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Abstract

During sampling of several Coffea arabica plantations in Tanzania severe root galling,

caused by a root-knot nematode was observed. From pure cultures, morphology and mor-

phometrics of juveniles and females matched perfectly with Meloidogyne africana, whereas

morphology of the males matched identically with those of Meloidogyne decalineata. Based

on their Cox1 sequence, however, the recovered juveniles, females and males were con-

firmed to belong to the same species, creating a taxonomic conundrum. Adding further to

this puzzle, re-examination of M. oteifae type material showed insufficient morphological evi-

dence to maintain its status as a separate species. Consequently, M. decalineata and M. otei-

fae are synonymized with M. africana, which is herewith redescribed based on results of light

and scanning electron microscopy, ribosomal and mitochondrial DNA sequences, isozyme

electrophoresis, along with bionomic and cytogenetic features. Multi-gene phylogenetic analy-

sis placed M. africana outside of the three major clades, together with M. coffeicola, M. ichino-

hei and M. camelliae. This phylogenetic position was confirmed by several morphological

features, including cellular structure of the spermatheca, egg mass position, perineal pattern

and head shape. Moreover, M. africana was found to be a polyphagous species, demonstrat-

ing that “early-branching” Meloidogyne spp. are not as oligophagous as had previously been

assumed. Cytogenetic information indicates M. africana (2n = 21) and M. ardenensis (2n =

51–54) to be a triploid mitotic parthenogenetic species, revealing at least four independent ori-

gins of mitotic parthenogenesis within the genus Meloidogyne. Furthermore, M. mali (n = 12)

was found to reproduce by amphimixis, indicating that amphimictic species with a limited num-

ber of chromosomes are widespread in the genus, potentially reflecting the ancestral state of

the genus. The wide variation in chromosome numbers and associated changes in reproduc-

tion modes indicate that cytogenetic evolution played a crucial role in the speciation of root-

knot nematodes and plant-parasitic nematodes in general.
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Introduction

Coffee (Coffea arabica L.) is one of the most important cash crops worldwide and the second

most important traded commodity after oil, with an estimated total export value of US$ 19.1

billion in 2012/2013 [1]. An estimated 100 million people worldwide are dependent on grow-

ing coffee, most of them from developing tropical countries [2]. In Africa, coffee generates

substantial income for rural communities and is a primary source of income for an estimated

10 million households in 25 countries [3]. However, coffee production in Africa is declining,

by approximately 17% since the 1970’s [3], while in other regions coffee production has essen-

tially doubled over the last 50 years. Meanwhile, global coffee consumption continues to rise at

an accelerating rate [1]. There are various reasons for the coffee production decline in Africa,

among them losses due to pests and diseases, and the costs involved in dealing with them.

Pesticides, for example, account for over 30% of coffee production costs [1, 3]. Of the various

ailments that plague coffee production, plant-parasitic nematodes, in particular root-knot

nematodes (Meloidogyne spp.), are an especially significant, yet relatively overlooked threat. In

South and Central America, where most of the available information on nematode pests of cof-

fee has been attained, nematodes are recognized as highly damaging pests, responsible for the

complete destruction of coffee plantations, to the point of forcing a shift to other crops, such as

sugar cane [4]. Often, coffee can only be cultivated when grafted onto nematode-resistant

root-stocks.

In South and Central America the root-knot nematodes that cause damage to coffee roots

areM. exiguaGöldi, 1887,M. incognita (Kofoid & White, 1919) Chitwood, 1949,M. coffeicola
Lordello & Zamith, 1960,M. paranaensis Carneiro, Carneiro, Abrantes, Santos & Almeida,

1996,M. hapla Chitwood, 1949, M. arenaria Chitwood, 1949,M. inornata Lordello, 1956, M.

arabicida Lopez & Salazar, 1989,M. konaensis Eisenback, Bernard and Schmitt, 1994,M. enter-
olobii Rammah & Hirschmann 1988,M. izalcoensis Carneiro, Almeida, Gomes and Hernan-

dez, 2005 andM. lopeziHumphreys-Pereira, Flores-Chaves, Gomez, Salazar, Gomez-Alpizar

& Elling, 2014 [5, 6]. Most of these species can be identified using species-specific primers that

have been developed to amplify sequence-characterized amplified regions (SCAR), having

themselves been converted from diagnostic randomly amplified polymorphic DNA fragments

(RAPDs) [7, 8].

Despite the importance of root-knot nematodes on coffee, there is virtually no information

on nematodes of coffee in Africa [5].Meloidogyne spp. reported on coffee in Africa include the

widely distributed M. incognita, M. javanica, [4] and recentlyM. izalcoensis andM. hapla [9].

There are also five species which have been almost exclusively reported from Africa,M. afri-
cana Whitehead, 1959, M. kikuyensis De Grisse, 1960,M. oteifae Elmiligy 1968,M.megadora
Whitehead, 1968 andM. decalineata Whitehead, 1968.Meloidogyne africana has been reported

on C. arabica in Kenya [4, 10] and Tanzania [11], on C. canephora L. in Democratic Republic

of Congo [12], on pepper (Capsicum annuum L.) in Sudan [13] and once outside of Africa on

maize (Zea mays L.) in India [14].Meloidogyne kikuyensis was originally described from Penni-
setum clandestinum Hochst. in Kenya [15] but was also reported from coffee by Whitehead

[16].Meloidogyne oteifae was described from Pueraria javanica Benth. and C. canephora in

Congo, but has not been reported since [17]. Meloidogyne megadora was originally described

from C. arabica and C. canephora in the Republic of Angola [18] and later reported from

Uganda and São Tomé and Prı́ncipe [4, 19].Meloidogyne decalineata was also reported in cof-

fee nurseries on São Tomé Island [20].

Since the monumental taxonomical work of Whitehead [10, 16, 18], progress on the taxon-

omy of African root-knot nematodes has been limited. Problematically, most descriptions are

only based on a limited number of morphological features [5], causing problems in species
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diagnostics, since morphological identification of root-knot nematodes and indeed of nema-

todes in general is known to be greatly hampered by phenotypic plasticity [21, 22]. As a result

of this, and limited local expertise, root-knot nematode infections on coffee in Africa are rarely

identified up to species level [23].

In 2013, severe root-galling was observed in several coffee plantations in the Lushoto and

Mbelei districts of Tanzania. Intriguingly, initial phylogenetic analyses revealed the root-knot

nematode to be outside the three classically recognised clades within the genus [24], such spe-

cies are not frequently encountered in field surveys, and as a consequence, little morphological

and isozymic information is available, while cytogenetic information is missing completely

[25]. Interestingly, M. coffeicola, also a coffee root-knot nematode species from Brazil, is also

considered to be to be outside the three well-known clades [26], whileM. ichinohei Araki,

1992, a root-knot nematode from Japan parasitizing Iris laevigata Fisch. & Mey., 1839 [27],M.

camelliae Golden, 1979 and an undescribed Meloidogyne species from Sansevieria sp. are

reported occupying a paraphyletic phylogenetic position in the genus, based on ribosomal

rDNA [27, 28]. However, studying oogenesis of these uncommon species would most likely

allow insight into the complex cytogenetic history of the genusMeloidogyne [25].

Formerly, amphimictic root-knot nematodes were hypothesized to be the ancestral state

within the genusMeloidogyne, meiotic parthenogenetic species derived from them and mitotic

parthenogenetic species evolved from meiotic parthenogenetic species [29–31]. This hypothe-

sis was primarily based on the low chromosome number of obligatory amphimictic species:M.

spartinae (Rau & Fassuliotis, 1965) Whitehead, 1968 [32] andM. kikuyensis [31]. Both species

have n = 7 chromosomes, whileM. carolinensis Eisenback, 1982,M.megatyla Baldwin & Sas-

ser, 1979 andM.microtyla Mulvey, Townshend & Potter, 1975 have n = 18 chromosomes [30].

However, molecular phylogenies demonstrated thatM.microtyla [24] andM. spartinae [27,

33] did not occur at their assumed early diverging position, while the assumed meiotic parthe-

nogenetic species M. artiellia Franklin, 1961 (cytology of this species was never formally stud-

ied) does take an early diverging position [25, 34, 35]. Consequently, this provided support for

the alternative hypothesis of Triantaphyllou [30], in which meiotic parthenogenetic species

reflect the ancestral state in comparison to amphimictic and mitotic parthenogenetic species

[25]. Moreover, mitotic parthenogenetic species are reported to have several origins, one in

clade I in which all species are mitotic parthenogens, exceptM. floridensisHandoo, Nyczepir,

Esmenjaud, van der Beek, Castagnone-Sereno, Carta, Skantar & Higgins, 2004, and one in

clade II in whichM. hapla race B andM. partityla are described to be mitotic parthenogens

[36, 37], while in in clade IIIM. oryzaeMaas, Sanders & Dede, 1978 is the only apomictic spe-

cies among facultative meiotic parthenogens [24, 25, 27].

Recovery and culturing of M. africana facilitated the current study on the evolution of

reproduction and oogenesis within the genus. However, to identify this species a taxo-

nomic conundrum needed to be resolved, based on the limited available morphological

and molecular information for African coffee root-knot nematodes. Therefore, the first

objective of the current study was to perform an integrative taxonomic description based

on LM, SEM, four loci (18S, ITS, 28S, Cox1) and isozyme phenotyping, which remains

essential for accurate diagnosis of root-knot nematodes [22]. The second objective was to

gain insight into the bionomics and mode of reproduction by studying host symptoms and

cytology of the parasite. The final objective was to place morphological, isozyme, bionomic

and cytological findings in an evolutionary perspective using a multi-gene phylogeny of the

genus Meloidogyne to reveal insight into the evolution of reproduction and oogenesis

within the genus.
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Materials and methods

Collection of populations, culturing and host-range test

In September 2013, root samples of C. arabica showing a characteristic root-knot galling were

collected from nine fields from two villages in the West Usambaras Lushoto Mountain Reserve

(Tanzania): Mbelei (-4.83166,38.39883; -4.82946,38.39694; -4.82824,38.395778; -4.83183,38.39

866; -4.83025,38.399120; -04.79879,038.30156) and Lushoto (-4.79879,38.30156; -4.80096,

38.29975; -04.82946,038.39694). No specific permit was required for this sampling and this

study did not involve endangered species. Nematodes were extracted from soil using a modi-

fied Baermann funnel [38] and subsequently fixed in DESS solution [39]. From each sample,

infected roots were directly fixed in DESS solution. Second-stage juveniles were hand-picked

from dissected galls of fresh roots using a stereomicroscope and inoculated onto C. arabica
seedlings in individual pots containing sterile potting media and maintained in a greenhouse

of the National Plant Protection Organization (Wageningen, the Netherlands) at 23˚C. Nema-

todes from this C. arabica culture were extracted using a variety of techniques including the

modified Baermann funnel, Oostenbrink elutriator, centrifugal sugar flotation, mistifier and

gall dissection [40]. A host-range test was performed by inoculating 1500 juveniles on Sanse-
veiria sp. and Solanum lycopersicum L. (cv. Moneymaker).

