methylation in tumor samples vs. matched

normal tissue in both the c UNC dataset and were recapitulated in

d the TCGA dataset. T test p values for methylation differences

between tumor vs. normal samples are provided in the top right of

each box plot
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that the non-basal-like tumors for GSTP1, the basal-like

tumors for BRCA1, and the Luminal B tumors for

PHGDH drive the respective significant correlations at

these loci.

Discordant correlations between the UNC and TCGA

datasets include KRT5, EREG, and HDAC9, all loci with

variable CpG methylation across the amplicon. For

example, KRT5 did not achieve significance after

hypothesis testing of the MP1 pattern because the matched

probe available corresponded only to the highly variable

CpG 20.21 in the MassARRAY amplicon (Fig. 8). Exam-

ination of each KRT5 CpG interrogated by EpiTYPER

show KRT5_CpG6 is significant for the MP1 pattern

(Fig. 8a–c), while CpG 20.21 is not. In this case, the Illu-

mina platform was not truly discordant, but rather faithfully

reflects the variable methylation at this specific CpG.

Discussion

We studied the DNA methylation of 70 amplicons in 81

breast tumors and describe six locus-specific methylation

patterns in relation to tumor subtype and matched normal

breast tissues. These patterns were successfully validated in

a larger TCGA dataset of n = 455 tumors and n = 70

matched normal breast tissues. We found that differential

methylation was either subtype-dependent or subtype-

independent (e.g., differential methylation occurs in all

subtypes). For example, methylation patterns (MP) 1, MP4,

and MP5 are differentially methylated in a subtype-

dependent manner, whereas MP2 and MP3 loci were dif-

ferentially methylated across all subtypes.

Importantly, methylation is CpG locus-dependent and

may vary greatly over short bp distances as exemplified by

Fig. 4 a–d MP3 gene loci display subtype-independent differential

methylation with tumors exhibiting higher methylation compared to

normal tissue. MP3 gene loci are distinguished from MP2 loci by

relative hypomethylation in matched normal tissues, which are

subtype-independent; e.g., ‘‘SI-HypoN.’’ TCF4 methylation patterns

for a UNC breast tumors and matched normal tissue and b TCGA

breast tumors and matched normal tissue are displayed in scatterplots

of individual CpG units in the UNC dataset, and by b values for

matched TCF4 Illumina probe cg08491964. MP3 ‘‘SI-HypoN’’ gene

loci display significantly higher average percent methylation in

tumors compared to matched normal tissue in both the c UNC dataset

and d the TCGA datasets. T test p values for methylation differences

between tumor vs. normal samples are provided in the top right of

each box plot
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Fig. 5 a–d MP4 gene loci display a hypomethylated phenotype in

basal tumors and differential methylation in non-basal HER2, LumA,

and LumB tumors. Box plots show percent methylation distributions

in normal breast tissue and matched breast tumors. MP4, subtype-

dependent, differentially methylated in non-basal tumors ‘‘SD-

DMinNB’’ patterns were validated in the TCGA tumor and matched

normal sample set. A significant difference by ANOVA was observed

in average percent methylation of GSTP1 between molecular subtypes

in both a the UNC tumor dataset and b the TCGA tumor dataset for

the matched GSTP1 cg04920951 probe, while no significant

difference was observed in matched normal tissue in either dataset.

APC also demonstrated an MP4 methylation locus pattern, but unlike

GSTP1, APC methylation was not associated with gene expression in

either the c UNC or d TCGA dataset. (Boxplots shown are of averaged

percent methylation across the MassARRAY amplicon in the UNC

samples, and averaged b values for three matched APC probes;

cg21634602, cg20311501, and cg16970232, respectively). ANOVA

p values for testing methylation differences between molecular

subtype are provided in the top right of each box plot
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the KRT5 amplicon (Fig. 8). For this reason, not all CpG

units within the same amplicon cluster together, and can

segregate as ‘‘outlier’’ CpGs such as MGMT_001_7.8.9,

CST6_001_10, and HDAC9_001_1 (Online Resource 3).

