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Abstract: The discovery of expression quantitative trait loci (eQTLs) and their target genes (eGenes)
has not only compensated for the limitations of genome-wide association studies for complex pheno-
types but has also provided a basis for predicting gene expression. Efforts have been made to develop
analytical methods in statistical genetics, a key discipline in eQTL analysis. In particular, mixed
model– and deep learning–based analytical methods have been extremely beneficial in mapping
eQTLs and predicting gene expression. Nevertheless, we still face many challenges associated with
eQTL discovery. Here, we discuss two key aspects of these challenges: 1, the complexity of eTraits
with various factors such as polygenicity and epistasis and 2, the voluminous work required for
various types of eQTL profiles. The properties and prospects of statistical methods, including the
mixed model method, Bayesian inference, the deep learning method, and the integration method, are
presented as future directions for eQTL discovery. This review will help expedite the design and use
of efficient methods for eQTL discovery and eTrait prediction.

Keywords: complex phenotype; expression quantitative trait locus; regulation of gene expression;
statistical genetics; target gene

1. Introduction

Despite considerable progress in the 20 years since the completion of the Human
Genome Project, a complete understanding of the functions of the human genome sequence,
comprising >3 billion base pairs, remains still elusive. Genome-wide association studies
(GWASs) have identified thousands of quantitative trait loci (QTLs) as association signals
for human complex traits. Because the QTLs have mostly been mapped in the noncoding
regions of the human genome, knowledge on their underlying genetic mechanisms are
limited. Indeed, candidate causal genes corresponding to QTLs are often falsely assigned
because the gene closest to a given QTL is suspected as a target. Studies on expression QTL
(eQTL) mapping have aimed to identify their target genes (eGenes) and understand the
genetic mechanisms underlying their expression (eTraits) and phenotypic traits. However,
these studies are just the tip of the iceberg when considering the eQTL studies required
in the future. Herein, human eQTL mapping will be discussed, focusing on challenges
and prospects. Detailed theories and equations of methodologies will not be discussed in
depth in order to appeal to a wider range of geneticists and fields, including those with
practical applications.

2. Ground-Breaking Approach for eQTL Discovery and eTrait Prediction

Various approaches have been used in the past decade to develop analytical models
and methods for eQTL discovery. In particular, efficient methods have been intensively
studied along with advances in technology, from hybridization-based microarray to next-
generation sequencing (NGS)–based RNA-seq. Two landmark approaches will be presented
herein as examples.
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The mixed model method for genetic analysis was originally devised using pedigree
information to explain the polygenic effects treated as random effects in the analytical
model [1]. Here, the random effects infer that their parameters are assumed to have
random variables (for details, see [2]). The use of the model was then extended to the
genome-wide identification of loci associated with phenotypic traits and further with
eTraits, explaining the random polygenic effects with genome-wide genotypic information
instead of pedigree information [2]. In other words, the mixed model method enables us
to discover eQTLs, not only via linkage analysis, but also via association analysis. More
importantly, it helps rationally and efficiently correct for population structure and elucidate
polygenic effects. As a result, it has greatly contributed to accurate eQTL discovery, and
avoiding spurious eQTLs, which is considered one of the main concerns in eQTL studies.
This method provides a portion of eTrait variance explained by eQTLs and partitions the
portion into subportions according to the classified eQTLs; for example, we can separately
estimate the portions for cis-acting eQTLs and trans-acting eQTLs. The mixed models can be
used to simultaneously analyse multiple eTraits using genome-wide efficient mixed model
association (GEMMA) [3]. Using efficient algorithms such as Cholesky decomposition (a
method to produce the product of a lower triangular matrix and its transpose, equivalently
to a positive-definite matrix) and Gauss–Seidel iteration (a method to iteratively solve
linear equations by successive displacement), eTraits can be predicted with a mixed model
framework without incurring a heavy computing burden of inverting a huge matrix [4]. In
addition, the mixed model has been used in integrative analyses of eTraits and phenotypic
traits to prioritize causal genes of phenotypic variation [5].