Morphological characterization

Nematodes were studied in temporary preparations sealed with nail-polish using an Olympus

BX50 DIC microscope (Olympus Optical), DESS fixed specimens were first transferred to

water for 1 hour before mounting in temporary slides. Morphological vouchers were created

using a combination of movies and photomicrographs with an Olympus C5060Wz camera,

which are available online at http://www.nematodes.myspecies.info and on the Dryad Digital

Repository (http://datadryad.org/). Vouchered nematodes were subsequently picked from

temporary mounts and processed for DNA extraction. Nematodes from C. arabica cultures

were fixed in TAF (Triethanolamine 2%, Formalin 7%, distilled water 91%) at 70˚C and pro-

cessed to anhydrous glycerine, following the method of Seinhorst [41] modified by Sohlenius

and Sandor [42]. These TAF fixed specimen were used for a profound morphometric analysis.

Comparative morphological analysis of each live stage as presented in section 1 are based on a

combination of field caught populations and the population in culture. The cellular architec-

ture of the gonads of egg laying females was examined after dissection in temporary mounts

according to the method of Bert et al. [43]; movies of spermatheca morphology are available

online on Dryad Digital Repository (http://dx.doi.org/10.5061/dryad.9f63r). For scanning elec-

tron microscopy (SEM) nematodes were fixed in 600 μl fresh 4% Paraformaldehyde fixative

buffered with Phosphate Buffer Saline (PBS) and 1% glycerol and heated for 3 seconds in a

750W microwave. Subsequently specimens were dehydrated in a seven-step graded series of

ethanol solutions and critical-point dried using liquid CO2, mounted on stubs with carbon

discs, coated with gold 25 nm. Specimens were studied and photographed with a JSM-840 EM

(JEOL) electron microscope at 12 kV.

Isozyme analysis

Esterase and malate dehydrogenase isozymes were analysed according to Karssen et al. [44].

Ten young females were isolated from root cultures in isotonic (0.9%) NaCl solution. Individ-

ual females, after desalting in reagent-grade water on ice for 5 minutes, were loaded to sample

wells containing 0.6 μl extraction buffer (20% sucrose, 2% triton X-100, 0.01% Bromophenol

Blue), and subsequently macerated using a glass rod. This mixture was homogenized, and
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protein extractions were loaded onto a (8–25) polyacrylamide gradient gel and electrophoreti-

cally fractioned using a PhastSystem (Pharmacia Ltd., Uppsala, Sweden). In addition to the ten

test samples, twoM. javanica protein extractions were added to the centre of each gel to serve

as a reference. After electrophoresis, gels were stained to examine for malate dehydrogenase

(Mdh) and esterase (Est) activity for 5 and 45 minutes, respectively, rinsed with distilled water,

and fixed using a 10% glycerol, 10% acetic acid, distilled water solution.

DNA extraction, PCR amplification and sequencing

Genomic DNA was extracted from both live specimen and specimen fixed in DESS solution.

Genomic DNA of individual crushed females was extracted using worm lysis buffer and pro-

teinase K [45] while genomic DNA of juveniles and males was extracted using the quick alka-

line lysis protocol described by Janssen et al. [46]. Briefly, individual nematodes were

transferred to a mixture of 10 μl 0.05N NaOH and 1 μl of 4.5% Tween. The mixture was heated

to 95˚C for 15 min, and after cooling to room temperature 40 μl of double-distilled water was

added. PCR amplification was performed using toptaq DNA polymerase (QIAGEN, Ger-

many), in a volume of 25 μl using a Bio-Rad T100TM thermocycler. PCR mixtures were pre-

pared according to the manufacturer’s protocol with 0.4 μM of each primer and 2 μl of single

nematode DNA extraction. The 28S rDNA fragment D2A (ACA AGT ACC GTG AGG GAA AGT
TG) and D3B (TCG GAA GGA ACC AGC TAC TA) primers were used according to De Ley et al.

[47]. The 18S rDNA gene was amplified using G18S4 (GCT TGT CTC AAA GAT TAA GCC) and

18P (TGA TCC WKC YGC AGG TTC AC) with internal sequencing primers 4F (CAA GGA CGA
WAG TTW GAG G) and 4R (GTA TCT GAT CGC CKT CGA WC) according to Bert et al. [45]. The

internal transcribed rDNA spacer (ITS) was amplified using VRAIN2F (CTT TGT ACA CAC
CGC CCG TCG CT) and VRAIN2R (TTT CAC TCG CCG TTA CTA AGG GAA TC) subsequently

cloned using pGEM 1 -T easy vector systems (Promega) and sequenced using universal

M13F and M13R primers. The Cytochrome c oxidase subunite 1 (Cox1) gene fragment was

amplified using JB3 (TTT TTT GGG CAT CCT GAG GTT TAT) and JB4.5 (TAA AGA AAG AAC
ATA ATG AAA ATG) [48, 49]. Sanger sequencing of purified PCR fragments was carried out in

forward and reverse direction by Macrogen (Europe). Contigs were assembled using GEN-

EIOUS R6.1.8 (Biomatters; http://www.Geneious.com). All contigs were subjected to BLAST

searches to check for possible contaminations on http://www.ncbi.nlm.nih.gov.

Sequence analysis

Multiple sequence alignments of single ribosomal genes (18S, 28S and ITS) were made using

the Q-INS-i algorithm in MAFFT 7.271 (http://mafft.cbrc.jp/alignment/server/index.html),

which accounts for the secondary structure of rRNA [50]. Cox1 sequences were translated

using the TranslatorX webserver (http://translatorx.co.uk/) [51], using the invertebrate genetic

code, and the nucleotides aligned according to an amino acid alignment constructed using

MAFFT. Multiple sequence alignments are available on Dryad Digital Repository (http://dx.

doi.org/10.5061/dryad.9f63r). Post alignment trimming was conducted using the parametric

profiling method of ALISCORE2.2 [52]. Gaps were treated as a 5th character and the default

sliding window was used. The best fitting substitution model was estimated for each gene

using the Akaike Information Criterion in jModelTest 2.1.2 [53]. Single gene alignments were

concatenated with GENEIOUS R6.1.8 (S1 Table). Phylogenetic analyses of single genes were

conducted by Bayesian methods, while the phylogeny of the concatenated alignment was con-

ducted using both Bayesian and maximum likelihood methods. Maximum likelihood analyses

were conducted using RaxML 8.0 [54] with 5000 bootstrap replicates under the GTR + I + G

model treating every gene as a separate partition. Bayesian phylogenetic analyses were
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conducted using MrBayes 3.2.1 [55]. Two separated analysis were performed using the default

priors and the GTR + I + G model using three heated (temp = 0.2) and one cold chain per

analysis. Gaps were treated as missing data and in the multi-gene analysis each gene and differ-

ent Cox1 codon positions were treated as a different partitions. Analyses were run for 20 mil-

lion generations, sampling trees every 500th generation. Run convergence was assessed using

standard deviation of split frequencies and Potential Scale Reduction Factors (PSRF). Of the

results 25% were discarded as burnin and burnin size was evaluated using a generation/Log-

likelihood scatterplot. Reproduction modes were traced along the Bayesian majority rule con-

sensus tree phylogeny using maximum parsimony and maximum likelihood methods imple-

mented in Mesquite 3.10 [56].

Cytological staining

Egg laying females were dissected from freshly collected coffee roots, smeared on microscope

slides and stained according to Triantaphyllou [57]. Smears were hydrolysed by submerging

the slide for 6 minutes in 1N HCl, fixed for 30–60 minutes in freshly prepared fixative consist-

ing of 75% absolute ethanol and 25% acetic acid, stained for 30 minutes in propionic orcein

and washed using 45% propionic acid. Preparations were sealed using nail polish and oogene-

sis was studied using an Olympus BX51 DIC microscope (Olympus Optical). Chromosome

numbers were estimated from late-prophase or early-metaphase chromosomal planes, because

in these stages the chromosomes are discrete and can be counted accurately [30]. Multifocal

movies were made from chromosome planes and subsequently analysed and counted frame-

by-frame using ImageJ software [58]. Movies are available online at http://www.nematodes.

myspecies.info and on the Dryad Digital Repository (http://dx.doi.org/10.5061/dryad.9f63r).

Results and discussion

Morphological identification of coffee root-knot nematodes from

Tanzania

From all nine sampled locations aMeloidogyne species was isolated, which were morphologi-

cally similar and, based on their Cox1 sequence (see section 3.3.1), were confirmed to belong

to the same species. As currently the descriptions of African coffee root-knot nematodes are

limited to morphological features, the morphology of this species is compared with original

type material ofM. africana, M. oteifae, M.megadora andM. decalineata. For morphological

comparison both a cultured population on Coffea arabica and field caught populations were

used.

Females. A morphological and morphometric comparison of females and perineal pat-

terns betweenM. africana, M. oteifae, M.megadora andM. decalineata revealed that these spe-

cies are less different than previously considered (Table 1). Whitehead [18] described the

female body ofM. decalineata without or with a very slight protuberance, however, a clear pro-

tuberance was observed in paratype specimens. Perineal patterns ofM. decalineata andM. otei-
fae were differentiated fromM. africana by exhibiting a narrow versus a wide lateral field [17,

18], however, examination of type material revealed no significant morphological differences.

