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In classical electrodynamics, nanostructured graphene is commonly modeled by the computationally
demanding problem of a three-dimensional conducting film of atomic-scale thickness. Here, we propose an
efficient alternative two-dimensional electrostatic approach where all calculation procedures are restricted
to the graphene sheet. Furthermore, to explore possible quantum effects, we perform tight-binding
calculations, adopting a random-phase approximation. We investigate multiple plasmon modes in 20 nm
equilateral triangles of graphene, treating the optical response classically as well as quantum mechanically.
Compared to the classical plasmonic spectrum which is ‘‘blind’’ to the edge termination, we find that the
quantum plasmon frequencies exhibit blueshifts in the case of armchair edge termination of the underlying
atomic lattice, while redshifts are found for zigzag edges. Furthermore, we find spectral features in the zigzag
case which are associated with electronic edge states not present for armchair termination. Merging pairs of
triangles into dimers, plasmon hybridization leads to energy splitting that appears strongest in classical
calculations while splitting is lower for armchair edges and evenmore reduced for zigzag edges. Our various
results illustrate a surprising phenomenon: Even 20 nm large graphene structures clearly exhibit quantum
plasmonic features due to atomic-scale details in the edge termination.

T he collective excitations of conduction electrons in noble metals have been of great interest for a very long
time. These excitations known as plasmons play an important role in the optical properties of metals.
Through strong plasmon-photon interactions, metals can support important phenomena, such as focusing

beyond the diffraction limit1, squeezing the light down to nanoscale2, and large local field enhancement3. Due to
these features, plasmons inmetals give rise to various potential applications, and especially form a bridge between
the worlds of photonics and electronics which commonly work at different length scales4. Developments in
nanofabrication technology have stimulated a series of plasmon-based devices like waveguides5, filters6, switches7,
and modulators8. In many respects, plasmonic devices open a door to a better performance in speed and size,
holding potential for faster dynamics than electronic devices while still having a smaller size footprint than the
common all-dielectric photonic devices. However, the inherent Joule loss in metals severely hampers many
practical applications of plasmonics9. Alternatively, attempts have already been made to study plasmonics in
materials other than metals10, for example doped semiconductors11 and superconductors12,13.

Graphene and other low-dimensional crystals are now emerging as interesting materials for exciting science
and technology14. Here we study the plasmonic properties of graphene flakes. In its pristine form graphene is a
semimetal, but with appropriate doping it is emerging as a promising plasmonic material as well15–19. The
graphene plasmons are non-radiating, but with a momentum mismatch to free-space radiation that can be
overcome with the aid of e.g. grating approaches20. The charge carriers in graphene obey linear energy dispersion
at lower energies close to the Dirac points, thus resembling the linear dispersion of photons21–23. Experimental
investigations of carrier transport show that themobility limited by impurity scattering can exceed 15.000 cm2/Vs
at room temperature21, which gives the intrinsic loss in graphene one order of magnitude less than the noble
metals. Despite relaxation due to phonon scattering24,25, graphene achieves superior plasmonic performance in
propagation length and field enhancement26,27. The carrier density in graphene may be adjusted by electrostatic
gating, which results in actively tunable plasmons beyond structural variations in metals, as has already been
demonstrated experimentally28,29. With the typical doping levels, the plasmonic response is generally in the
terahertz (THz) to mid-infrared frequency range, thus allowing new progress in THz technology30. As an
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example, graphene waveguides (with sub-wavelength width) pave a
promising way to realize ultra-compact THz devices where bends
and splitters do not bring any significant loss31.
Because of these attractive plasmonic properties, it is worth to