More recently, deep learning has been garnering increased popularity in predicting
gene expression. Deep learning does not have a statistical framework, unlike other methods,
thus, it offers great potential at gaining results that are difficult to obtain from other eQTL
studies. Moreover, the rapid growth of relevant data will vastly increase the contribution
of deep learning to eQTL studies. Deep learning generally refers to supervised or unsu-
pervised learning using advanced artificial neural networks, often known as deep neural
networks. Supervised learning represents predicting categorical or continuous variables
using a training data set, whereas unsupervised learning represents studying intrinsic
patterns and clustering them based on pattern similarity. In this respect, supervised deep
learning is a good choice for predicting gene expression. In particular, the large amount
of data generated by high-throughput techniques can provide an absolute condition for
the use of supervised deep learning. For example, convolutional neural networks are feed-
forward deep neural networks in which every unit in a layer is connected to all the units in
the previous layer without forming any cycle of the unit connections. Convolutional neural
networks have been used to predict gene expression using proximal promoter sequences
and distal enhancer sequences obtained by HiChIP [6]. Recurrent neural networks are
deep neural networks in which connections between units have a cyclic structure; these
networks have been used to predict differences in gene expression between two cell types
using histone modification profiles [7].

These approaches have been applied to eQTL studies and have contributed greatly to
the discovery of eQTLs for specific genes and offered further insights into general regulation
mechanisms of gene expression (Table 1). Often, these approaches are customized to fit
specific study objectives. For example, a mixed model incorporating ancestry effects was
applied to identify eQTLs in multi-ethnic, or admixed, populations to avoid confounding
with the eQTL effect [8]. Deep learning was also applied using a hierarchical Bayesian
model with the posterior of parameters for different tasks such as transcription factor
binding, chromatin accessibility, and histone marks [9]. This is useful to identify causal
variants among candidate nucleotide sequence variants in a strong linkage.
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Table 1. Examples of eQTL studies and reviews using a mixed model or a deep learning.

eQTL Methods Results Reference

Mixed model

cis-neQTL GEMMA Inflammation-dependent cis-neQTLs
in intestine [10]

neQTL GaLA-QTLM neQTL mapping with ancestry data in
multi-ethnic population [8]

neQTL
MM with

pedigree-based
covariance matrix

Cell type-specific neQTLs in brain and
blood for Alzheimer’s disease [11]

neQTL BOLT-LMM,
GEMMA

Cis-/trans-neQTLs in peripheral blood
and their contribution to heritability [12]

cis-neQTL StructLMM Cell-context interaction with
environmental variables [13]

neQTL, rQTL,
pQTL AIREML, BLUP Efficient translational control of

pQTLs for ribosomal protein genes [14]

neQTL, rQTL,
pQTL AIREML

Inclusion of optimal number of eQTLs
in constructing polygenic

covariance matrix
[15]

General REML and others Review on frequentist mixed
model methodology [2]

General Gibbs sampling,
MCMC

Review on Bayesian mixed
model methodology [16]

Deep learning

meQTL CpGenie (CNN)
Prediction of the allele-specific impact

of nucleotide variants on proximal
CpG methylation

[17]

cQTL DeepHiC (CNN)
Functional prediction of nucleotide

substitution on chromatin interaction
using Hi-C data

[18]

neQTL, dsQTL,
atacQTL

MtBNN
(CNN, RNN)

Incorporating a Bayesian approach to
assessing functional impact of

non-coding variants
[9]

General DNN
Introduction to deep learning for

genomics covering more than
eQTL mapping

[19]

neQTL, narrow-sense expression quantitative trait locus; rQTL, ribosome occupancy QTL; pQTL, protein abun-
dance QTL; meQTL, methylation QTL; cQTL, chromatin interaction QTL; dsQTL, DNase sensitivity QTL;
atacQTL, assay for transposase accessible chromatin QTL; GEMMA, genome-wide efficient mixed-model as-
sociation; MM, mixed model; AIREML, average information restricted maximum likelihood; BLUP, best linear
unbiased prediction; MCMC, Markov chain Monte Carlo; CNN, convolutional. neural network; RNN, recurrent
neural network; DNN, deep neural network.