Meloidogyne oteifae was originally further differentiated fromM. africana by the circles of

striae, which are crossed by other striae radiating from the vulva [17], however, the striation

pattern around the vulva observed in paratype specimens ofM. africana andM. decalineata
was identical. Also, the morphology of the female head is very similar for all considered species

(Table 1, Figs 1 and 2). Thus, no female morphological or morphometric characters separate

our populations, M. africana, M. oteifae, M.megadora andM. decalineata.
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Second-stage juveniles. The morphological comparison between second-stage juveniles

reveals strong similarities between our population, and both M. africana and M. oteifae

(Table 2). By contrast, the juvenile characteristics of M. decalineata match well with M. java-

nica. The total length, tail length, hyaline tail terminus of M. decalineata is markedly longer

compared to M. africana, M. oteifae and our population, and the tail terminus has a subacute

pointed terminus (vs rounded tail terminus). These differences are unexpected as M. decali-

neata was reported from the same site and host in the Lushoto district as three of our popula-

tions [16]. Furthermore, a long juvenile tail usually implies that phasmids are positioned far

apart in the perineal pattern, due to swelling of the juvenile body during transition to the

female live stage. In M. decalineata the phasmids are positioned close to each other in the peri-

neal pattern (Table 1). These observations indicate that M. decalineata was most likely

described from a species mixture and that the described juveniles of M. decalineata belong to

M. javanica. This error is possible as M. javanica has been reported from coffee and weeds

from coffee plantations in East Africa and is a commonly occurring root-knot nematode in the

Table 1. Comparison of female morphological and morphometric characters between Meloidogyne species parasitizing coffee in Africa.

M. africana Whitehead

19595
M. oteifae

Elmiligy 1968

M. decalineata

Whitehead 1968

M. megadora Whitehead 1968 Meloidogyne sp.

n 17 10 20 12 22

L 760±73 (660–910) 600 (520–680) 819±133 (649–1041) 683±87 (554–845) 615±95 (400.0–770.0)

Stylet 15 13.5 (13–14) 14 (12–17) 15 (13–17) 14.3±0.8 (13.0–15.5)

Stylet knobs

width

/ / / 3 (3–5) 3.1±0.3 (3.0–4.0)

DGO 4–9 3.5 (3–4) 4 6 (4–8) 5.7±0.8 (4.5–7.0)

a 1.6±0.16 (1.4–1.9) / 1.6±0.20 (1.2–2.1) 1.45±0.218 (1.1–1.8) 1.6±0.2 (1.3–2.4)

Body shape pyroid pyroid pyroid pyroid pyroid

Protuberance present present1 present2 mostly present present

ES porus 16–30 annules 12–15 annules 20–50 annules 8–30 annules 14–35 annules

Phasmids close to tail terminus close to tail

terminus

close to tail terminus close to tail terminus close to tail terminus

Elevated

perenium

present present3 present sometimes present present

Start lateral field faint faint rudimentary lateral field in

some patterns

not generally visible, posterior

part wiyh short coarse striae

faint

Dorsal arch low low low low low

Stria very fine very fine very fine very fine very fine

Stria surrounding

vulva

sometimes striae

surrounding vulva

striae surrounding

vulva4
sometimes striae

between tail and vulva

/ sometimes striae

surrounding vulva

Stylet knobs rounding or tending to

flatten anterior

rounded rounded or backward

sloping

back-sloped rounded

Head annules 1 or 2 annules behind

headcap

difficult to

distinguish

2 annules behind

headcap

3 annules behind headcap 1 or 2 annules behind

headcap

1 Not mentioned in the original description of Elmiligy (1968) but clearly observed in paratype slides.
2 Whitehead (1968) mentions posterior end without or with very slight protuberance, however, we observe a clear protuberance in all paratype specimen.
3 Elmigly (1968) mentiones the perineal pattern not raised on a knob, however, we observe a clearly elevated perenium in several paratype perineal

patterns.
4 Elmigly (1968) differentiated M. oteifae from M. africana by the circles of striae which are crossed by other striae radiating from the vulva and by the

absence of the wide relatively clear area in the lateral field. However, we observe exactly the same striation around the vulva in several paratype specimen

of M. africana and we observed no difference in morphology of the lateral field between paratype material of M. oteifae and M. africana.
5 Standard deviations are wrongly calculated in Whitehead (1959), standard deviations in this table are taken from Whitehead (1968).

doi:10.1371/journal.pone.0172190.t001
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region [16]; personal observations TJ). Additionally, Whitehead [16] reports M. decalineata to

be a very common species in the village of Lushoto, however, after profound sampling only M.

africana-like juveniles were recovered during the current sampling. In conclusion, the differ-

ences between juveniles of our population (Figs 1 and 3), M. africana and M. oteifae are

Fig 1. Camera lucida drawings of Meloidogyne africana from Tanzania. (A) second-stage juvenile

anterior body; (B) second-stage juvenile head; (C) second-stage juvenile habitus; (D) second-stage juvenile

tail; (E) male head; (F) male anterior body; (G, H) variable male habitus during development as sex-reversed

females; (I) male tail.

doi:10.1371/journal.pone.0172190.g001
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insignificant and the juveniles that have been described for M. decalineata [18] are here con-

sidered to belong to M. javanica. Juveniles of M. megadora have a longer tail with a shorter

hyaline terminus in comparison to our population, M. africana and M. oteifae.

Males. In both cultured and field recovered populations the males show extreme varia-

tions in shape and length, ranging from unusual partly swollen dwarf males to typical long and

Fig 2. Light microscopy and SEM of Melodigoyne africana females. (A) general habitus with characteristic protuberance; (B) head, lateral

view; (C) cephalic region (en face view); (D) gonad morphology of uterus (ut.), spermatheca (sp.), oviduct (ovi.) and ovarium (ova.); (E, G)

photomicrographs of perineal pattern; (F,H) SEM photograph of perineal pattern.

doi:10.1371/journal.pone.0172190.g002
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slender males. Their length and maximum body width varies from 816–1750 μm and 36–

66 μm, respectively, resulting in a highly variable ‘a’ ratio (see Table 3, Figs 1 and 4). Several

males had a second atrophied, partly developed, testis instead of a single testis. Notably, males

were recovered only from dissected galls of either culture or field populations and not from

soil or roots using a mistifier, Oostenbrink elutriator or modified Baermann. This would indi-

cate that males of this species do not exit the galls and therefore are not free-living. This is fur-

ther supported by empty female spermatheca, which indicates that males play no role in the

reproduction of this species (see also below). The variable body shape, sexual inactivity and

occurrence of intersexual features indicates a distorted development of males, which most-

Table 2. Comparison of second-stage juvenile morphological and morphometric characters between Meloidogyne species parasitizing coffee in

Africa.

M. africana

Whitehead 19597
M. oteifae

Elmiligy 1968

M. decalineata Whitehead

1968

M. javanica Eisenback

and Triantaphyllou 1981

M. megadora

Whitehead 1968

Meloidogyne sp.

n 25 30 25 90 26 30

L 420±5 (380–470) 370 (320–400) 543±24 (471–573) 488 (402–560) 451±27 (413–548) 422.0±39 (352.0–

535.5)

Stylet 14.8±1.5 (12–18) 12 (11–13) 12.4±0.68 (10.7–13.7) 10–12 12.0±0.61 (10.7–

13.2)

11.5±0.5 (10.5

±12.5)

DGO 3 3 3.5 (3.0–4.0)2 3.5 3.9±1.14 (2.3–4.8) 4.0±0.6 (3.0–5.5)

Tail 40±1.7 (30–48) around 483 48±2 (44–52) 56 (51–63) 53±3 (47–58) 42.1±1.9 (39.0–

46.0)

Hyaline tail

terminus

7.2±1.4 (Jepson

1987)

Around 10

(Jepson 1987)

15.5±3.1 (Jepson 1987) 13.7 (9–18) 6.3±0.6 (Jepson

1987)

10.5±1.3 (8.0–

13.0)

a 24.4±1.75 (22–28) 26.5 (22–29) 36.3±1.94 (32.8–40.0) / 27.8±2.31 (23.1–

32.9)

25.5±3.1 (19.5–

31.1)

c 10.8±1.82 (7.3–

14.3)

8 (7.5–9.2) 11.2±0.51 (10.3–12.2) / 8.4±0.64 (7.6–

11.0)

10.1±1.0 (7.8–

12.7)

Tail shape blunt rounded

terminus

tail tapering to a

rounded terminus

tail tapering smoothly or

irregularly to subacute

terminus

tail tapering smoothly or

irregularly to subacute

terminus4

tail tapering

irregularly ending

in a subacute

variously shaped

end

blunt rounded

terminus

Head annules 2 difficult to

distinguish

3–4 3–4 3 2

Lateral field

lines

41 4 4 4 4 (2 clear + 2

fainter)

4

Areolation

lateral field

outer bands

areolated4
/ outer bands areolated outer bands areolated4 / outer bands

areolated

Hemizonid / / above excretory pore above excretory pore4 above excretory

pore

above excretory

pore

Phasmids close to tail-tip halfway or two

thirds of tail

/ / / close to tail-tip

Stylet knobs rounded rounded ovoid ovoid4 rounded, back-

sloped

rounded

Rectum inflated4 inflated5 inflated6 inflated4 not inflated inflated

1 Whitehead (1959, 1968) did not observed the lateral field of second-stage juveniles. We observed 4 lines in the lateral field of paratype specimen.
2 Whitehead (1968) did not report the DGO length of M. decalineata, from paratype material DGO length was observed to be 3.5 (3.0–4.0), n = 6.
3 Estimated from body length/tail length ratio.
4 Own observation from paratype specimen.
5 Elmigly (1968) reported the rectum of M. oteifae to be not inflated, however an inflated rectum was observed in paratype specimen.
6 Whitehead (1968) reported the rectum of M. decalineata to be not inflated, however an inflated rectum was observed in 2 paratype specimen.
7 Standard deviations are wrongly calculated in Whitehead (1959), standard deviations in this table are taken from Whitehead (1968).

doi:10.1371/journal.pone.0172190.t002
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likely corresponds to sex-reversed females in varying stages as described for M. incognita by

Papadopoulou and Triantaphyllou [59], who assumed that sex-reversal is mediated by hor-

monal balance and therefore greatly dependent on environmental conditions. However, we

observed no differences in male development of cultured or field populations. Interestingly,

similar to males from our populations, dwarf males were also reported alongside normally

developed males of M. megadora by Whitehead [18], which had a reduced stylet with rounded

Fig 3. Light microscopy and SEM of Meloidogyne africana second-stage juveniles. (A,B) anterior body;

(C) meta- and post-corpus region; (D, E, G, H, I) tail variation; (F) mid-body lateral field; (J) hyaline tail region;

(K) cephalic region, en face view; (L) cephalic region, lateral view; (M, N) SEM photographs of mid-body

lateral field; (O) tail, lateral view; (P) tail, ventral view.

doi:10.1371/journal.pone.0172190.g003
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knobs, depending on the developmental stage. This implies that the morphology of the male

stylet and the body shape are of limited taxonomical use for this species since they are develop-

mental-dependant. Surprisingly, only three male specimens are reported for M. decalineata

[18], indicating that males are uncommon, possibly pointing to a similar distorted develop-

ment of males.