comprehensively study the optical properties of graphene. Here
the fundamental quantity is the dielectric function. For graphene
systems, the dielectric function can be obtained within the frame-
work of linear-response theory and the random-phase approxi-
mation (RPA)15,16,32. For infinite graphene sheets, the derived
two-dimensional (2D) dielectric function e(q,v) is a function of
both frequency v and momentum q. This is different from com-
mon three-dimensional (3D) photonic materials which are usu-
ally well-described by frequency-dependent functions, while
spatial dispersion is negligible for good dielectrics and most
metals (beyond the nanoscale). Two common approximations
in the modelling of graphene structures are to adopt the local-
response approximation (applying the small-q limit) and to
model graphene as a very thin conducting film, yet preserving
its 3D representation33,34. Using dielectric functions so obtained,
one can solve Maxwell’s equations for arbitrarily shaped flakes of
nanostructured graphene. For very small flakes of characteristic
dimension R (R , lF with lF , 10 nm being the Fermi wave-
length corresponding to a Fermi level of EF 5 0.4 eV), the com-
mon assumption qR?1 is jeopardized and nonlocal response
turns important for far-field optical properties. Obviously, near-
field properties may be influenced too, e.g. for dimers of suffi-
ciently large structures, where qR?1 holds, while instead the tiny
gap (g=R) promotes nonlocal effects35. For optical excitation in
the near field17,36, nonlocal response can also be important for
large plasmonic structures provided that the distance to the emit-
ter is comparable to the nonlocal characteristic length scale37. In
this regime, both semiclassical hydrodynamic38,39 and full
quantum approaches have been proposed40,41, similar to those
recently developed for metals35,42. While previous studies have
mainly focused on the optically bright dipole mode, here we will
illustrate that structured graphene is also rich on higher-order
modes. Although the latter are typically not excited by far-field
radiation, they may be probed by near-field optical spectroscopy
and/or electron energy loss spectroscopy (EELS).
In this article, we study plasmon properties in individual graphene

nanostructures and in dimers of such structures by means of both
classical and quantum methods. In particular, we consider triangles
of graphene and bow-tie structures formed by such triangles, while
our methods can also be applied to other geometries (as we show in
the Supplementary Information). Here, we focus on the plasmonic
aspects due to doping with a significant number of electrons, while
there are also appealing aspects in the single-electron doping
regime43. We will emphasize dimers formed by electrically mutually
disconnected graphene islands, while graphene dimers connected by
quantum junctions44 and extended complimentary structures (elec-
tronic45 and plasmonic25,46 periodic anti-dot arrays) also represent
interesting geometries and regimes. As a key element, we consider
the eigenmodal properties of the plasmonic excitations, thus extend-
ing the current state of analysis beyond dipolar excitations, as rel-
evant for near-field plasmonic interaction with e.g. emitters or fast
electrons.
In our classical electrodynamical considerations, we treat the

nanostructures as 2D materials characterized by a smooth surface
conductivity (employing the sheet conductivity derived for bulk gra-
phene), and formulate a closed-form eigenvalue problem on a 2D
domain. Numerical solutions in arbitrarily shaped geometries are
enabled by finite-element calculations. By its nature, this classical
approach neglects the atomic details of the graphene flake. Some
aspects e.g. of zigzag termination can be effectively accounted for
by additional conductive channels39, though we will not pursue this
scheme for our classical calculations presently.

In our quantum treatment, we employ a tight-binding descrip-
tion40,41 to account for the actual position of all atoms in the flake and
in particular the edge atoms which have the possibility for either
armchair or zigzag configurations (Other edge structures can arise
from the mixture of these two configurations, but they will not be
discussed here). In both the classical and the quantum calculations,
multiple plasmon modes are extracted including dipole, multipole,
and breathing modes. Their hybridized counterparts in bow-tie
nanostructures are also discussed.We show that plasmon excitations
and hybridizations are extremely sensitive to the electronic edge
effects. This illustrates how quantum plasmonics can manifest
itself in graphene structures with dimensions much exceeding the
length scales for nonlocal response in individual noble-metal
nanoparticles35.

Results
Classical Description. Modern computational electromagnetics is
commonly optimized to explore the interaction of radiation with
matter in a three-dimensional space, so that two-dimensional
material problems are typically not efficiently addressed with
existing numerical schemes. For example, a pragmatic approach is
to simply mimic the atomically thin graphene layer with a
homogenous dielectric film of a finite, yet small thickness tg. This
assumed 3D film has an effective bulk permittivity, e(v) 5 e0 1 is
(v)/(vtg), where e0 is the vacuum permability and s(v) denotes the
surface conductivity as obtained from e.g. the local-response limit of
the RPA33,34. Evidently, the artificial thickness tg should be chosen
sufficiently small compared with all other characteristic and physical
dimensions, yet sufficiently large that meshing hopefully stays
computationally feasible and the numerical problem remains
tractable. Optimizing this thickness tradeoff does not necessarily
give an efficient method. An even more critical issue is that there
are no formal proofs, at least to the best of our knowledge, that
numerically computed fields (in particular near fields relevant for
LDOS or emitter dynamics near a graphene structure17,36) would
necessarily converge to physically meaningful quantities in the
limit tg R 0. Alternatively, in nanostructures with high symmetry,
e.g. in ribbons47,48 or disks39,49, one may take advantage of modal
expansion methods39,47–49 – which, however, is not an appealing
choice for more general structures, where limited analytical
progress is possible. In the following, we develop a 2D finite-
element approach to efficiently solve the electromagnetic problem
self-consistently for graphene in terms of the electric potential and
induced charge in general structural configurations.
With the typical sub-eV doping levels, plasmonic resonances

