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Abstract

Background: Inactivating mutations of CDC73 cause Hyperparathyroidism-Jaw Tumour syndrome (HPT-JT), Familial
Isolated Hyperparathyroidism (FIHP) and sporadic parathyroid carcinoma. We conducted CDC73 mutation analysis in
an HPT-JT family and confirm carrier status of the proband’s daughter.

Methods: The proband had primary hyperparathyroidism (parathyroid carcinoma) and uterine leiomyomata. Her
father and daughter had hyperparathyroidism (parathyroid adenoma) but no other manifestations of HPT-JT. CDC73
mutation analysis (sequencing of all 17 exons) and whole-genome copy number variation (CNV) analysis was done
on leukocyte DNA of the three affecteds as well as the proband’s unaffected sister.

Results: A novel deletion of exons 4 to 10 of CDC73 was detected by CNV analysis in the three affecteds. A novel
insertion in the 5’UTR (c.-4_-11insG) that co-segregated with the deletion was identified. By in vitro assay the 5’UTR
insertion was shown to significantly impair the expression of the parafibromin protein. Screening for the mutated
CDC73 confirmed carrier status in the proband’s daughter and the biochemistry and ultrasonography led to
pre-emptive surgery and resolution of the hyperparathyroidism.

Conclusions: A novel gross deletion mutation in CDC73 was identified in a three-generation HPT-JT family
emphasizing the importance of including screening for large deletions in the molecular diagnostic protocol.
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Background
Primary hyperparathyroidism (PHPT) is a common endo-
crine disorder affecting up to 2% of individuals over the age
of 55 years [1]. It is caused by solitary benign adenoma in
80–85%, hyperplasia in 10–15%, and parathyroid carcinoma
in less than 1%. In up to 10% of cases PHPT is part of a
familial syndrome such as multiple endocrine neoplasia
(MEN) types 1 or 2, hyperparathyroidism-jaw tumor syn-
drome (HPT-JT), familial isolated hyperparathyroidism
(FIHP) or familial hypocalciuric hypercalcemia [2]. In the

HPT-JT syndrome, carcinomas account for approximately
15% of the parathyroid tumors [3].
The most common manifestations of the autosomal

dominant HPT-JT syndrome are parathyroid tumours
and ossifying fibromas of the maxilla and mandible.
Patients may also develop renal abnormalities and uter-
ine tumors [4]. The HPT-JT syndrome is caused by
mutations of the cell division cycle protein 73 homolog
(CDC73) gene, at chromosome 1q31.2 [5]. The 17 exons
of the CDC73 tumor suppressor gene encode the predom-
inantly nuclear, 531-amino acid protein, parafibromin [6].
Parafibromin regulates gene transcription as part of the
RNA polymerase II-associated polymerase-associated
factor 1 (PAF1) complex that has a fundamental role in
chromatin remodelling [6, 7]. Parafibromin inhibits cell
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proliferation by blocking the expression of cyclin D1
[8] and as a component of the Wnt signalling path-
way [9]. Moreover, the CDC73 gene is implicated in
sporadic parathyroid carcinomas and mutations are
present in up to 70% of cases [10, 11]. Parafibromin can
serve as a parathyroid carcinoma marker. While it is
expressed in normal parathyroid glands, parathyroid aden-
oma and hyperplasia, it is usually absent in parathyroid
carcinomas and some atypical adenomas [12].
The majority of the CDC73 gene loss-of-function

mutations associated with hyperparathyroidism and para-
thyroid carcinoma are frame-shift, nonsense or missense
occurring within the protein-encoding exons [13]. Re-
cently, some HPT-JT and FIHP cases without these types
of mutation were shown to have intragenic or whole
deletion of CDC73 [14–19].
We report here a 3-generation HPT-JT syndrome fam-

ily in which although initial analysis identified a variant
in the 5’UTR of the mRNA no mutation was found in
the protein-coding exons or exon/intron junctions.
Further analysis revealed an intragenic deletion of exons
4–10 of CDC73 that co-segregated with the 5’UTR
variant in the affected individuals.