In agreement with other similarities, all our populations exhibit a characteristic lateral field,

as described forM. decalineata, i.e. narrow, occupying one-fifth of the body width, with 10 to

13 lateral lines, while the lateral fields ofM. oteifae andM.megadora exhibit a variable number

of lateral lines. In contrast, the lateral field ofM. africana exhibits 4 lateral lines only; careful

examination of the type material ofM. africana furthermore reveals a remarkable similarity

with males ofM. hapla (Table 3). Among other characters, the DGO, stylet length, stylet knob

shape, lip shape, a single short rarely reflexed testis and lateral field including typical striation

observed in male type material match perfectly withM. hapla. This would indicate that the

males ofM. africana andM. hapla were quite conceivably mixed up by Whitehead [10], which

is possible given that Whitehead [16] reportedM. africana from Pyrethrum, a crop known to

be a particularly good host ofM. hapla [16, 60]. Furthermore, we also recoveredM. hapla from

C. arabica in Tanzania (Mufindi, Iringa) and from Achyranthes aspera (Mbelei, Tanga), a com-

monly occurring weed in coffee plantations. Indeed,M. hapla frequently occurs in the tropics

at cooler higher elevations, a typical habitat for coffee cultivation in Africa, where mixed popu-

lations ofM. africana andM. hapla may consequently occur. Although Whitehead [10] did

not detail the extraction methods used, the fact that males of ourM. africana could not be

obtained using traditional mistifier, Oostenbrink elutriator or modified Baermann extraction

methods supports the argument that the original males belong to a different species. ForM.

Table 3. Comparison of male morphological and morphometric characters between Meloidogyne species parasitizing coffee in Africa.

M. africana

Whitehead 1968

M. hapla

Whithead 1968

M. oteifae Elmiligy

1968

M. decalineata

Whitehead 1968

M. megadora

Whitehead 1968

Meloidogyne sp.

Male

n 18 25 10 2 25 21

L 1470±197 (1200–

1850)

1139±166 (791–

1432)

1160 (980–1270) 1630, 1700 1906±330 (905–2277) 1285±245 (816.0–

1750.0)

Stylet 20.7±1.08 (19–22) 20.0±1.28 (17.3–

22.7)

22 (19–23) 20, 19 20.4±1.13 (18.3–21.9) 15.7±1.1 (14.0–

18.0)

Stylet knobs

width

/ 3.5±0.52 (2.5–

5.0)

/ / 5.1±0.64 (3.6–6.1) 3.5±0.4 (3.0–4.0)

DGO (4–6) 2.9±0.23 (2.5–

3.2)1
3.5 (3–4.5) 4 6.5±1.18 (4.0–8.3) 5±0.4 (4.0–6.0)

Spicules (26–35) 25.7±2.42 (21.6–

28.1)

33 (29–37) 33, 34, 36, 37 32.6±2.96 (25.2–36.0) 26.5±2.3 (24.0–

31.0)

Gubernaculum (7–9) 8.2±0.82 (7.2–

9.4)

11 (10–12) 7 10.6±0.86 (9.4–11.9) 7.6±1.8 (6.0–10.0)

a 38.9±4.72 (31–50) 41.7±3.66 (33.3–

47.0)

26 (25–28) 29.6, 42.5 52.8±7.06 (36.9–62.8) 26.0±4.0 (19.2–

34.3)

Lateral field

lines

4 4 4, 5 or more present in

few specimen

10 mostly 4, 5 or 6 for

short distance

10–13

Lateral field

width

1/4 of body width / 1/5 of body width 1/7 of body width / 1/4 of body width

Testes single, rarely

reflexed

single, rarely

reflexed

single, mostly reflexed single single, in 2 exceptional

cases double

single, mostly

reflexed

1 Jepson reported the DGO of M. hapla to be 4.1±1.0 (2.7–5.4).

doi:10.1371/journal.pone.0172190.t003

Integrative taxonomy of Meloidogyne africana reveals multiple origins of mitotic parthenogenesis

PLOS ONE | DOI:10.1371/journal.pone.0172190 March 3, 2017 12 / 31



oteifae just one single male paratype specimen was deposited by Elmiligy [17], which does not

permit for a definitive diagnosis, but which shows a remarkable similarity with M. javanica
males. In conclusion, our observations indicate that males ofM. africana [10] belong toM.

hapla, while males from our population correspond withM. decalineata males. This further

complicates the African coffee root-knot nematode taxonomic conundrum.

Conclusion of morphological identification. In the current study, in order to clarify the

taxonomic status of African coffee root-knot nematodes, the features of females and juveniles

need to be prioritised, as they are considered the superior Meloidogyne diagnostic characteris-

tics [61]. The males of most of the investigated populations have a distorted development as

Fig 4. Light microscopy and SEM of Meloidogyne africana males. (A) habitus of dwarf sex-reversed female; (B)

anterior body in lateral view; (C) cephalic region, en face view; (D, E) mid-body lateral field; (F, G, H) tail.

doi:10.1371/journal.pone.0172190.g004
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sex-reversed females, and the originally described males of M. africana and M. oteifae are likely

based on other species. From all of our current populations females and juveniles unequivo-

cally match with M. africana. However, Whitehead [10] assigned males of M. hapla as the holo-

type of M. africana and as such and the existing type is not in taxonomic accord with M.

africana. For the more recently described M. decalineata, the holotype has been correctly

assigned but the juveniles have been described based on a different species. Retaining the origi-

nal name M. africana and not M. decalineata will result in a greater taxonomic stability; irre-

spective of the current manuscript, other populations of this species will most likely be

identified as M. africana, since males are rare. Hence, M. africana is not only the oldest avail-

able name but also in accord with the prevailing usage of the original name and therefore the

name M. africana should be conserved. As a consequence M. decalineata is considered a junior

synonym of M. africana. Reference material has been deposited in the collections of Wagenin-

gen and the Nematology Research Unit University Ghent (slides UGnem147-149).

In addition, the morphology ofM. oteifae females and juveniles correspond perfectly with

M. africana, while males ofM. oteifae show affinity withM. javanica. Moreover, M. oteifae
(accepted for publication on 24 July 1968) does not appear to have been adequately compared

withM. decalineata orM.megadora published in august 1968 (accepted for publication on 10

October 1967), which were published almost simultaneously. Therefore, M. oteifae is also con-

sidered to be a junior synonym ofM. africana. ForM.megadora, the females and males also

show remarkable similarities to our populations ofM. africana, including the presence of

“dwarf” males. However,M.megadora is considered to be a valid species because the juveniles

have a longer tail with a shorter hyaline terminus, and the esterase isozyme profile migrates

faster in comparison toM. africana [62]. Moreover, a recent molecular characterisation con-

firmedM.megadora to be a separate entity [63].

Redescription of Meloidogyne africana (Table 4, Figs 1–4)

Subfamily Meloidogyninae Skarbilovich, 1959

Genus Meloidogyne Göldi, 1887

Meloidogyne africana, Whitehead 1960

new syn.Meloidogyne decalineata, Whitehead 1968

new syn.Meloidogyne oteifae, Elmiligy 1968

Material examined. Meloidogyne africana: holotype and 3 paratype slides from Kamaara

Coffee nursery, Meru district, Kenya (Rothamsted Nematode Collection 77/17/1-77/17/4);

Meloidogyne decalineata: holotype and 3 paratype slides from Mawingo estate, Kilimanjaro,

Tanganyika (Rothamsted Nematode Collection 77/10/1-77/10/4); Meloidogyne megadora:

holotype and 3 paratype slides from Coffee research station, Amboim, Republic of Angola

(Rothamsted Nematode Collection 77/13/1-77/13/4); Meloidogyne oteifae: holotype and 10

paratype slides from Congo (Ghent University Museum, Zoology Collection). ThreeM. afri-
cana populations from Lushoto, Tanzania and six populations from Mbelei, Tanzania.

Females. As described forMeloidogyne africana by Whitehead [10]. Additionally, SEM of

the perineal pattern supplements the light microscopic observations and drawings of White-

head [10] (Figs 1 and 2) and illustrates the typical characteristics of the perineal pattern. Faint

striae forming a low dorsal arch, phasmids positioned adjacent to tail terminus, start of the lat-

eral field of variable width and composed of irregular striae, perineal pattern on a raised peri-

neum as a consequence of a clear protuberance, and vulva surrounded by circles of striae,

which are sometimes crossed by other striae radiating from the vulva.