3. Complexity of eTraits

eQTL discovery is challenging primarily due to its intrinsic complexity. The expression
of a single gene in a cell is regulated by various gene products. Each of the various
regulating genes in a cell is also regulated by various gene products. This hierarchical
regulatory mechanism suggests that many genes expressed in a cell are generally involved
in the expression of a single gene (Figure 1), thus having a relatively small effect as an eQTL.
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both cis-eQTL and trans-eQTL identification are presented in red, whereas obstacles to only trans-
eQTL identification are presented in dark green. The asterisk indicates obstacles that increase the 
difficulty of inference of causality. 
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scriptome-wide genes. Moreover, integrated analysis of eQTL mapping with GWAS may 
reveal the regulatory mechanisms underlying phenotypic traits; this is known as a tran-
scriptome-wide association study (TWAS). Profiles can be extended to various types of 
eQTLs––additive, dominant, recessive, haplotypic, and epistatic. Variations within these 
profiles can be produced by spatial and temporal gene expression and by various expres-
sion molecules across expression processes. Thus, eQTLs are characterized by the expres-
sion molecules used for their identification and categorized by expression processes such 
as transcription and translation (Table 2). The molecular layers can be further extended to 
DNA or chromatin modification, chromatin interaction, and metabolism. A significant 
number of profiles beyond those mentioned above are needed in order to understand 
complexity. For example, eQTL profiles of 13 brain parts are now available from the Com-
mon Fund’s Genotype-Tissue Expression Program [24], and more situation-specific sin-
gle-cell products are becoming available. Profiles of disease states are also necessary to 
reveal the genetic aetiology; these profiles can be further generated on a population basis, 
as considered in GWAS for complex diseases.  

Table 2. Types of expression quantitative trait loci (eQTLs) associated with various molecular lay-
ers. 

Name Abbrev. 
Molecular Phenotype Associated with eQTL 

(Method) Ref. 

Chromatin modification 
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caQTL Active and potential regulatory DNA elements, e.g., 

dsQTL (DNase-seq, ATAC-seq) 
[25–27] 

methylation 
QTL meQTL 

DNA methylation for altering chromatin structure, 
mainly in regulatory regions such as promoters and 

intron–exon boundaries (ChIP-seq) 
[28] 

Figure 1. Obstacles to expression quantitative trait locus (eQTL) identification. General obstacles to
both cis-eQTL and trans-eQTL identification are presented in red, whereas obstacles to only trans-
eQTL identification are presented in dark green. The asterisk indicates obstacles that increase the
difficulty of inference of causality.

In particular, the effect sizes of trans-eQTLs tend to decrease depending on the degree
of trans-acting indirection (Figure 1); therefore, geneticists have experienced difficulties in
finding trans-eQTLs. Although the cell environments determined by various conditions
are likely genetic, identifying eQTLs can be formidably difficult. Thus, the expressional
genetic architecture of many single genes is considerably complex. This was supported by
a study where no single eQTL determined mRNA transcription, ribosomal occupancy, or
protein abundance of any gene [15]. Hence, the expression of most genes has been referred
to as “complex eTraits” hereafter in this article. The complexity of the regulatory function
of eQTLs in gene expression can also be attributed to various other factors, as shown in
Figure 1. Thus, these factors can act as obstacles to eQTL identification.

Linkages can help researchers find causal sequence variants linked to representative
variants associated with gene expression. However, the effect size can be influenced by mul-
tiple functional variants in a linkage, often resulting in false positive/negative eQTLs. Many
geneticists are therefore reluctant to search for functional sequence variants in the major
histocompatibility complex region, where such characteristics resonate extremely well.

Epistasis among eQTLs is infrequently examined in eQTL mapping because it re-
quires expensive computing power. Epistasis is a natural mechanism that contributes
to gene expression regulation by binding DNA and DNA-derived substances (RNA and
proteins). For example, eukaryotic transcription is usually initiated by the interplay among
transcription factors, activators, mediators, RNA polymerase, enhancers, and proximal or
distal promoters.

Population stratification is also ignored in many eQTL analyses, even though this
reduces the accuracy of eQTL mapping and can result in spurious eQTLs [2,20,21].

Spatial expression variability ranges from variations among nearby cells to those
among organs. In particular, cellular resolution of eQTLs in the brain might be criti-
cal for understanding transcriptional heterogeneity of pyramidal cells in addition to re-
gional functions/misfunctions [22,23]. Likewise, temporal expression variability can result
from short- to long-term differences, including variability arising from changes in the
external environment.