typically occur in the mid-infrared regime. The associated free-
space wavelength (,10 mm) is then much larger than the geomet-
rical extent of the hosting graphene nanostructures (,10–
100 nm). For such problems the electrostatic approximation is
excellent. As a computationally very attractive consequence, the
electric and constitutive response are governed by two coupled
scalar equations for the potential w and the induced density r.
In particular, we note that the total potential w(r) is governed by
Coulomb’s law

w(r)~wext(r)z
1

4pesL

ð
2D

dr ’
r(r ’)

jr=L{r ’=Lj , ð1Þ

where wext(r) denotes the external potential, L is an auxiliary
quantity such as the feature length of the structure which makes
the surface integral dimensionless, r(r9) the induced surface
charge density, and es 5 (eabove 1 ebelow)/2 the averaged dielectric
constant of the medium above and below graphene. For simpli-
city, we only consider freely suspended graphene, so we will use es
5 e0 throughout the remaining part of the paper. The other scalar
equation is obtained by inserting the constitutive equation J2D 5
2s(v)=2Dw(r) into the continuity equation ivr(r) 5 =2D?J2D(r),
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which for r restricted to the plane of the graphene structure gives

r(r)~
is(v)
v

+2
2Dw(r), ð2Þ

with +2
2D the 2D Laplace operator. Equation (2) is solved subject

to the assumption of charge neutrality, i.e.
ð
2D

dr r(r)~0, imply-

ing that n̂:+2Dw(r)~0 on the boundary of the domain, with n̂
denoting the in-plane surface normal. The density r in (2) is
restricted to the graphene plane. It may be obtained from a
closed-form equation by eliminating the potential in (2) with
the help of (1) (see Methods for additional details)50. Once r
within the graphene plane is thus obtained, the potential w in
the entire space can be evaluated via (1).
Within the framework of the finite-element method (FEM), Eqs.

(1) and (2) can both be recast as matrix equations. Concretely, by
denoting the FEM-discretized potentials and induced charge densi-
ties by vectors, we find the equations w5 wext1 (4pesL)21Ar and r5
is(v)v21Bw, which we combine to get

1{f (v)BA½ �r~is(v)v{1Bwext, ð3Þ
whereA andB are geometry-dependent squarematrices, respectively
representing the Coulomb integral in Eq. (1) and the Laplacian in Eq.
(2) (see the Methods section below for additional details), while f(v)
5 is(v)/(4pesLv) is a geometry-independent scalar29. The term in
the square brackets on the left-hand side of Eq. (3) represents the
matrix-form of the effective (classical) frequency-dependent dielec-
tric function eCLA(v) ; 1 2 f(v)BA, connecting total and external
potentials via eCLA(v)w5 wext. In the absence of an external potential
(wext5 0), Eq. (3) becomes an eigenvalue problem for the matrix BA.
The resulting eigenvalues ln are associated with plasmon frequencies
vn through f (vn)~l{1

n , and the associated eigenvectors are induced
charge densities rn in a finite-element representation. The corres-
ponding eigenpotentials are denoted as wn, and within the graphene
plane they can be computed directly as wn 5 Arn. Following this
classical approach, all plasmonic eigenmodes for a specific structure
can be obtained as the solution of a single eigenvalue problem. This
constitutes an attractive computational approach that can give direct
insight in the plasmonic eigenstates that one would be able to probe
with various experimental techniques.