Juveniles. As described forMeloidogyne africana by Whitehead [10]. Body length has a

wider range and the stylet is slightly shorter compared to the original description (Table 4).
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The lateral field, which was not described in the original description, is prominent with 4 lines

(Figs 1 and 3), which may be areolated in the mid-body region. SEM observations indicate that

more than 4 lines can be present in the mid-body region (Fig 3), providing an indication of the

origin of the multiple lined lateral field of males. Second-stage juveniles have a characteristic

rounded tail terminus with a long hyaline terminus (Figs 1 and 3) [10].

Males. As described forMeloidogyne decalineata by Whitehead [18], although the mor-

phometric values (Table 4) show a wider range compared to Whitehead [18], which were

based on three specimens only (Table 3).

Diagnosis. Meloidogyne africana is characterised by a distinct elevated perineal pattern with

smooth striae, phasmids positioned close together and a variable lateral field. Males are variable

in size with a narrow lateral field consisting of 10–13 lateral lines. Second-stage juveniles have a

rounded tail, with a characteristic hyaline region.Meloidogyne africana is further characterised

by a unique esterase isozyme phenotype. Based on ribosomal (18S and 28S rDNA) and mito-

chondrial (Cox1) sequencesM. africana is differentiated from all members of clade I, II and III,

andM. coffeicola, M. cammeliae, M. ichinohei, M.mali,M. artiellia,M. beatica (see section

below).Meloidogyne africana is differentiated fromM.megadora by a shorter juvenile tail, a dif-

ferential hyaline tail terminus, a different male lateral field and a more slowly migrating esterase

isozyme profile [62].Meloidogyne africana is morphologically close toM. acronea Coetzee 1956,

but is differentiated by the lateral lines, stylet of the male and the different juvenile tail.

Phylogenetic analysis, molecular diagnosis and evolutionary

morphology

Phylogenetic analyses. The multi-gene sequence alignment of three genes (18S, 28S

rDNA and Cox1), was 2847 base pairs in length, and is in accordance with single gene

Table 4. Morphometrics of Meloidogyne africana cultured on Coffea arabica. Mean ± SD (range), all measurements in μm.

Character Females Males Second-stage juveniles

N 22 21 30

L 615±95 (400–770) 1285±245 (816–1750) 422±39 (352–536)

Greatest body diam. 375±59 (300–540) 50.0±7.6 (36.0–66.0) 16.8±2.3 (14.0–22.0)

Body diam. at anus / / 10.2±0.7 (9.0–12.0)

Head region height / 3.3±0.5 (2.5–4.0) 2.7±0.5 (2.0–4.0)

Head region diam. / 8.3±0.4 (7.5–9.0) 5.5±0.3 (5.0–6.0)

Neck length 217±48.1 (120–300) / /

Stylet 14.3±0.8 (13.0–15.5) 15.7±1.1 (14.0–18.0) 11.5±0.5 (10.5±12.5)

Stylet knobs width 3.1±0.3 (3.0–4.0) 3.5±0.4 (3.0–4.0) 1.9±0.2 (1.5±2.0)

DGO 5.7±0.8 (4.5–7.0) 5±0.4 (4.0–6.0) 4.0±0.6 (3.0–5.5)

Ant. end to metacorpus / 64.0±8.2 (54.0–78.0) 46.0±5.6 (38.0–61.0)

Excretory pore-ant.end / 150±24.9 (110–197) 75.5±6.9 (55.0–84.0)

Tail / / 42.1±1.9 (39.0–46.0)

Hyaline tail terminus / / 10.5±1.3 (8.0–13.0)

Spicules / 26.5±2.3 (24.0–31.0) /

Gubernaculum / 7.6±1.8 (6.0–10.0) /

a 1.6±0.2 (1.3–2.4) 26.0±4.0 (19.2–34.3) 25.5±3.1 (19.5–31.1)

c / / 10.1±1.0 (7.8–12.7)

c’ / / 4.1±0.3 (3.5–4.7)

Body L/neck L 2.9±0.4 (2.3–3.8) / /

(Excretory pore/L)x100 / 11.7±2.0 (8.7–15.7) 17.8±1.2 (14.0–20.4)

doi:10.1371/journal.pone.0172190.t004
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phylogenies of 18S and 28S rDNA [24, 27, 64]. The phylogenetic analysis revealed M. africana,

Meloidogyne sp. and M. coffeicola to be outside of the three major clades (clade I, II and III)

(Fig 5) based on the Bayesian analysis (posterior probability = 99) [24]. According to the maxi-

mum likelihood analysis, M. ichinohei, M. camellieae are also positioned outside these three

major clades. Overall relationships between M. africana, M. coffeicola, M. ichinohei and M.

camelliae are poorly supported and will need a phylogenomic approach in order to be resolved.

The multi-gene phylogenetic analysis confirmed M. africana to be the sister taxon of an unde-

scribed Meloidogyne species from Sansevieria sp. [27], differing in 11 base pairs (0.7%) in 18S

and 35 base pairs (7.5%) in the Cox1 fragment. In comparison to other root-knot nematodes

the observed 7.5% Cox1 and 0.7% 18S rDNA divergence clearly constitute a different species

[46, 65], especially as 18S rDNA usually does not show sequence divergence for closely related

species [65, 66].

The Cox1 multiple sequence alignment included 37 Cox1 sequences and was 432 base pairs

in length. This alignment revealed only a single haplotype ofM. africana based on the 16

sequenced specimens (8 females, 4 males and 4 juveniles) (Fig 6) and confirms that males,

females and juveniles of different populations belong to the same species, M. africana. From

five localities a single female was sequenced, from three locations a juvenile, a male and a juve-

nile were sequenced and from one location a male and a juvenile were sequenced. The pres-

ence of only oneM. africana Cox1 haplotype in nine farms from Mbelei and Lusotho

(Tanzania) indicates that intraspecific variability is low and that this species can be reliably

identified using Cox1 DNA barcoding. However, a more extensive geographic sampling

should be conducted in order to assess interspecific variability ofM. africana, although recent

studies show that mostMeloidogyne spp. display little within-species genetic variability in

Cox1 [46, 65].

In order to differentiate M. africana from a broader range ofMeloidogyne species a 18S

rDNA single gene phylogeny was constructed (Fig 7), based on a multiple sequence alignment

of 1819 base pairs in length. The phylogenetic tree is in accordance with previous 18s rDNA

based phylogenies [24, 27, 64] and confirms the species identity ofM. africana and its position

outside the 3 major clades of the genus.

Also, three ITS1-5.8S-ITS2 rDNA sequences were deposited on GenBank (accession num-

bers: KY433428-KY433430) because this remains a frequently used region for identification of

plant-parasitic nematodes [63, 67]. However, ITS has been described to exhibit multiple highly

divergent copies in a singleMeloidogyne individual due to the suggested hybrid origin of these

species [63, 68]. SinceM. africana is also suggested to be a triploid species (see section below),

ITS is considered to be unreliable for identification purposes. Furthermore, ITS sequences are

extremely variable among root-knot nematodes [68, 69] and multiple sequence alignments are

unlikely to generate homologous nucleotide positions needed for a reliable phylogenetic

analyses.

Evolutionary morphology of the perineal pattern and protuberance. The perineal

region of Meloidogyne africana appeared to show an ancestral pattern because it resembles a

pre-adult of M. javanica [10] and this proposed ontogenetic pattern appears to correspond

with the obtained phylogeny. In this regard, Karssen [70] already noted that perineal patterns

of all Meloidogyne pre-adults significantly differ from those of mature females because the

pre-adult remains enclosed in the juvenile cuticle. Given that perineal patterns of pre-adult M.

javanica (and other Meloidogyne spp.) are hemispherical-shaped, with a fine striation, they

resemble the perineal pattern of M. africana adults. However, the hemispherical shape of the

perineal pattern is directly linked to the presence of a protuberance in Meloidogyne species,

which is mostly associated with a finely striated perineal pattern (exceptions are M. graminis

(Sledge & Golden, 1964) Whitehead, 1968, M. marylandi Jepson & Golden in Jepson, 1987 and
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M. sasseri Handoo, Heuttel & Golden, 1994, which show a protuberance in combination with

a coarsely striated perineal pattern) [70]. This finely striated, hemispherical perineal pattern is

most likely the result of less body expansion during the transition towards adult, which has

Fig 5. Molecular multi-gene phylogeny of the genus Meloidogyne. Consensus tree based on the combined nuclear 18S and 28S rDNA sequences and

the mitochondrial Cox1 gene sequences. Values above branches are Bayesian posterior probabilities, values below branches are Maximum Likelihood

bootstrap values. Overview of used sequences in S1 Table, for details on phylogenetic reconstruction see Materials and Methods. Evolutionary morphology

of the female gonoduct is illustrated by drawings of the oviduct-spermatheca region from Meloidogyne africana, Meloidogyne mali, Meloidogyne ichinohei,

Meloidogyne hispanica and Pratylenchus thornei; (ova.) ovaria; (ovi.) oviduct; (sp.) spermatheca; (ut.) uterus. Morphological drawing M. ichinohei and M.

hispanica modified from Bert et al. (2002). M. hispanica is used as an example of typical gonoduct morphology in Clade I, II and III, only mophological

exception is M. microtyla (Bert et al. 2002). Typical Pratylenchus gonoduct morphology is illustrated by a drawing of Pratylenchus thornei, modified from Bert

et al. (2003).

doi:10.1371/journal.pone.0172190.g005
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evolved several times independently from each other, as has the presence of a protuberance.

Thus, it is unclear if the finely striated perineal pattern and a protuberance of M. africana, M.

ichinohei and M. coffeicola represents the ancestral state of the genus given that M. camelliae,

M. mali, M. beatica Castillo, Vovlas, Subbotin & Trocolli, 2003 and M. artiellia show a coarsely

striated perineal pattern without protuberance. Yet, incompletely swollen species with a protu-

berance might be considered as an intermediate step between vermiform nematodes of the

genus Pratylenchus and completely globular nematodes of the genus Meloidogyne.