The aforementioned factors prevent eQTL mapping. In particular, eQTL discovery can
be difficult if there are small effect sizes because multiple testing is required to reduce false
positives. Inference of causality is also interfered by obstacles such as linkage, pleiotropy,
and correlated expression (Figure 1). Further, it is not easy to identify functional nucleotide
variants in regions with strong linkages. For example, the human leukocyte antigen (HLA)
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complex that spans 3.6 megabase pairs covering 224 genes on the short arm of chromosome
6 has many strong linkage disequilibrium (LD) blocks, and the LD blocks are often linked to
nucleotide variants outside within the HLA complex [12]. Thus, careful attention is needed
to interpret functionality of nucleotide variants, such a complex region in strong linkages.

4. Voluminous Work of eQTL Mapping

Owing to the considerable complexity of the eTraits, another critical issue regarding
eQTL mapping is the construction of voluminous studies producing a vast amount of
data. A genome-wide eQTL analysis produces a genetic profile of regulatory signals
for a single gene. In modern studies, eQTL profiles are simultaneously produced for all
transcriptome-wide genes. Moreover, integrated analysis of eQTL mapping with GWAS
may reveal the regulatory mechanisms underlying phenotypic traits; this is known as a
transcriptome-wide association study (TWAS). Profiles can be extended to various types
of eQTLs—-additive, dominant, recessive, haplotypic, and epistatic. Variations within
these profiles can be produced by spatial and temporal gene expression and by various
expression molecules across expression processes. Thus, eQTLs are characterized by the
expression molecules used for their identification and categorized by expression processes
such as transcription and translation (Table 2). The molecular layers can be further extended
to DNA or chromatin modification, chromatin interaction, and metabolism. A significant
number of profiles beyond those mentioned above are needed in order to understand
complexity. For example, eQTL profiles of 13 brain parts are now available from the
Common Fund’s Genotype-Tissue Expression Program [24], and more situation-specific
single-cell products are becoming available. Profiles of disease states are also necessary to
reveal the genetic aetiology; these profiles can be further generated on a population basis,
as considered in GWAS for complex diseases.

Table 2. Types of expression quantitative trait loci (eQTLs) associated with various molecular layers.

Name Abbrev. Molecular Phenotype Associated with eQTL
(Method) Ref.

Chromatin modification

chromatin
accessibility QTL caQTL Active and potential regulatory DNA elements,

e.g., dsQTL (DNase-seq, ATAC-seq) [25–27]

methylation QTL meQTL

DNA methylation for altering chromatin
structure, mainly in regulatory regions such as

promoters and intron–exon boundaries
(ChIP-seq)

[28]

histone QTL hQTL

Magnitude of histone post-translational
modifications for chromosomal packaging, e.g.,

H3K4me3 for promoters, H3K4me1 for enhancers,
H3K27ac for promoters and enhancers (ChIP-seq)

[27,29,30]

TF binding QTL bQTL
Transcription factor binding, e.g., NF-κB,
PU.1/Spi1, Stat1, JunD, and Pou2f1/Oct1

(ChIP-seq)
[30,31]

Chromatin interaction

promoter
interacting eQTL pieQTL

eQTLs overlapping active cis-regulatory elements
that interact with their target gene promoters

(HiChIP)
[32]

chromatin
interaction QTL cQTL

Allelic differences of chromatin interactions
between two homologous chromosomes

mediated by CTCF and RNAPII (ChIA-PET)
[33]

promoter
enhancer

interaction QTL
peQTL Allele-specific RNAPII-mediated chromatin

interactions with phased transcript (ChIA-PET) [33]
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Table 2. Cont.

Name Abbrev. Molecular Phenotype Associated with eQTL
(Method) Ref.