Conversely, other loci such as MIA and VIM are more

homogeneously methylated over longer distances. For

example, the closest corresponding MIA and VIM CG

Illumina probes were *250 bp away from the EpiTyper

amplicon, yet these validation probes nevertheless had

highly similar methylation values with interrogated CpGs

in the UNC dataset, despite their distance from the target

CpG of measure (Tables 1, 2). Thus, the specific CpG

locus is critically important in any comparison between

methylation platforms, and in correlative analyses with

gene expression. Overall, Illumina CG probes having direct

matches with interrogated MassArray CGs were highly

comparable. While the Illumina platform provides good

genome-wide coverage for most genes, the EpiTYPER

MassARRAY platform has the distinct advantage of

quantifying an average 15–40 consecutive CpGs per

amplicon, thereby enabling the identification of highly

heterogeneous and informative loci that might otherwise go

undetected.

Historically, DNA methylation has been considered

noteworthy when associated with changes in gene expres-

sion. Indeed, the TCGA consortium identified 490 meth-

ylated genes inversely correlated with gene expression in

their Group 3 breast tumors, samples populated with hy-

permethylated genes and enriched for luminal B tumors

[3]. Of particular interest is our finding that multiple

methylation patterns were represented within the TCGA

Group 3 tumors such as MIA, DIRAS3, and GSTP1, loci

with MP1 (SD-HypoB), MP2 (SI-HyperN), and MP4 (SD-

DMinNB) patterns, respectively. We also found the MIA

and GSTP1 loci, (but not the DIRAS3 locus), reported by

the TCGA consortium were associated with gene expres-

sion. Moreover, our analyses relative to subtype and mat-

ched normal tissue (Table 2) allowed us to identify specific

contributors to significant correlations. For example, the

subset of hypomethylated basal-like tumors for MIA and

the non-basal-like tumors for the GSTP1 loci, respectively,

drive the significant inverse correlations of methylation

with gene expression (Fig. 7). When identified contributors

were removed from the analyses, including the six outlier

luminal A matched normal samples for KRT5, MIA, SFN,

and CST6, all correlations became insignificant. High

methylation/low expression findings in outlier matched

normal breast may have been due to field effects in these

six samples.

Distinct methylation patterns may or may not be

associated with gene expression as exemplified by MP4

loci GSTP1 and APC (Fig. 5). Overall, methylation of

many CpGs was associated with lower log2 expression

levels (e.g., BRCA1 and GSTP1); however, we also

observed the reverse at the MIA locus; e.g., lower

methylation was associated with higher gene expression

(Fig. 7). As proof of principle, we were encouraged that

correlation plots of gene expression and methylation

(Table 2; Fig. 7) confirmed past studies showing that

BRCA1 methylation is associated with decreased gene

expression [14, 24], and preferentially methylated in ER-

negative and basal-like breast cancer [11, 18]. Whereas

previous studies have used DNA methylation data to

cluster breast tumor samples with similar DNA methyla-

tion patterns, here we utilized methylation data to identify

and describe gene loci that have distinct patterns of

methylation between the four subtypes of breast tumors

and normal tissues.

In summary, percent methylation values obtained from

MassARRAY in the UNC dataset were recapitulated in the

TCGA using the Illumina Infinium platform, as were

methylation patterns MP1–MP6. Importantly, MP1–MP6

were revealed when comparing CG specific methylation in

both tumors and matched normal breast tissues, and when

stratifying methylation by PAM50 tumor subtype.

Depending on the locus, methylated loci may or may not be

correlated with gene expression, regardless of membership

within a particular methylation pattern. Moreover, meth-

ylation can be exquisitely locus specific and may vary

greatly within short base pair distances. We describe six

methylation patterns (MPs) found within our candidate

Fig. 6 a–h MP5 gene loci display subtype-dependent methylation

patterns with infrequent methylation. MP5 loci were subtype-depen-

dent and infrequently methylated ‘‘SD-InfreqM.’’ Only two tumors

were methylated at the BRCA1 locus in the UNC samples and no

significant differences were observed by ANOVA between molecular

subtypes in a UNC tumors and matched normal breast tissues, with

percent CpG methylation values averaged for the entire amplicon.