Fig 6. Majority rule consensus tree based on mitochondrial Cox1 sequences. Values above branches are Bayesian posterior probabilities, values

below branches are Maximum Likelihood bootstrap values. For details on phylogenetic reconstruction see Materials and Methods. Genbank accession

numbers are displayed behind the species name. Newly generated sequences are highlighted in bold.

doi:10.1371/journal.pone.0172190.g006
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Fig 7. Majority rule consensus tree based on 18S ribosomal rDNA sequences with karyology. Values above branches are

Bayesian posterior probabilities. Known karyotypes are displayed, reviewed by Chitwood and Perry (2009), newly generated

karyotypes are highlighted in bold. Note there is no direct link between nucleotide sequences from NCBI and karyotyped

Integrative taxonomy of Meloidogyne africana reveals multiple origins of mitotic parthenogenesis

PLOS ONE | DOI:10.1371/journal.pone.0172190 March 3, 2017 19 / 31



Evolutionary morphology of the female gonoduct. As in all Tylenchina, the two gono-

duct branches of M. africana and M. mali each consist of a uterus, a spermatheca, an oviduct

and an ovary (Figs 2 and 5). The uterus of M. africana and M. mali is a very long tricolumella

with multiple cells as in all other Meloidogyne spp. [43] but distinct from the short uterus of

most Pratylenchidae [71]. This extended uterus convergently evolved in endoparasitic nema-

todes, including entomopathogenic steinernematids, false root-knot nematodes (Naccobus

spp.), cyst- and root-knot nematodes [45]. The spermatheca of M. africana is not offset, con-

sisting of 12–14 cells, without lobe-like cells and without interlaced cell boundaries (Figs 2 and

5). Also the spermatheca of M. mali is not offset, without lobe-like cells, consisting of 13–16

cells (Fig 5), and cell boundaries are slightly interlaced but less interlaced than in M. microtyla

[43]. Among root-knot nematodes the spermatheca morphology of both M. africana and M.

mali is similar to M. microtyla and M. ichinohei in lacking lobe-like cells and clearly inter-

laced cell boundaries, while in most other Meloidogyne spp. the spermatheca is composed of

16–18 lobe-like cells with interlaced boundaries [43]. Based on the obtained phylogeny, a sper-

matheca comprised of a limited number of cells, with not-interlaced and not-lobe like cells,

could be an ancestral feature within the genus Meloidogyne because it is remarkably similar to

spermatheca morphology of Pratylenchus [71]. In both M. africana and M. mali the oviduct

consists of two rows of four cells, characteristic for all Pratylenchidae and most Tylenchomor-

pha [43, 45, 71, 72].

Isozyme electrophoresis

Electrophoretic isozyme analysis of single young egg-laying females ofM. africana revealed a

unique esterase phenotype, consisting of two fast migrating esterase bands, designated as AF2

(Fig 8). The first is in approximately the same position as the fastest migrating M. javanica ref-

erence band (61.7%) and the second at 65.7% migrating speed. This phenotype resembles the

slightly slower migrating M2-VF1 phenotype ofM. artiellia [70] and the faster migrating C2

and Me3 phenotypes of respectively M. coffeicola [73] andM.megadora [62]. The malate dehy-

drogenase isozyme analysis revealed a single broad band (migrating speed 45.3%) in a similar

position as the H1 phenotype ofM. hapla.

In order to obtain isozyme information for moreMeloidogyne species, the isozyme pheno-

types ofMeloidogyne ichinohei were studied, revealing another unique esterase phenotype.

This phenotype consists of two clear slow migrating bands (relative migrating speed 53.0 and

56.1%), herein designated IC2 (Fig 8). The malate dehydrogenase isozyme analysis revealed a

single broad band corresponding to the commonly occurring N1 phenotype. It has been

observed that both the malate dehydrogenase isozyme analysis ofM. africana andM. ichinohei
are slightly smeared and have a broader appearance than the H1 and N1 phenotype respec-

tively. This smeared appearance was not caused by an analysis artefact as it was verified in sev-

eral separate analyses using different populations. Interestingly, both theM. coffeicola C1

phenotype [73] and theM. artiellia N1b [70] phenotype also have a slightly smeared appear-

ance implying that these differences could be informative and characteristic forMeloidogyne
spp. outside the three major clades. These results indicate thatM. africana andM. ichinohei
can be reliably identified using isozyme electrophoresis, confirming that isozyme electrophore-

sis remains a highly reliable, if not labor intensive, diagnostic tool for root-knot nematodes

[46, 69, 74].

populations. Amphimictic species highlighted in purple, facultative meiotic parthenogenetic species highlighted in green, mitotic

parthenogenetic species highlighted in red.

doi:10.1371/journal.pone.0172190.g007
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Evolution of reproduction and oogenesis

Meloidogyne javanica. To re-establish the propionic orcein staining protocol of Trianta-

phyllou (1985), M. javanica reference material originating from Spain, F1836-3 [46], collected

and maintained on S. lycopersicum was stained and compared to the M. javanica observations

of Triantaphyllou [75]. Based on 8 late prophase to early methaphase chromosomal planes,

our M. javanica population appeared to have 2n = 44 chromosomes, identical to two M. java-

nica populations karyotyped by Triantaphyllou [75] originating from England and Australia.

Oocytes approaching the consistently empty spermatheca were observed to exhibit 44 univa-

lent chromosomes, indicating that chromosome pairing did not take place during the zygotene

stage, and therefore indicating that reproduction occurred by mitotic parthenogenesis.

Meloidogyne africana. Several mitotic divisions of the oogonia took place in the apical

germinal zone. From 20 favourable late-prophase or early-metaphase chromosomal planes of

these mitotic divisions, the chromosome number of M. africana was determined to be 2n = 21.

Similar to other Meloidogyne spp., the chromatin of young oocytes in the synapsis zone was

found to be strongly orcein-stained [30]. In the maturation zone, oocytes progressively were

seen to increase in size, while chromatin in this region were only weakly stained. When

matured oocytes approached the spermatheca, 21 univalent chromosomes were observed in

four chromosomal planes at prophase, indicating that chromosome pairing did not take place

during the zygotene stage. This observation, together with the spermatheca being consistently

empty and the fact that the males were sexually inactive (see above), indicates that reproduc-

tion takes place by mitotic parthenogenesis. This is the first report of a Meloidogyne species

with a chromosome complement of 21. All other obligatory mitotic parthenogenetic Meloido-

gyne spp. are known to have at least 2n = 30 chromosomes [76]. Thus, M. africana constitutes

the root-knot nematode with the lowest known number of chromosomes to reproduce by

mitotic parthenogenesis. Interestingly, this mitotic parthenogenetic mode of reproduction cor-

relates with the distorted development of sex-reversed females and the sexual inactivity of M.

africana males, since this behaviour has so far been found only in mitotic parthenogenetic spe-

cies [59]. However, these dysfunctional males are nevertheless thought to play an important

role in ecological adaptation, as they reduce the population density in successive generations

of parthenogenetic root-knot nematodes [29, 77].

Meloidogyne ardenensis. A M. ardenensis population was collected from the roots of

Ligustrum sp. (Wageningen, The Netherlands; GPS coordinates: 51.975688, 5.675987) in early

spring, 2016, when young egg-laying females were present. The population was identified

using both the morphology of juveniles and 28S rDNA and mitochondrial COX1 sequences.

Fig 8. Isozym profiles of Meloidogyne africana and Meloidogyne ichinohei. Lane 6 and 7 represent Meloidogyne javanica reference phenotypes, lane

1–5 and 8–12 represent phenotypes of Meloidogyne africana and Meloidogyne ichinohei. (a) esterase AF2 phenotype of Meloidogyne africana; (b) malate

dehydrogenase H1 phenotype of Meloidogyne africana; (c) esterase IC2 phenotype of Meloidogyne ichinohei; (d) malate dehydrogenase N1 phenotype of

Meloidogyne ichinohei.

doi:10.1371/journal.pone.0172190.g008
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Similar to other Meloidogyne spp., several mitotic divisions were observed in the germinal

zone. From 10 favourable late-prophase or early-metaphase planes of these mitotic divisions,

the chromosome number of M. ardenensis was determined to be 2n = 51–54, with the varia-

tion in chromosome number most likely due to the difficulty in the counting process, since

chromosomes of M. ardenensis are small and often positioned extremely close to one another.

The mature oocytes approaching the spermatheca were found to comprise approximately 54

univalent chromosomes, with no oocytes observed with a haploid chromosome number, indi-

cating only mitotic divisions and reproduction by mitotic parthenogenesis. This is in agree-

ment with the high chromosome number of M. ardenensis, given that all polyploid species

with more than 40 chromosomes reproduce by mitotic parthenogenesis [30, 37, 75, 76, 78, 79].

Despite being parthenogenetic, males of M. ardenensis appear to be sexually active, as sperma-

theca in all specimens studied were filled. However, it is not uncommon that the spermatheca

of mitotic parthenogenetic species are filled with sperm within the genus Meloidogyne [30, 37,

75]. In the case of M. javanica and M. hapla race B, a spermatozoon is even able to enter the

oocyte, but the spermatozoon degenerates within the oocyte and fertilization does not occur

[37, 75].

Meloidogyne mali. AM. mali population was collected from the roots of Ulmus sp. origi-

nating from the field trial “Mierenbos” (Wageningen, The Netherlands; GPS coordinates:

51.979623, 5.706362), a location previously sampled by Ahmed et al. [64]. The population was

identified asM. mali based on juvenile and female morphology and on Cox1 DNA sequences.

Young egg-laying females were collected from the field and directly used for cytogenetic stain-

ing. From 2 favourable late-prophase chromosome planes studied during mitotic divisions in

the apical part of the germinal zone, the diploid chromosome number ofM. mali was deter-

mined as 2n = 24. After the oocytes increased in size in the maturation zone, 6 oocytes were

observed with 12 bivalent chromosomes, showing that meiosis was taking place. In all of the

specimens studied, the spermatheca was clearly filled with sperm, and in several eggs the inclu-

sion of a sperm nucleus was observed. In one egg, the fusion between the small sperm nucleus

and the larger egg nucleus was observed. These observations reveal thatM. mali reproduces by

amphimixis in the presence of males. However, no females with empty spermatheca have been

isolated, and it remains to be confirmed whetherM. mali is also capable of meiotic partheno-

genesis.Meloidogyne mali is the firstMeloidogyne spp. to be identified with a haploid chromo-

some complement of n = 12, demonstrating that chromosome numbers are even more

variable than previously anticipated [76].