Quantum Mechanical Tight-Binding Description. In a quantum
mechanical formalism, there are two key computational
components: (i) electronic band structure, and (ii) determination
of response functions. The graphene p and p* bands (valence and
conduction bands respectively) originating from the carbon pz
orbitals are well separated in energy from the four s bands arising
from sp2 hybridization. The dynamics of low-energy excitations in
graphene is well-described by inclusion of just thep bands, which can
be determined by a simple tight-bindingmodel in a nearest-neighbor
approximation51,52. Specifically, a graphene nanostructure with N
carbon atoms results in an N 3 N matrix representation
of the tight-binding Hamiltonian with elements determined by
the pz orbital hopping integral. A direct diagonalization of the
Hamiltonian yields N eigenvalues and eigenvectors, corresponding
to the electronic energy levels and the wave functions, respectively.
The non-interacting density response function, or polarizability
matrix x0(v), is then built from the electronic states whose
elements are given by15,16,32

x0ll’(v)~2
X
jj’

(fj{fj’)
y�
j’lyjly

�
jl’yj’l’

Ej{Ej’{�h(vzit{1)
, ð4Þ

where fj~1=½exp((Ej{EF)=kBT)z1� denotes the Fermi–Dirac
distribution function associated with the state with energy Ej and
wave function yjl (l labels each of the carbon atoms), while kB and

�h are Boltzmann’s and Planck’s constants, respectively. The factor 2
accounts for spin degeneracy in the absence of a static magnetic field
with no Zeeman splitting. In both classical (also called semi-classical
due to the conductivity including Fermi–Dirac distribution function)
and quantum calculations, states are populated in accordance with a
Fermi level of EF~0:4 eV and a temperature T 5 300 K
corresponding to a thermal energy of kBT^26meV. We
phenomenologically account for scattering losses through a
relaxation time t corresponding to �ht{1~6meV, commensurate
with experimental data at the considered doping level53. Naturally,
resonances are influenced by both the doping level (EF), the
relaxation time (t), the dielectric substrate properties (es), and the
characteristic structure dimensions (L). For details, we refer to the
Supplementary Information.
In the following, we use an efficient method to compute the non-

interacting density response matrix x0(v), based on Hilbert and fast
Fourier transforms (see Ref. 40 and Methods section below).
Including the effects of a self-consistent Hartree interaction, i.e.
within the RPA, the interacting polarizability is given by32

xRPA(v)~½1{Vx0(v)�{1x0(v), ð5Þ
with the Coulomb interaction Vll’!1=jr l{r l’j for l ? l9, and a self-
interaction of 0.58 atomic units at l 5 l940. The poles of xRPA(v) or
equivalently the zeros of the denominator

eRPA(v)~1{Vx0(v) ð6Þ
give the plasmon frequencies. More accurately, since eRPA(v) is a
matrix, we in principle seek the eigenvalues en(v) of the eRPA(v)
whose real part approaches zero54. In practice there is also loss, for
example due to i�ht{1 in x0(v). The eigenfrequencies en(v) are there-
fore complex-valued, with the imaginary parts denoting the plasmon
peak broadening. With this in mind, we finally define the plasmon
resonance frequencies from the local maxima of {Im½e{1

n (v)�54,55.
Numerically, the eigenvalues en(v) are obtained by diagonalizing

the RPA dielectric function eRPA(v) for each frequency. An N-atom
nanostructure entails n 5 1,2,3, ¼, N distinct eigenvalues. Out of
these we focus in the following on eigenvalues with largest and sec-
ond-largest values of {Im½e{1

n (v)�. Their corresponding eigenvec-
tors are the induced charge densities rn, and similarly the
eigenpotentials wn can be obtained by performing the Coulomb
integral. For comparison with the quantum treatment, we also cal-
culate the eigenvalue loss spectrum in the classical framework by
carrying out diagonalization of the classical effective dielectric func-
tion eCLA(v).

Plasmonic Eigenmodes in Individual Triangles. The calculated
eigenvalue loss spectrum for 20 nm graphene equilateral triangles is
shown in Figure 1. In the quantum description we distinguish
between zigzag and armchair edge terminations, see Supplementary
Information. Multiple plasmon peaks are visible in the considered
frequency regime. Additionally, at several frequencies, the two
considered loss functions (largest and second largest values of
{Im½e{1