Methods
Patients
The proband (III-1, Fig. 1) was a 48-year-old woman who
presented for evaluation of weight loss and fatigue. She
had a history of nausea, polydipsia and polyuria but not of
constipation or nephrolithiasis. Physical examination was
remarkable for a cachectic appearance (BMI = 18.7 kg/m2)
and the presence of a neck mass in the region of the right

superior thyroid lobe that was hard on palpation. Labora-
tory tests revealed markedly elevated total serum calcium
of 4.21 mmol/L (normal ≤2.60) and serum parathyroid
hormone (PTH) of 133 pmol/L (normal <7.6). The pa-
tient’s hypercalcemia was emergently treated with intraven-
ous fluids, furosemide and pamidronate.
Ultrasound imaging and sestamibi scan suggested the

presence of ~3 cm neck mass in close proximity to the
posterior aspect of the right hemithyroid lobe. Parathyroid
exploration revealed a local gross invasion of the mass
into surrounding structures, and a right hemithyroidect-
omy in addition to parathyroidectomy was performed.
Pathological evaluation of the 3.5 cm surgical specimen
(Fig. 2a and b) revealed vascular invasion (Fig. 2c), thyroid
invasion (Fig. 2d) and nuclear atypia (Fig. 2e). Immuno-
chemistry demonstrated PTH positivity and absence of
thyroglobulin staining. A diagnosis of parathyroid carcin-
oma was made, and while there were no metastatic lymph
nodes, the margins were positive. After surgery, the
patient developed reactive hypocalcemia due to hungry
bone syndrome, which was managed with oral calcium
supplementation. After initial discharge she was readmit-
ted on two occasions for marked hypocalcemia requiring
intravenous or oral calcium and calcitriol. This issue had
resolved by the time she received radiation therapy
3 months after surgery, but she developed radiation-
induced hypothyroidism requiring oral levothyroxine
replacement. Her weight improved and she is asymp-
tomatic with no evidence of disease recurrence 6 years
post-treatment.
A search for other manifestations of the HPT-JT syn-

drome was conducted. Dental panoramic radiograph,
bone scan, renal and hepatic ultrasounds were normal.
However, approximately 18 months after initial diagnosis
a uterine leiomyoma [20] of 6.3 by 4.8 by 4.5 cm was
found on ultrasound during work-up for menorrhagia
and was treated surgically.
The patient’s first-degree family members were also

evaluated. The father (II-2, Fig. 1) had a 2.2 cm parathyroid
adenoma removed at the age of 32, but other mani-
festations of HPT-JT were not noted. The daughter
(IV-1, Fig. 1) underwent screening biochemistry and
was found to have PHPT (total serum calcium,
3.1 mmol/L, PTH, 8.7 pmol/L). Ultrasound imaging
demonstrated a hypoechoic nodule posterior to the
left hemithyroid lobe, and she underwent surgical
excision of a parathyroid adenoma.

Genetic testing
The Institutional Research Ethics Board of the IRCCS
Casa Sollievo della Sofferenza Hospital approved the
protocol and informed consent was obtained from the
proband and family members. Genomic DNA was ex-
tracted from peripheral white blood cells using standard

Fig. 1 Pedigree of family with HPT-JT and CDC73 gene mutation.
Clinical status is indicated by open symbols (unaffected or status not
known) and solid symbols (affected). Proband is indicated by the
arrow. The presence (+) or absence (−) of the 5’UTR variant/exon
4–10 deletion in tested family members is shown
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methods. The entire coding sequence of the CDC73
gene including the exon-intron boundaries was sequenced
by PCR amplification and direct sequencing of all the 17
exons (16 amplicons) as previously described [12]. More-
over DNA extracted from formalin fixed paraffin embed-
ded (FFPE) tumour tissue excised from the affected
daughter was screened and loss of heterozygosity
(LOH) investigated as described previously [12]. No
other germline DNA or FFPE tissue was available at the
time of the study.

pGL3 constructs and luciferase assay
The 184 bp 5’UTR sequence of the mRNA (encoded by
the CDC73 gene) was PCR amplified from normal
human DNA with the forward primer having a HindIII
and the reverse primer having a NcoI restriction site.
The PCR product, after digestion with these enzymes
(New England Biolabs), was cloned into the HindIII/
NcoI digested pGL3 Basic vector (Promega). The NcoI
site was removed and the Kozak sequence restored by
specific mutagenesis to obtain the WT-5’UTR-pGL3
construct. By site-directed mutagenesis with this con-
struct as template an additional G was introduced into
the polyG (n = 8) tract terminating 3 bases upstream of
the ATG start site to obtain the MUT-5’UTR-pGL3 con-
struct. Sequences of mutagenesis primers and methods
are provided in the Additional file 1. Correctness of the
constructs was confirmed by sequencing.
Human embryonic kidney (HEK293) cells were

seeded in 6 well plates in DMEM-F12 supplemented
with 10% fetal bovine serum and 1% penicillin/
streptomycin. Twenty-four hours later cells were
transfected (Lipofectamine 2000 – Invitrogen) with
increasing concentrations of pGL3 Basic, WT-5’UTR-
pGL3 or MUT-5’UTR-pGL3. After 48 h, medium
was removed, cells were washed, and lysed, before
being scraped from the wells and collected. After
vortexing for 15 s and centrifugation at 12000 rpm
(2 min at 4 °C), aliquots of the supernatant were
added to Luciferase Assay reagent (Promega) and the
luciferase activity read in a luminometer.