Transcription

narrow-sense
eQTL neQTL

Gene expression level as the sum of all transcripts
of each gene. We used the “neQTL” to

differentiate this from eQTL, a generic term for all
kinds (RNA-seq)

[34,35]

miRNA eQTL miR-eQTL
Expression level of miRNA for

post-transcriptional and translational regulation
(small RNA-seq)

[34,36]

lncRNA eQTL lncR-eQTL
Expression level of lncRNA for transcriptional,
post-transcriptional, and epigenetic regulation

(RNA-seq)
[34,37,38]

circRNA-eQTL Circ-eQTL

Expression level of circRNA for sequestration of
miRNAs/proteins, splicing interference, and
transcriptional and translational regulation

(RNA-seq)

[39,40]

response eQTL reQTL Transcriptomic response to external stimuli
(RNA-seq) [41,42]

repeat eQTL repeat-eQTL Retrotransposon-derived repeat element as a
source for evolution of new transcripts (RNA-seq) [34]

splicing QTL sQTL

Relative abundance of the transcript isoforms of a
gene or the intron excision ratios of an intron
cluster for regulation of alternative splicing

(RNA-seq)

[34,43]

transcript ratio
QTL trQTL

Ratio of each transcript to the total gene
expression for transcript usage, splicing, and

transcript structure (RNA-seq)
[34]

Allele specific
expression QTL aseQTL

Transcription differences between two different
haplotypes in a heterozygous individual

(RNA-seq)
[34]

poly(A) ratio QTL apaQTL Alternative polyadenylation for mRNA stability
and translation efficiency (RNA-seq) [44]

RNA editing QTL edQTL
RNA editing level for post-transcriptional

processes such as RNA splicing, localization,
stability, and translational efficiency (RNA-seq)

[45]

m6A QTL m6A-QTL N6-methyladenosine level in mRNA transcript
for mRNA processing. (m6A-seq)

[46]

RNA synthesis
rate QTL rsQTL Transcription rates (4sU-seq) [47]

RNA decay QTL rdQTL mRNA decay rates for modulating steady-state
transcript levels (RNA-seq) [48]

transcription
initiation QTL tiQTL

Activity of transcribed transcriptional regulatory
elements (tTREs) in promoter and enhancer

region (PRO-seq)
[49]

directional
initiation QTL diQTL

Directionality of divergent bidirectional
transcription at tTREs using log ratio of plus

strand reads over minus-strand reads (PRO-seq)
[49]

Translation

ribosome
occupancy QTL rQTL Ribosome occupancy for translational regulation

and translation efficiency (Ribo-seq) [50]

protein
abundance QTL pQTL Protein expression level for post-transcriptional

regulation (mass spectrometry) [50]
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Table 2. Cont.

Name Abbrev. Molecular Phenotype Associated with eQTL
(Method) Ref.

Metabolism

Metabolite QTL mQTL

Small endogenous molecules or metabolites that
reflects the dynamic response to physiological,

pathophysiological, and/or developmental
stimuli (NMR or mass spectroscopy)

[51,52]

microbiome QTL mbQTL
Microbial composition in multiple host tissues

such as gut and skin (16S rRNA and
ITS sequencing)

[53,54]

5. Miscellaneous Issues and Prospects

The issues regarding the qualities and quantities of eQTL maps addressed in this article
represent important challenges in statistical genetics. Comprehending the complexities of
eTraits is a challenge that transcends the currently available mapping facilities and tools.
Recently, there have been substantial improvements in computing environments, which
have enabled the analysis of considerable amounts of genomic data, and such developments
are constantly accelerating. However, the development of high-resolution eQTL maps
requires further marked developments in computing memory and speed. Even now,
limitations exist in mixed models that can explain background polygenic effects during
eQTL mapping [2]. This is even more problematic when Bayesian inference, which requires
intensive computing to marginalize multidimensional joint posterior distribution through
the Markov chain Monte Carlo method, is used [16]. Limitations in computing power also
render geneticists reluctant to conduct GWASs into the interactions among eQTLs [55]. The
computing burden exponentially increases as the interaction order increases. Moreover,
while the number of nucleotide variants to be tested increases markedly, interactive variants
with low minor allele frequency also likely increase. Identifying higher-order epistasis
among eQTLs exhaustively is barely conceivable. Therefore, interactive eQTL mapping
relies almost exclusively on experimental studies that may increase the likelihood of
interactive functions. For example, a cis-acting eQTL study in which a HiChIP assay for
the histone modification of H3K27ac was employed to identify cis-regulatory elements
that interacted with the promoters of their target genes, for five types of immune cells,
was conducted [32]. More efficient analytical algorithms, methods, and/or designs are
required to identify a data-specific workaround, increase the accuracy of eQTL mapping,
and decrease the required computing power.