Evolution of reproduction and oogenesis in root-knot nematodes. In order to elucidate

the evolution of reproduction and oogenesis within the genus Meloidogyne, chromosome

number and reproduction mode of Meloidogyne spp. were plotted on the 18S rDNA phyloge-

netic tree (Fig 7). The results provide a completely new understanding on the evolution of

reproduction within the genus Meloidogyne. To begin with, mitotic parthenogenesis has

evolved independently on five occasions according to the maximum parsimony ancestral state

reconstruction (Fig 9), being present in all three major clades and in M. africana. This evolu-

tionary pattern is less resolved in the maximum likelihood ancestral state reconstruction as

most of the ancestral nodes remain unresolved. In either case, our results contradict the tradi-

tional hypothesis that mitotic parthenogenetic species are restricted to one clade [29, 80]. The

presence of mitotic parthenogenesis in Meloidogyne africana was unexpected, as Meloidogyne

spp. in this part of the tree were previously understood to reproduce by meiotic parthenogene-

sis [25]. The presence of mitotic parthenogenesis within clade II, as observed for M. ardenen-

sis, is in line with the observation of mitotic parthenogenesis in M. hapla race B [30, 37, 81]

and M. partityla (2n = 40–42) [36, 82]. Curiously, the mitotic parthenogenetic species M. ory-

zae (2n = 51–55) and M. ardenensis (2n = 51–54) both have a triploid genomic composition,
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in contrast to their closest phylogenetic relatives, which are facultative meiotic parthenoge-

netic, and have three times less chromosomes, namely n = 18 (Fig 7). Similarly, in Clade I M.

inornata Lordello, 1956 (2n = 54–58) and some populations of M. arenaria (2n = 51–56)

appear to have a triploid genomic composition, in comparison with M. floridensis (n = 18),

the only meiotic parthenogenetic species within Clade I. However, most species in Clade I do

not have an exact chromosome complement of 18, probably as a consequence of aneuploidy

and polysomy, as well as structural chromosome rearrangements [25]. These drastic changes

Fig 9. Maximum parsimony (left) and maximum likelihood (right) ancestral state reconstructions of the evolution of mitotic parthenogenesis and

the associated loss of meiosis. Pie charts on internal nodes indicate the likelihoods of the different character states at each node and grey nodes indicate

unknown character states. Presence and absence of meiosis are visualised in black and white, respectively.

doi:10.1371/journal.pone.0172190.g009
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in chromosome number are to be expected since root-knot nematodes, and indeed most other

nematodes, have holocentric chromosomes with a diffuse centromere activity [83, 84]. Fur-

thermore, it is certain that not all mitotic parthenogenetic Meloidogyne spp. have triploid

genomes, with some populations of M. microcephala and M. hapla reported to be tetraploid

[79, 85].

These observations suggest that a triploid genomic composition is associated with mitotic

parthenogenetic reproduction, as has already been observed in several Heteroderidae. In their

case, the basic chromosome number of amphimictic species is assumed to be n = 9, withHet-
erodera trifolii Goffart, 1932 (3n = 24–28), H. lespedezae Golden & Cobb, 1963 (3n = 27) and

H. sacchari Luc & Merny, 1963 (3n = 27) representing triploid mitotic parthenogenetic species

[86]. This has also been reported for a wide range of animals and plants [87]. If mitotic parthe-

nogenetic species have indeed evolved several times independently triggered by a triploid

genome, it is also likely thatM. africana has a triploid genomic composition. This would imply

thatM. africana evolved from an ancestral species with n = 7 chromosomes. Interestingly, M.

spartinae (Clade II) andM. kikuyensis have been both characterized as having n = 7 chromo-

somes [31, 32]. It should also be noted that the chromosome number ofM. kikuyensis andM.

spartinae was mistakenly reported as n = 9 in Castagnone-Sereno et al. [25]. Interestingly, M.

kikuyensis is probably also positioned outside the three major clades as the spermatheca has a

less pronounced lobe-like shape [31] and because of the deviating male head and juvenile tail

morphology [15, 88, 89]. This phylogenetic placement was confirmed by preliminary molecu-

lar data (Eisenback J.D. personal communication).

The phylogenetic positions of the mitotic parthenogenetic M. africana with 2n = 21 chro-

mosomes (Fig 7) and the amphimictic M. kikuyensis with n = 7 chromosomes favour the

hypothesis of Triantaphyllou [30, 32] that sexualMeloidogyne spp. could lie close to the ances-

try of the genus, and that mitotic parthenogenetic species evolved from them. Indeed the maxi-

mum parsimony ancestral state reconstruction shows meiosis to be present on this node, while

the maximum likelihood ancestral state reconstruction is resolved equivocal. Yet, this hypothe-

sis is consistent with the restricted chromosome numbers of the amphimictic Pratylenchus
penetrans Cobb, 1917 (n = 5), P. vulnus Allen & Jensen, 1951 (n = 6) and P. coffeae (Zimmer-

man, 1898) Filipjev & Schuurmans Stekhoven, 1942 (n = 7) [90]. Furthermore, in the most

closely-related genus Pratylenchus, mitotic parthenogenetic reproduction also appears to have

evolved independently on several occasions, based on the chromosome numbers of P. zeae
Graham, 1951 (2n = 24–26), P. scribneri Steiner, 1943 (2n = 25–26), P. neglectus (Rensch,

1924) Filipjev and Schuurmans Stekhoven, 1941 (2n = 20) and P. brachyurus (Godfrey, 1929)

Filipjev & Schuurmans Stekhoven, 1941 (2n = 32) [90] that are in an unrelated phylogenetic

position [91]. This indicates that the basic haploid chromosome number of the genusMeloido-
gyne could possibly be n = 7, as in P. coffeae, from which mitotic parthenogenetic species could

have evolved with a triploid genome (3n = 21). These triploid genomes are most likely the

product of reticulate evolution through genome duplication, introgression or hybridization

events.

However, based on this hypothesis it remains unclear how chromosome numbers evolved

from n = 7 to n = 18 within the genusMeloidogyne [30]. We propose two hypotheses: either

this higher chromosome number was established by polyploidy, or alternatively it was estab-

lished through fragmentation of chromosomes. While these hypotheses are not mutually

exclusive, the latter idea appears the more likely, as chromosomes ofM. kikuyensis are signifi-

cantly larger than chromosomes of otherMeloidogyne spp. [31]. This is a particularly attractive

possibility, given thatM. kikuyensis was occasionally observed to have an extra small chromo-

some that could itself have fragmented from another chromosome [31]. Moreover, the absence

of centromere activity inMeloidogyne spp. indicates that fragmentation of chromosomes may
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occur more often than in other organisms with centralized centromere activity [83, 84]. Frag-

mentation also appears to have an evolutionary advantage over losing chromosomes, since it

ensures that genetic material continues to be passed on to the next generation. Also, the fact

that some Meloidogyne spp. have a large variation in chromosome number between n = 7 and

n = 18 (M. hapla race A n = 13–17,M. chitwoodi n = 14–18 andM.minor n = 17), as well as

the phylogenetic position ofM.mali (n = 12) with an intermediate chromosome complement

between n = 7 and n = 18 serve to add support to this hypothesis [76]. Chromosome fragmen-

tation or aneuploidy is already known for the nematode genus Cactodera (Heteroderidae),

with a basic chromosome number of amphimictic species of n = 9 having evolved to n = 12–13

in the meiotic parthenogenetic Cactodera betulae through chromosome fragmentation or

aneuploidy [86]. Similar processes have been documented in several insect species, such as

Lepidoptera and Hemiptera [92, 93].

Fig 10. Symptoms caused by Meloidogyne africana on Coffea arabica and Solanum lycopersicum (cv. Moneymaker). (A)

overview of galling on Coffea arabica; (B) detail of typical root-tip galls on Coffea arabica; (C) overview of galling on Solanum lycopersicum;

(D) detail of galls on Solanum lycopersicum.

doi:10.1371/journal.pone.0172190.g010
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Bionomics

Host tests revealed thatM. africana was not only able to parasitize C. arabica but also S. lyco-
persicum (cv. Moneymaker) and Sansevieria sp. The above-ground symptoms include stunting,

chlorosis and necrosis of leaves. In coffee roots, galls are usually positioned on the apical tip of

the root, resulting in the impediment of root extension (Fig 10). Young galls are rounded,

while older galls tend to be oval, 1–3 mm in size, and contain more than one female with egg

sacs always embedded within the gall. This internal egg sac resemblesM. ichinohei [94] Older

roots often display cracking, sometimes causing the eggs to be expelled from the galls, an infec-

tion symptom also described forM. coffeicola [95], another species known to infect Coffea spp.

in South America. On tomato roots, the symptoms caused byM. africana vary slightly: galls

are much smaller and are more evenly distributed throughout the root system, with root tip

galls less frequent. In general, the infection was less aggressive compared to coffee plants, indi-

cating that tomato is less suitable as a host ofM. africana. Interestingly, the galls ofM. exigua
have also been described as occupying a terminal position on coffee roots [96], suggesting that

this symptom might be host-dependent. Appearance and position of galls has been used as a

taxonomic feature in manyMeloidogyne spp. descriptions [22], although our results forM.

africana indicate that many of these features (size, position) are host-dependent. Interestingly,

no functional males were observed forM. africana on all three hostplants (C. arabica, S. lyco-
persicum and Sansevieria sp.). Other reported hosts ofM. africana include Z.mays in India

[14], C. annuum in Sudan [13] and Chrysanthemum cinerariaefolium L., Z.mays, Vigna Cat-
jang (L.) Walp., Syzygium aromaticum (L.) Merrill & Perry, C. arabica and Solanum tuberosum
L. in East Africa [16]. Although these reports, based on morphological diagnostics, need to be

confirmed, together with the results of our host-range test, they show thatM. africana is a

polyphagous species. SinceM.mali andM. camelliae, are also confirmed polyphagous species

[28, 64, 97], this contradicts the hypothesis thatMeloidogyne spp. show a tendency towards

polyphagy, from the basal towards the more distally-positioned [27]. This hypothesis, however,

stems from limited phylogenetic-diverse sampling of root-knot nematodes, together with lim-

ited host range tests. Recent sampling and sequencing efforts [26, 28] have revealed additional

species outside the three major clades, signifying that a much larger phylogenetic biodiversity

in root-knot nematodes can be expected, which is the key to fully understanding the evolution

of the genus.