5' UTR-parafibromin expression constructs and western
blot
The 184 bp 5’UTR sequence of the mRNA (encoded
by the CDC73 gene) was PCR amplified from normal
human DNA with the forward primer having an EcoRI
and the reverse primer having an SgfI restriction site.

A

B

C

D

E

Fig. 2 Gross view (a) and histology (b-e) of parathyroid carcinoma
surgical specimen from proband (III-1, Fig. 1). a Tumor with features
of fibrous banding. b Tumor overview. c Vascular invasion. d Thyroid
invasion. e Nuclear atypia
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The PCR product, after digestion with these enzymes,
was cloned (upstream of the open reading frame) into
the EcoRI/SgfI digested pCMV6 vector that expresses
the human CDC73 cDNA encoding parafibromin
Myc/Flag-tagged at its COOH-terminus (Origene
RC209479) [21].
The SgfI site was deleted and the 5′ UTR sequence

restored by mutagenesis to generate the WT-5’UTR-
Flag construct. By site-directed mutagenesis with this
construct as template an additional G was introduced
into the polyG (n = 8) tract terminating 3 bases up-
stream of the ATG start site to obtain the MUT-
5’UTR-Flag construct. Sequences of mutagenesis
primers and methods are provided in the Additional
file 1. Correctness of the constructs was confirmed by
sequencing.
HEK293 cells were cultured and transfected as de-

scribed above with the WT-5’UTR-Flag and MUT-5’UTR-
Flag constructs. Total cellular proteins were extracted in
radioimmunoprecipitation (RIPA) buffer (150 mM NaCl,
50 mM Tris-HCl, 1% Nonidet P-40, 0.1% sodium dodecyl
sulfate, 0.5% sodium deoxycholate, pH 8.0) supplemented
with Complete EDTA-Free Protease Cocktail Inhibitor
(1 tablet/10 mL RIPA). Protein aliquots were electro-
phoresed through 8% SDS polyacrylamide gels, electro-
transferred to PVDF membrane (Millipore, Billerica, MA),
blotted overnight at 4 °C with rabbit anti-Flag mono-
clonal antibody (Cell Signaling Technology) and for
1 h at room temperature with horseradish peroxidase-
conjugated goat anti-rabbit IgG antibody (Biorad).
Membranes were stripped and blotted with β-tubulin
rabbit monoclonal antibody (Cell Signaling Technol-
ogy). Densitometric analysis was made with ImageJ
(http://rsbweb.nih.gov/ij/).

SNP array analysis
Whole-genome copy number variation (CNV) analysis
was carried out with the CytoScan HD array platform
(Affymetrix, Santa Clara, CA) on leukocyte DNA of
the proband (III-1, Fig. 1), her father II-1, her daugh-
ter IV-1 and her sister III-3. The array contains more
than 2.6 million markers for copy number analysis
and approximately 750,000 SNPs that fully genotype
with greater than 99% accuracy. The CytoScanHD
assay was performed according to the manufacturer’s
protocol, starting with 250 ng DNA. DNA was
digested with the NspI restriction enzyme, ligated to
an appropriate adapter for the enzyme, and subjected
to PCR amplification using a single primer. After di-
gestion with DNase I, the PCR products were labeled
with a biotinylated nucleotide analogue, using ter-
minal deoxynucleotidyl transferase. Hybridization to
the microarray was carried out in a Hybridization
Oven 645 while subsequent washing and staining were

performed using the Fluidics Station 450. The array was
then scanned with the Scanner 3000 7G and both the qual-
ity control step and copy number analysis were performed
using Chromosome Analysis Suite Software version 2.0.
The raw data file (.CEL) was normalized using the default
options and an unpaired analysis was performed using as
baseline 270 HapMap samples to obtain the copy number
value from. CEL files while the amplified and/or deleted re-
gions were detected using a standard Hidden Markov
Model (HMM) method. Base pair positions were obtained
from the University of California Santa Cruz (UCSC)
Genome Browser (http://genome-euro.ucsc.edu/cgi-bin/
hgGateway?redirect=manual&source=genome.ucsc.edu),
build GRCh37 (hg19).