In addition to the abovementioned ones, many other analytical methods have greatly
contributed to eQTL mapping for complex eTraits. Nevertheless, the fact that it will
likely be impossible to create an ideal eQTL map remains; this is attributed to the great
complexity of eQTL maps, as shown in Figure 1. Furthermore, an eQTL map is a moving
target that interacts with various environments and is driven by continuous evolution.
Innovative progress should be achievable owing to advances in statistical genetics and
other disciplines. Future advances in statistical methods for eQTL mapping are highly
anticipated, with modifications and extensions of ground-breaking methodologies such
as the mixed model, Bayesian inference, deep learning method, and integration method.
These provide a critical basis in terms of reducing spurious eQTLs, integrating multiple
data, or identifying epistatic eQTLs.

Spurious eQTLs are largely attributed to genetic, environmental, and experimental
factors that are ignored or uncounted from the study. Genetic factors include major eQTLs,
cis-eQTLs, and trans-eQTLs. A method that can directly explain these genetic factors is
the mixed model. As discussed above, the mixed model uses genomic covariance among
individuals to explain polygenic effects. The mixed model method reduces residuals
unexplained by the analytical model and increases the accuracy of eQTLs [20,56]. It
is considered the best statistical tool needed to go one step further to understand the
genetic architecture of complex eTraits in the most direct way, without losing any degree of
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freedom. However, including excessive loci in the construction of genomic covariance or
employing the infinitesimal model can lead to spurious eQTLs [56]. The importance of an
optimal genomic covariance structure in the mixed model should be stressed. Additional
modifications are required in the mixed model for multiple eQTLs with major effects.
An example is the multi-locus mixed model analysis in which the analytical model may
include additional cofactors by stepwise regression of forward inclusion and backward
exclusion [57]. Appropriate adjustment and filtration are required to reduce the errors
generated by ignoring environmental and experimental factors. In addition, we need to be
wary of eQTLs that can be falsely generated via correlated expression between genes [58].

Expensive computing costs to invert a large matrix is a stumbling block in the applica-
tion of the mixed model method to eQTL mapping, and this block has been encountered
in many studies. In particular, because a continuous increase in the sample size in eQTL
studies is expected with the development of sequencing technologies, methods for solving
or avoiding this problem are required. For example, a reduced animal model equivalent
to an animal model has been widely used in genetic analyses for animal breeding; these
analyses use a mixed model with pedigree information to reduce the size of the numerator
relationship matrix and the number of equations to be solved [59]. Another concern is
the violation of the assumption that known variance components are required for the best
linear unbiased estimator (BLUE) of the eQTL effect [2]. When we estimate the fixed eQTL
effect using polygenic and residual variance component estimates rather than true values,
no penalties are imposed, resulting in increased error variability.

Bayesian inference has several good properties that make it suitable for eQTL map-
ping. In particular, the Bayesian approach incorporated with a mixed model may overcome
the non-BLUE problem raised from the frequentist approach. For example, the Bayesian
approach implemented with Gibbs sampling yields polygenic and residual variance com-
ponents based on polygenic effects and residuals of individuals at every round of the Gibbs
chain, finally providing samples of the eQTL effect. Thus, we can directly obtain various
point estimates without assuming any distribution. This provides an empirical Bayes
estimate of the eQTL effect, corresponding to the BLUE [16]. Nevertheless, mixed model–
based Bayesian inference has barely been applied to eQTL analysis. This might be largely
attributable to the intensive computing required for the Gibbs chain, resulting in computing
costs that would be more expensive than those for the frequentist approach. Hamiltonian
Monte Carlo is an efficient Markov chain Monte Carlo method used for the quick conver-
gence of stationary probability distributions; it works by reducing autocorrelation between
consecutive samples, which can greatly reduce the computing burden [60].