n (v)�) are nearly identical, while at other frequencies one
can be resonant while the other one is not. This is in full accordance
with group-theoretical considerations for our structure with m-fold
rotational symmetry where the Cm point group leads to either non-
degenerate eigenstates or pairs of eigenstates with a double degeneracy56.
The degeneracy can be explored further by considering the eigenmodes,
expressed e.g. by the in-plane potential, and in particular their
symmetries. In the classical approach, the eigenmodes appear as
eigenvectors of the matrix BA of Eq. (3). Considering the two lowest
eigenstates causing the resonance around 0.3 eV in Figure 1(c), we
numerically find the eigenfrequencies to be 0.2964 eV and 0.2963 eV.
The small energy difference of 0.1 meV illustrates the numerical
accuracy (symmetry breaking) associated with the fact that our finite-
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element mesh does not comply with the threefold rotational symmetry
of the graphene triangle. In Figure 2 we show corresponding in-plane
potential distributions of the twelve lowest-energy eigenmodes, again
calculated in the classical framework. The eigenmodes are responsible
for the primary features of Figure 1c; specifically, the loss-function
exhibits peaks at the resonance energies of the eigenmodes. The peaks
are each assigned a label (n5 1,2,3,¼), corresponding to the eigenmode
enumeration in Figure 2. A one-to-one correspondence is evident and
whenever the spectrum in Figure 1 suggests a pair of degenerate states,
the corresponding modes in Figure 2 support that they are indeed pairs
of orthogonal and degenerate states. The energy degeneracies exhibited
here are a direct consequence of the symmetries of the considered
nanostructure, as required by group theory57.
The plasmon modes 1 through 8, being doubly degenerate, are

either symmetric or antisymmetric with respect to the mirror sym-
metry plane. The dipole modes, 1 and 2, with the electric field being
polarized orthogonal to each other, are of particular interest due to

their strong coupling to optical fields. They can be excited directly by
far-field techniques, and the plasmonic local field enhancement is
concentrated at the vertices. The modes 3 through 8 penetrate sig-
nificantly into the bulk, and can be considered as hybridized modes
originating from interaction between dipole and bulk modes,
because the patterns at the vertices are similar to dipole modes 1
and 2; in addition, the modes 3–6 have finite net dipole momenta,
and can couple to far-field radiation. Themodes 9–12 are not doubly
degenerate, and exhibit threefold rotational symmetry around the
center. Although optically dark, these modes are still detectable by
suitable near-field techniques. As an example, in an EELS experiment
the breathing mode 12 would exhibit the strongest coupling to a
nanometer-sized electron beam if this beam passes through the cen-
ter of the graphene triangle58.
Having described our classical results for graphene triangles, let us

now turn to our corresponding tight-binding quantum results. In the
quantum description, we calculate the eigenvalue loss spectrum,
identify the plasmon mode eigenfrequencies, and then extract the
corresponding eigenmodes. Due to the geometrical symmetry, the
plasmon eigenmodes should exhibit the same energy degeneracy
features as the equilateral triangles in classical calculations, for
instance in Figure panels 1(a) and 1(b) several doubly degenerate
plasmon modes occur. Figure 3 shows the wave patterns from the
quantum calculations, corresponding to the peak labeling in Figure 1
(a) and 1(b). We observe that for the armchair case the modes of the
same type are blueshifted when compared to their classical counter-
parts. On the contrary, zigzag termination incur lower plasmon
energies with a net redshift compared to the classical case. As an
concrete example, the eigenfrequencies of the dipole modes are
0.326 eV, 0.275 eV, and 0.296 eV for the armchair, zigzag, and clas-
sical cases, respectively. The associated mode patterns are only
slightly different, yet it is clearly seen from the dipole modes, that
in zigzag-terminated triangles the mode spreads much more into the
bulk while for armchair termination the mode concentrates at the
vertices in the same manner as for the classical results. This trend
becomes even more evident in the modes 3 and 4 of which the
patterns show no hot spots at the vertices. The shifts of armchair
and zigzag structures relative to the classical results were recently
discussed from an analytical perspective39, and attributed, essentially,
to two effects. For the armchair, a nonlocal blueshift accounts for the
observed behavior. In the zigzag case, in addition to a nonlocal inter-
action, the existence of edge states enables an additional dispersive

Figure 1 | Eigenvalue loss spectrum in graphene triangles. The loss
function {Im½e{1

n (v)� is calculated for equilateral graphene triangles of

sidelength 20 nm. Each peak defines a plasmon mode (labeled by n 5

1,2,3,…), and the coincidence of themaximum (blue solid) and the second

maximum (red dotted) indicates the energy degeneracy. Results of the

quantum tight-binding method in (a) for armchair edges, and in (b) for

zigzag edges, while classical results are given in (c).