Statistics
Data are expressed as mean ± SE of triplicate esti-
mations with each experiment repeated three times
and a p value <0.05 was considered statistically
significant.

Results
CDC73 mutation screening
CDC73 sequence analysis of genomic DNA of whole
blood of the proband (III-I, Fig. 1) did not reveal a muta-
tion in the coding region or at splice sites. However,
within the 5’UTR an insertion of an additional guanidine
within a well-conserved polyG tract (n-8), 3 bp upstream
of the ATG start site, namely c.-4_-11insG, was found
(Figs. 3a and b). In addition, the SNP array analysis
revealed an interstitial microdeletion of 0.25 Mb in band
1q31.2 (Fig. 4) in cis with the 5’UTR variant. The hemi-
zygous region encompassed part of the CDC73 coding
sequence from exon 4 to 10 (Fig. 4). These same
changes (5′ UTR variant, gene deletion) were identified
in genomic DNA of the affected father (II-2, Fig. 1) and
the affected daughter (IV-1, Fig. 1) of the proband.
These changes were not found in genomic DNA of the
unaffected sister (III-3, Fig. 1) of the proband. Sequen-
cing and LOH analysis of FFPE parathyroid tissue of the
proband (III-1, Fig. 1) was uninformative with respect to
identifying a somatic second hit involving the wild-type
CDC73 allele.

In vitro functional analysis of the 5’UTR variant
In the first approach, HEK293 cells were transfected
with the pGL3 Basic construct in which the CDC73
5’UTR (either wildtype or mutant) had been inserted up-
stream of the luciferase coding sequence. While at low
concentration (50 ng) of DNA transfected luciferase ac-
tivity was minimal (no different from mock-transfected
cells, data not shown), with higher concentrations of
DNA (250 ng) significant luciferase activity was noted
with the WT-5’UTR-pGL3 construct whereas the activity
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of the MUT-5’UTR-pGL3 construct was significantly
less (Fig. 3c).
In the second approach, HEK293 cells were trans-

fected with an expression vector in which the wild
type or mutant CDC73 5’UTR had been inserted up-
stream of a parafibromin cDNA having a Flag epitope
encoded at its COOH-terminus. Western blot analysis
of cell protein extracts revealed markedly reduced

levels of the exogenous parafibromin in cells trans-
fected with the MUT-5’UTR-Flag construct as com-
pared with those transfected with the WT-5’UTR-Flag
construct [Fig. 3d (i) and (ii)].

Discussion
Here we describe a rare case of HPT-JT syndrome, in
which the hyperparathyroidism in affected family

A

C D

B

Fig. 3 a. Species sequence alignment of CDC73 encoding the proximal 5’UTR. The g tract (n = 8) and the ATG start codon are boxed.
b Sequence chromatogram of leukocyte genomic DNA of proband (III-1, Fig. 1) showing heterozygosity for insertion of an additional
guanidine in the tract of eight guanidines (c.–4_11insG). c Luciferase activity (mean ± SE) of cells transfected with either WT-5’UTR-pGL3 or
MUT-5’UTR-pGL3 constructs. See text for details. *, p < 0.05. d (i) Parafibromin (Flag) and β-tubulin (Tubulin) western blots of cells transfected with
either WT-5’UTR-Flag or MUT-5’UTR-Flag constructs. (ii) Densitometric analysis. **, p < 0.01. See text for details