Deep learning is not based on statistical properties; however, it can be used to approach
the complexity of eTraits. Deep learning has an advantage in eQTL studies using large
amount of data, and it is also a niche approach that is difficult to be used within a statistical
framework. However, in the case of deep learning, close attention should be paid to
possible issues, such as parameter overfitting, data imbalance, and subtle variances in input
data. This is critical to reducing noise and, thus, to unleashing the enormous potential
of eQTLs [19]. To apply deep learning, it is also necessary to try to supplement the
shortcomings of the difficulty in interpreting the results due to its black box nature.

Various integration algorithms for gene expression analysis have been developed by
simultaneously dealing with data from multiple independent studies with comparable
designs (horizontal integration) [61] and from multiple molecular measurements on the
same subjects (vertical integration) [62]. An integrated analysis combining vertical and
horizontal integration is also expected. Another integration analysis helps identify eQTLs
simultaneously using multiple tissues, and the analysis may show improved accuracy
as well as heterogeneity of eQTLs by tissues. An example is the hierarchical Bayesian
model called MT-eQTL used for multiple tissue cis-eQTL analysis [63]. Moreover, further
attempts will be made for more diverse types of multidimensional integrated analyses. An
example is the TWAS, in which eQTLs and GWAS signals are integrated to identify genes
associated with a complex phenotype [64]. TWAS has been extended to the identification
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of pathways associated with a complex phenotype by aggregating functional annotations
across the genes [65]. That is, gene set enrichment analysis can be integrated into gene-
based TWAS to generate the pathway-based TWAS. A significant contribution of a pathway
to complex phenotypes may be revealed from the set of genes with a small effect size on
the pathway [66]. Many extended setups pose challenges because the total number of
configurations is likely to grow exponentially, making implementation excessively slow
and expensive.

Finally, for researchers wanting to apply analytical methods to eQTL analysis, finding
a software with an efficient method suitable for the study purpose is critical to reducing
computational costs and appropriately inferencing the results. Analytical methods need to
be compared and characterized with various conditions to provide updated and proper
guidance, and researchers are desperately in need of a thorough review of analytical
methods and software prior to data analysis. For example, if a study on eQTL epistasis is
planned, considering the eQTL accuracy and time efficiency, a different optimal method
may be chosen according to the number of loci in epistasis and the covariates included in
the analytical model. Furthermore, the computing environment should be considered.

This review has primarily focused on analytical methods from the perspective of
statistical genetics. Along with the improvement of methods, increasing sample size and
advancing sequencing technology are essential to accelerate the development of eQTL
studies. Strategies that prioritize increasing sample size may include establishing stan-
dards for data and expanding shareable data repositories. Sequencing techniques such as
Hi-C, Capture-C, and 3C-seq may improve eQTL studies for chromatin interactions [67].
Finally, advances in fundamental technologies that can be used more broadly could fur-
ther change the paradigm of the field, as previously shown by microarrays and next
generation sequencing.

6. Conclusions

Statistical genetics is a key discipline in mapping eQTLs and predicting eTraits. Now,
it is time to accelerate the development of analytical methods for solving problems or
mitigating limitations. To date, eQTL studies have been strongly biased toward the dis-
covery of cis-eQTLs. This is largely attributable to the easy biological interpretation on
direct regulation, the relatively large effect size, and the reduced number of variants to be
tested within a certain region. However, we should also make efforts toward developing
efficient methods to overcome the limitations of trans-eQTL discovery. Thirty-seven percent
of GWAS signals (p ≤ 5 × 10−8) for the phenotypic traits corresponded to trans-eQTLs
that were recently reported using blood samples of 31,684 individuals by the eQTLGen
consortium [68]. This proportion will increase with the trans-eQTLs of other tissues and
with a larger sample size. Comparing this large-scale analysis to the second-largest analysis
for blood eQTLs, where 8% of the GWAS signals were found to be trans-eQTLs using
blood samples of 5311 individuals [69], a considerable advantage of larger sample sizes is
expected. As great amounts of data are accumulated in the future, the concerns regarding
trans-eQTL discovery will reduce. The trans-eQTL profile may reflect a characteristic of
tissue-specific regulation that differentiates body parts and developing efficient analytical
methods can increase the accuracy.

In conclusion, the genetic architecture of complex eTraits, produced at a higher resolu-
tion through a more rational analysis of enormous amounts of gene expression data, will
contribute to the understanding of the genetic architecture of complex diseases; this will
constitute an important basis in precision medicine.
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