Figure 2 | In-plane classical eigenmode potentials. The real part of wn for the twelve lowest-energy plasmon modes calculated in the classical approach,

from the eigenvectors of the matrix pair BA of Eq. (3).
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channel, which leads to a net redshift. Similar edge states do not exist
for armchair terminations (see Supplementary Figure S3 for addi-
tional details). The role of edge states has previously been examined
numerically in graphene ribbons40, disks41, and triangles43.

Plasmon Hybridization in Bow-Tie Triangles. Plasmon hybridization
is of both fundamental and practical importance59,60. Hybridization
through tuning of the gap distance can be used to achieve better
performance through careful design, such as the field enhancement in
dimers61 and the sensing capabilities in Fano structures62. Here, we
study the plasmon hybridization in graphene bow-tie triangles, using
the same classical and quantum methods as for individual triangles
above. Figure 4 shows the calculated eigenvalue loss spectra for a gap
width of 0.5 nm. There are four modes (n 5 1,2,3,4) in the classical
calculations, originating from the four (accounting degeneracy) low-
energy dipole modes of the two uncoupled triangles. The
hybridization process is illustrated in Figure 5 with a focus on dipole
modes, where energies are given with higher precision in order to
display the tiny energy shifts associated with the hybridization. We
find that each dipole mode in the individual triangles will split into
two modes in the bow-tie triangles forming either bonding or
antibonding states. The x-polarized dipole (0.2964 eV, dipole aligned
parallel to bow-tie axis) exhibits large energy splitting, and the
corresponding bonding (antisymmetrically coupled) mode has lower
energy. However, for the y-polarized dipole (0.2963 eV, dipole
aligned perpendicular to bow-tie axis) the reduced mode-overlap
causes a very small energy splitting. In both cases, the bonding modes
are optically active with a net dipole polarization along x and y direction,
respectively.
We find a very similar behavior in the armchair-terminated bow-

tie triangles shown in Figure 4a, but with smaller energy splitting,
which originates from a weaker mode overlap and weaker coupling
strength when compared to the classical calculations. In the zigzag-
terminated bow-tie triangles (see Figure 4b), the coupling strength is
even weaker and the x-polarized dipole exhibits no appreciable

energy splitting when compared to the line width of the uncoupled
resonances. As a result of this approximate degeneracy, the coupled
system exhibits a single broad peak with all four modes merged
together. In contrast to the dipole modes, the higher-order plasmon
modes show a weak lifting of degeneracy for antisymmetrical and
symmetrical states. We mention that the hybridization picture given
in Figure 5 is very general, also being satisfied in quantum calcula-
tions but with different eigenfrequencies (hybridization diagrams
not shown).
The energy splitting or coupling strength depends on the gap

width of the bow-tie structures, which can be investigated in the
hybridization of x-polarized dipoles. We calculate the eigenfre-
quencies of the hybridized plasmon modes as a function of the
width gap, and show the results in Figure 6. The modes in zigzag
triangles exhibit very small energy splitting, so we do not show
them here. Both in the classical calculations and armchair-ter-
minated triangles, the energy splitting decreases as the gap
width increases. The decrease is most pronounced for gap
widths below 4 nm, while the variation is weaker for larger
separations.
We note that the hybridization of other dimer plasmon modes

(other than dipole modes) can be analyzed with a similar result.
Generally speaking, the eigenfrequencies of the resulting hybridized
modes are decided by two factors: symmetry and coupling strength.
Specifically, the antisymmetrically coupled modes (no matter which
polarization) have lower energy and modes with less field concen-
tration at the gap region cause weaker coupling and consequently
exhibit smaller energy splitting. As a further evidence for this qual-
itative characterization, we show in Figure 7 the selected twelve plas-
mon modes from classical calculations, corresponding to the peaks
shown in Figure 4c. As compared with Figure 2, they can be under-
stood as linear combinations of the wave patterns in individual struc-
tures. Likewise, it is straightforward to envision the wave patterns in
armchair and zigzag bow-tie triangles based on the uncoupledmodes
from Figure 3.