Frequency of methylation is displayed in a scatterplot of b the entire

UNC dataset (n = 81 tumors), where each CpG unit in the amplicon

is plotted. (Note: similar or overlapping percent methylation values

for each CpG within an amplicon by MassARRAY will appear as one

dot in the UNC scatterplots). A significant difference was observed in

b values for the BRCA1-matched cg08993267 Illumina probe

between molecular subtypes in the c TCGA-matched tumor normal

dataset (sample size n = 70). Frequency of methylation is displayed

in a scatterplot of d the entire TCGA dataset (n = 455 tumors). A

significant difference in percent methylation was observed in PHGDH

between molecular subtypes in e the UNC dataset and recapitulated in

g the TCGA dataset (PHGDH probe cg26791905). Methylation

frequency is displayed in scatterplot; f the entire UNC tumor dataset

and h the entire TCGA tumor dataset. ANOVA p values for testing

methylation differences between molecular subtypes is provided in

the top right of each boxplot

b
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Fig. 7 a–d Plotting

contributors of significant

inverse correlations with gene

expression. Methylation beta

values were plotted against

mRNA (logbase2 normalized

values) in the TCGA dataset,

with each data point

representing a tumor (n = 455

tumors). Tumor subtype is

displayed by the color of each

data point (Basal = red, HER2-

enriched = pink, Luminal

A = dark blue, and Luminal

B = light blue). a MIA

methylation correlation with

gene expression in tumors is

driven by the subset of basal

tumors with methylation b
values \ 0.5, and by the six

outlier Lumina A matched

normal samples. When both the

relatively hypomethylated

subset of basal tumors and

outlier normal samples were

removed, correlations were no

longer significant. b GSTP1 also

displayed significant overall

correlation between methylation

and gene expression as well as

significant correlations in all

subtypes except Basal tumors.

c BRCA1 overall correlation

between methylation and gene

expression was driven mainly

by Basal and Luminal B tumors.

d PHGDH overall correlation

was driven by the significant

correlation in Luminal B tumors

376 Breast Cancer Res Treat (2013) 142:365–380
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loci; however, future studies of other loci are likely to yield

additional, distinctive patterns by breast cancer subtype.

Further investigations of the variable frequency of the

methylation patterns described herein, together with their

contributions to altered gene expression, may ultimately

shed light on their role as passengers or drivers of

carcinogenesis. Given the contributions of MIA, KRT5,

KRT17, and PHGDH in defining the PAM50 basal-like

subtype, future studies will explore the mechanisms by

which these differentially methylated loci are associated

with altered gene expression, and the impact such changes

may have on breast cancer progression and prognosis.

Fig. 8 a–e The KRT5 interrogated locus shows high methylation

variability. MassARRAY methylation data for the KRT5 gene locus

in UNC tumors reveals heterogeneity throughout the 439-bp ampli-

con. a CpG number 6 in the KRT5 amplicon was significantly

(p = 0.04) differentially methylated by ANOVA between tumor

subtypes in the UNC samples, but did not have a direct probe match

in the TCGA dataset. b CpG unit 20.21 was not differently

methylated by ANOVA in the UNC samples, yet was the only CpG

unit for which the corresponding c TCGA KRT5 Illumina probe

cg04254916 was available. The non-significant ANOVA finding at

KRT CpG_20.21 was confirmed in the TCGA (e.g., ANOVA was not

significant in either the UNC or TCGA samples at this specific CpG

unit). To further illustrate the heterogeneity observed in the KRT5

amplicon, d correlation analysis between individual CpGs and gene

expression reveal CpGs as close as 23 bp apart have strikingly

different correlation values. While many CpGs in the amplicon were

significantly inversely correlated to gene expression, several CpGs

were not, including CpG 20.21, which is consistent with e the

matching TCGA probe not significantly associated with gene

expression. � Values for CpG fragments falling near or outside the

mass Dalton detection window cannot be reliably quantified and are,

therefore, excluded by the MassARRAY Epityper analytical software.

These include KRT5 CpGs 1, 3, 4, 5, 11, 12, 14, 15, 17, 18, 19, and

22. * Significant correlation between methylation and gene expres-

sion by individual CG
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