Fig. 4 CytoScan HD Array analysis results of the patient. Intensity data (log 2 ratio value) of each probe is drawn along chromosome 1 from
193.00 to 193.22 Mb (USCS Genome Browser build February 2009, hg19). The red bar represents the 1q31.2 deletion identified, encompassing
exons 4 to 10 of the CDC73 gene
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members co-segregated with an altered CDC73 allele
harboring a large intragenic deletion and a 5’UTR
variant. While deletion of exons CDC73 4–10 is
clearly pathogenic, our in vitro analysis also suggests
impaired function of the CDC73 mRNA having the
c.-4_-11insG alteration However, species sequence
comparison (UCSC, https://genome.ucsc.edu/) reveals
that the 8G–tract shows limited phylogenetic conserva-
tion from humans to rodents, and in lower species the
length and sequence vary (Fig 3a). With respect to
the 5’UTR variant, recently, it appeared in the ClinVar data-
base (https://www.ncbi.nlm.nih.gov/projects/SNP/, http://
www.internationalgenome.org/ and https://www.ncbi.nlm.
nih.gov/clinvar/, code rs886043365 and 286,328, respect-
ively), but it was not found in ExAC or gnomAD, (http://
exac.broadinstitute.org/, http://gnomad.broadinstitute.org/)
databases. In the ClinVar database, Minor Allele Fre-
quency (MAF) was not available. Mutations were identi-
fied only 5 times in subjects affected by HPT-JT (2 cases),
parathyroid carcinoma (1 case), and in 2 cases with an un-
reported clinical condition. The reported clinical signifi-
cance was not unanimous, being “uncertain” in 3 cases
and “benign or likely benign” in 2 cases.
In our family case, in which the 5’UTR variant is in cis

with the large deletion, we believe that affected status
was due to the loss of genomic sequence, without any
ascribable influence of the 5’UTR variant. Further ad
hoc studies and genetic testing on larger cohorts would
help to clarify this issue.
Mutations of the CDC73 gene have presented as

missense/nonsense, frameshift insertion or deletion
that are scattered throughout the entire coding se-
quence with selectivity for some exons as opposed to
others [12, 13]. As such mutations have not been
found in all HPT-JT syndrome cases and its variants,
the search for large genomic deletions at the CD73C
locus has recently intensified, leading to their identifi-
cation in several cases [14–19] (see Table 1). In one
large study [16], large gene deletions represented 35%
of all the CDC73 genetic lesions identified, regardless
of phenotypic presentation (sporadic parathyroid car-
cinoma, FIHP or HPT-JT), suggesting a possible
underestimation of the presence of such genomic re-
arrangements at the CDC73 locus in the pathogen-
icity of the syndrome.
Identification of a somatic mutation in the wild-

type CDC73 allele in the tumor has been important
in confirming that the “second hit” hypothesis for
tumor suppressor genes applies to CDC73 (e.g.,
[22]). In the present case, sequencing and LOH ana-
lysis were unsuccessful in identifying a somatic sec-
ond hit. In such cases in which absent parafibromin
immunostaining in the tumor has been documented,
a variety of mechanisms have been proposed

whereby the parafibromin expression could be re-
duced. These include gene inactivation by hyperme-
thylation of the CDC73 promoter, an event that
appears to be rare or absent in HPT-JT tumors [23,
24]. Evidence of inhibition of the CDC73 gene by a
transcription factor [25] or by a microRNA suppress-
ing the CDC73 mRNA [26] has been provided in
squamous cell carcinoma but has yet to be con-
firmed for parathyroid neoplasia.
The present study has important implications for

the clinical management of parathyroid carcinoma as
occurring sporadically or within families [27, 28]. Pa-
tients presenting with apparently sporadic parathy-
roid carcinomas may carry germline mutations in
the CDC73 gene, and may thus have the potential to
express the HPT-JT syndrome or a variant. Family
members may also be mutation carriers. CDC73 gen-
etic and clinical testing should be considered for the
following: patients with a suspicion or diagnosis of
parathyroid carcinoma; family members of patients
with a diagnosis of parathyroid carcinoma; and pa-
tients with a positive family history of parathyroid
tumor of any sort. For asymptomatic individuals
(e.g., family members) the following is recom-
mended: periodic biochemical screen (serum total
calcium and PTH): tumor surveillance, e.g., pano-
ramic jaw x-ray, kidney and uterine ultrasound. For
family members of patients with parathyroid carcin-
oma periodic biochemical screen regardless of
CDC73 status is recommended.

Conclusions
The presence of a CDC73 mutation is associated
with increased risk of parathyroid carcinoma. Never-
theless, as emphasized here and in other reports, the
absence of pathogenic coding variants does not ex-
clude large genomic deletion, the search for which
should be encouraged. If known preoperatively, this
information will be helpful to the surgeon in plan-
ning the extent of surgery required. As the risk of
recurrence has to be weighed against the possibility
of incomplete disease penetrance, the optimal extent
of parathyroid surgery for benign disease in the set-
ting of a CDC73 mutation remains challenging and
controversial [29–33].

Additional file

Additional file 1: The file contains the sequences of the mutagenesis
primers and the mutagenesis protocol. (DOCX 12 kb)
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