Figure 3 | In-plane quantum eigenmode potentials. The real part of wn as extracted from the eigenvalue loss spectrum calculations. (a) The lowest 8

plasmon modes in an armchair triangle; (b) the corresponding plasmon modes in a zigzag triangle.
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Discussion
In this article, we have considered and compared classical and
quantum aspects of plasmonic eigenmodes in graphene triangular
nanostructures. The 2D FEM-approach for calculation of the classical
electromagnetic response represents a numerically highly efficient
method for electrodynamics in general 2D morphologies of graphene
structures in the electrostatic limit (see Supplementary Information
for the calculation in hexagonal structures). The simple eigenvalue
approach offers a direct pathway to extraction of all plasmonic eigen-
modes, not limited to just the optically active, but including also dark
modes and highly symmetric breathing modes. The quantum method
adopted here is useful for investigating the quantum effects in plasmon
excitations of smaller graphene structures, and it offers additional
insight into the importance of the particular edge-termination of the
underlying atomic lattice. By a sweep of the excitation energy, our
calculation of the eigenvalue loss spectra enables direct identification
of all plasmonic modes also in the quantum treatment.
We have applied both methods to equilateral triangles, of 20 nm

sidelength, both in isolated and in bow-tie configurations. For the
isolated nanotriangle we find that the plasmonic response of arm-

chair-terminated triangles is qualitatively similar to the classical case,
albeit with a significant and consistent blueshift of all resonances due
to nonlocal response. Conversely, the response of zigzag-terminated
triangles exhibits several significant differences from its classical
counterpart. As a consequence of the existence of localized electronic
edge states near zigzag edges, the eigenmodes extend further into the
bulk, and are less intense at the vertices. Additionally, we observe a
redshift and an pronounced readjustment of the loss-function
intensity relative to the classical case.
In the bow-tie configurationweobserve plasmonhybridizationand

associated eigenmode energy splitting, of varying degree depending
on treatment; the largest splitting is observed in the classical approach,
and the smallest in zigzag structures. Nevertheless, the effects of
hybridization are qualitatively similar across the considered cases,
with the antisymmetric hybridized modes exhibiting a lowered
energy, and with the coupling strength - and associated energy split-
ting - decreasing when the constituent eigenmodes exhibit lower field
intensities in the gap region.

Methods
Classical Calculations. The classical calculations are performed on the two-
dimensional domain defined by the geometry of the graphene structure. The domain is
discretized using a triangular mesh (see Supplementary Information for details),
consisting of a set of elements fjgJj~1 delimited by a set of vertices fkgKk~1. For future
reference, we denote the region of the jth element byVj. With a sufficiently densemesh,
a faithful approximation of the Coulomb and Laplacian operators in Eqs. (1) and (2)
can then be achieved with the approach described in the following. Crucially, this
allows the reduction of the coupled integro-differential equations into simple algebraic
equations, as summarized in Eq. (3).

To proceed, we introduce the following notation: the vertices of the jth element are
denoted as aj, bj, and dj, and together define the element centroid coordinates, rcj and
values u(rcj ) (representing e.g. the density)

r cj~
1
3
(rajzrbjzrdj ), u(r cj ):ucj^

1
3
(uajzubjzudj ): ð7Þ

The integration of Eq. (1) can then be approximated directly by a Riemann sum
at the centroids. With an aim to ultimately interlink the potentials, wk, and the
densities, rk, at all vertex positions fkgKk~1, we can then evaluate Eq. (1) at the kth
vertex to find

wk^wextk z
1

4pesL

XJ

j~1

sj
rcj

jrk=L{r cj=Lj
, ð8Þ

where we have introduced the area of Vj as sj. Note that no explicit handling of a
semi-divergent self-interaction is necessary since rk=r cj for all j. The matrix A can

Figure 4 | Eigenvalue loss spectrum in graphene dimers. The loss
function{Im½e{1

n (v)� calculated for graphene bow-tie triangles with gap

width 0.5 nm. Results obtained from quantum calculations in armchair

triangles (a) and in zigzag triangles (b) are compared with classical

calculations in (c).

Figure 5 | Hybridization of plasmons in graphene dimers. Schematic

diagram of the dipole mode hybridization in classical calculations. There is

a larger energy splitting for x-polarized dipole, and the antisymmetrically

coupled modes have lower energy for both polarizations. Here the gap

distance is 0.5 nm.