Supporting information

S1 Table. Genbank accession numbers from sequences used to construct the concatenated

phylogenetic analysis. Newly generated sequences in bold.

(DOCX)

Acknowledgments

The authors would like to thank Myrtle Verhaeven and the nematology lab of IITA for assis-

tance during sampling in Tanzania, Dr. Hans Helder for kindly sharing DNA extraction of

Meloidogyne sp. MHMH-2008, Prof. Wilfrida Decraemer for well-appreciated taxonomic

advice, Prof. Jonathan D. Eisenback for contributing preliminary molecular results ofMeloido-
gyne kikuyensis and Marjolein Couvreur for SEM analysis. We are especially grateful to the

nematology lab from the National Plant Protection Organization Wageningen for technical

support and the maintenance of the greenhouse cultures. This work was supported by a special

research fund UGent 01N02312.

Integrative taxonomy of Meloidogyne africana reveals multiple origins of mitotic parthenogenesis

PLOS ONE | DOI:10.1371/journal.pone.0172190 March 3, 2017 26 / 31

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0172190.s001


Author Contributions

Conceptualization: TJ GK WB.

Data curation: TJ.

Formal analysis: TJ.

Investigation: TJ OT GK.

Supervision: GK DC WB.

Visualization: TJ.

Writing – original draft: TJ.

Writing – review & editing: TJ GK OT DC WB.

References
1. ICO. World coffee trade (1963–2013): A review of the markets, challenges and opportunities facing the

sector. http://wwwicoorg/news/icc-111-5-r1e-world-coffee-outlookpdf. 2014.

2. Vega FE, Rosenquist E, Collins W. Global project needed to tackle coffee crisis. Nature. 2003; 425

(6956):343.

3. ICO. Sustainability of coffee sector in Africa. http://wwwicoorg/documents/cy2014-15/icc-114-5e-

overview-coffee-sector-africapdf. 2015.

4. Campos VP, Villain L. Nematode parasites of coffee and cocoa. In: Luc M, Sikora RA & Bridge J (Eds)

Plant parasitic nematodes in subtropical and tropical agriculture Wallingford, UK, CAB International.

2005:529–79.

5. Carneiro RMDG Cofcewicz ET. Taxonomy of Coffee-Parasitic Root-Knot Nematodes, Meloidogyne

spp. In: Plant-Parasitic Nematodes of Coffee, Souza RM, Springer 2008:87–122.

6. Humphreys-Pereira DA, Flores-Chaves L, Gomez M, Salazar L, Gomez-Alpizar L, Elling AA. Meloido-

gyne lopezi n. sp (Nematoda: Meloidogynidae), a new root-knot nematode associated with coffee (Cof-

fea arabica L.) in Costa Rica, its diagnosis and phylogenetic relationship with other coffee-parasitising

Meloidogyne species. Nematology. 2014; 16:643–61.

7. Correa VR, dos Santos MFA, Almeida MRA, Peixoto JR, Castagnone-Sereno P, Carneiro RMDG. Spe-

cies-specific DNA markers for identification of two root-knot nematodes of coffee: Meloidogyne arabi-

cida and M. izalcoensis. Eur J Plant Pathol. 2013 Oct; 137(2):305–13.

8. Randig O, Bongiovanni M, Carneiro RMDG, Castagnone-Sereno P. Genetic diversity of root-knot nem-

atodes from Brazil and development of SCAR markers specific for the coffee-damaging species.

Genome. 2002; 45(5):862–70. PMID: 12416618

9. Jorge Junior AS, Cares JE, Almeida MRA, Mattos VS, Coyne D, Carneiro RMDG. First report of Meloi-

dogyne izalcoensis on coffee and other crops in Africa. Plant Disease. 2016; 100(10):2173.

10. Whitehead AG. The root-knot nematodes of East Africa Meloidogyne africana n. sp., a parasite of arab-

ica coffee (Coffea arabica L.). Nematologica. 1959(4):272–8.

11. Bridge J. Coffee nematode survey of Tanzania. Report on a visit to examine plant parasitic nematodes

of coffee in Tanzania, February/March 1984. Commonwealth Institute of Parasitology, UK. 1984.

12. Campos VP, Sivapalan P, Gnanapragasam NC. Nematode parasites of coffee, cocoa and tea. In: Luc

M, Sikora R A & Bridge J (Eds) Plant parasitic nematodes in subtropical and tropical agriculture CAB

International. 1990.

13. Yassin AM, Zeidan AB. The root-knot nematodes in the Sudan. Proccedings of the 3rd Research and

Planning Conference on root-knot nematodes Meloidogyne spp, 13–17 September 1982 Coimbra, Por-

tugal Region VII (International Meloidogyne Project). 1982:131–5.

14. Chitwood BG, Toung M. Meloidogyne from Taiwan and New Delhi. Phytopathology. 1960; 50:631–2.

15. De Grisse A. Meloidogyne kikuyensis n. sp., a parasite of kikuyu grass (Pennisetum clandestinum) in

Kenya. Nematologica. 1960; 5:303–8.

16. Whitehead AG. The distribution of root-knot nematodes (Meloidogyne spp.) in tropical Africa. Nematolo-

gica. 1969; 15(3):315–33.

Integrative taxonomy of Meloidogyne africana reveals multiple origins of mitotic parthenogenesis

PLOS ONE | DOI:10.1371/journal.pone.0172190 March 3, 2017 27 / 31

http://wwwicoorg/news/icc-111-5-r1e-world-coffee-outlookpdf
http://wwwicoorg/documents/cy2014-15/icc-114-5e-overview-coffee-sector-africapdf
http://wwwicoorg/documents/cy2014-15/icc-114-5e-overview-coffee-sector-africapdf
http://www.ncbi.nlm.nih.gov/pubmed/12416618


17. Elmiligy IA. Three new species of the genus Meloidogyne Goeldi, 1887 (Nematoda: Heteroderidae).

Nematologica. 1968(14):577–90.

18. Whitehead AG. Taxonomy of Meloidogyne (Nematoda: Heteroderidae) with descriptions of four new

species. Transactions of the Zoological Society of London. 1968;(31):263–401.

19. de Almeida AMSF Santos NSND. Resistance and host-response of selected plants to Meloidogyne

megadora. Journal of Nematology. 2002; 34(2):140–2. PMID: 19265922

20. Lordello RRA, Fazuoli LC. Meloidogyne decalineata in coffee roots from Sao Tome Island (Africa).

Revista de Agricultura, Piracicaba, Brazil,. 1980; 55(4):238.

21. Eyualem A, Blaxter M. Comparison of biological, molecular, and morphological methods of species

identification in a set of cultured Panagrolaimus isolates. Journal of Nematology. 2003; 35(1):119–28.

PMID: 19265985

22. Hunt DJ, Handoo ZA. Taxonomy, identification and principal species. In Perry RN, Moens M, Starr JL,

eds Root-knot nematodes Wallingford, UK: CAB Int. 2009:55–97.

23. Onkendi EM, Kariuki GM, Marais M, Moleleki LN. The threat of root-knot nematodes (Meloidogyne

spp.) in Africa: a review. Plant Pathol. 2014; 63(4):727–37.

24. Tandingan De Ley I, De Ley P, Vierstraete A, Karssen G, Moens M, Vanfleteren J. Phylogenetic analy-

ses of Meloidogyne small subunit rDNA. J Nematol. 2002; 34(4):319–27. PMID: 19265950

25. Castagnone-Sereno P, Danchin EG, Perfus-Barbeoch L, Abad P. Diversity and evolution of root-knot

nematodes, genus Meloidogyne: new insights from the genomic era. Annu Rev Phytopathol. 2013;

51:203–20. Epub 2013/05/21. doi: 10.1146/annurev-phyto-082712-102300 PMID: 23682915

26. Tomalova I, Iachia C, Mulet K, Castagnone-Sereno P. The map-1 gene family in root-knot nematodes,

Meloidogyne spp.: a set of taxonomically restricted genes specific to clonal species. Plos One. 2012; 7

(6).

27. Holterman M, Karssen G, van den Elsen S, van Megen H, Bakker J, Helder J. Small subunit rDNA-

based phylogeny of the Tylenchida sheds light on relationships among some high-impact plant-parasitic

nematodes and the evolution of plant feeding. Phytopathology. 2009; 99(3):227–35. doi: 10.1094/

PHYTO-99-3-0227 PMID: 19203274

28. Trisciuzzi N, Troccoli A, Vovlas N, Cantalapiedra-Navarrete C, Palomares-Rius JE, Castillo P. Detec-

tion of the camellia root-knot nematode Meloidogyne camelliae Golden in Japanese Camellia bonsai

imported into Italy: integrative diagnosis, parasitic habits and molecular phylogeny. Eur J Plant Pathol.

2014; 138(2):231–5.

29. Castagnone-Sereno P. Genetic variability and adaptive evolution in parthenogenetic root-knot nema-

todes. Heredity. 2006; 96(4):282–9. doi: 10.1038/sj.hdy.6800794 PMID: 16404412

30. Triantaphyllou AC. Cytogenetics, cytotaxonomy and phylogeny of root-knot nematodes. In: Sasser J N

& Carter C C (Eds) An Advanced Treatise on Meloidogyne Vol I, Biology and Control Raleigh, NC,

USA, North Carolina State University Graphics: 113–126. 1985.

31. Triantaphyllou AC. Cytogenetic status of Meloidogyne kikuyensis in relation to other root knot nema-
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