Figure 6 | Gap dependence of hybridization in graphene dimers. The
eigenfrequencies of the hybridized modes as a function of gap width for x-

polarized dipoles in classical calculations and armchair triangles,

respectively. The two dotted lines (0.296 eV and 0.324 eV) are the dipole

eigenfrequencies associated with the individual triangles.
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then be assembled by noting its equivalent definition in element form,
wk~wextk z(4pesL)

{1
X

k’
Akk’rk’ , which upon comparison with Eq. (8) allows the

identification Akk’~
X

j

sj
jrk=L{r cj=Lj

X
m

1
3
dk’m, with the m-sum running over

the vertex sites of Vj, i.e. m g {aj,bj,dj}, and where the twice-subscripted d denotes
the Kronecker delta.

Rather than assembling the matrix B (the discretized representation of the
Laplacian) from Eq. (2) directly, we identify it by its weak form, applying the ideas
behind FEM, allowing us to enforce the boundary condition n̂:+2Dw(r)~0 explicitly.

Specifically, multiplying onto Eq. (2) an unspecified linear test function w
j
TF(r), and

integrating over the domain, we find

Ð
2D dr wjTF(r)r(r)~{

s(v)

iv

ð
2D

dr wjTF(r)+
2
2Dw(r)

~
s(v)

iv

ð
2D

dr +2Dw
j
TF(r)

:+2Dw(r),

ð9Þ

where the boundary condition n̂:+2Dw(r)~0 has been applied at the second equality

sign. Next, we specify the linear test function w
j
TF(r). Concretely, we take the test

function as nonzero only on Vj. The value of the test function within Vj is most
conveniently specified in a local barycentric coordinate system with parameters gg
[0,1] and j[½0,1{g�, within which r~(1{g{j)rajzgrbjzjrdj for r gVj. Within
each region Vj we interpolate function values u(r), e.g. potentials or densities,
according to their associated vertex values

u(r)~(1{g{j)uajzgubjzjudj , ð10Þ

such that wjTF(r) equals the approximated w(r) for r g Vj. Applying Eq. (10) to the
left-hand side of Eq. (9) then yields

ð
Vj

dr wjTF(r)r(r)~
sj
12

waj wbj wdj

h i 2 1 1

1 2 1

1 1 2

2
64

3
75

raj
rbj
rdj

2
64

3
75,

We can recast this result in terms of the full vertex vectors w and r as equaling

wTBLjr, whereBLj denotes aK3Kmatrix defined by BLj
kk’~

X
nm

bnmdkndk’m with the

nm-sum restricted to {n,m} g {aj, bj, dj}, with nonzero elements defined by a 33 3

block matrix bLnm:
sj
12

(1zdnm).

To evaluate the right-hand side of Eq. (9) we require an expression for+2Du(r) for r
g Vj, which can be obtained from Eq. (10) using straight-forward algebra, yielding

+2Du(r)~
1
2sj

Rp=2½(ubj{udj )rajz(udj{uaj )rbjz(uaj{ubj )rdj �, ð11Þ

where Rp=2~½ 0 {1
1 0 � denotes a p/2 counterclockwise rotation. Using this, the

right-hand side integral in Eq. (9) becomes
ð
Vj

dr +2Dw
j
TF(r)

:+2Dw(r)~wTBRjw with

BRj denoting a K3 K matrix defined similarly to BLj, i.e. as Brj
kk’~

X
nm

bRjnmdkndk’m ,

but with a j-dependent 33 3 block matrix

bRjnm~
1
4sj

(rnz1{rnz2):(rmz1{rmz2), ð12Þ

where the subscript-notation n1 1 and n1 2 indicates forward-cycling by 1 and 2,
respectively, in the set {aj, bj, dj} (e.g. if n 5 bj then n 1 15 dj and n1 25 aj, and
equivalently for m).

Finally, by summing over all j, and definingBL;SjBLj andBR;SjBRj, while noting

that the test functions fwjTFgJj~1 constitute a complete basis in the FEM sense, we can
identify the weak form of Eq. (9) asBLr52is(v)v21BRw, fromwhich we identify the
desired matrix B with the property r 5 is(v)v21Bw as B 5 2(BL)21BR.

The classical material response is modeled by the bulk conductivity s(v) of gra-
phene through its well-known local-response form63,64

s(v)~
ie2

p�h
kBT

�h(vzit{1)

EF
kBT

z2 ln (e{EF=kBTz1)

� �

z
e2

4�h
h(�hv{2EF)z

i
p
ln

�hv{2EF
�hvz2EF

����
����

� �
,

ð13Þ

with the first and second terms due to intra- and interband dynamics, respectively.
Here, e denotes the electron charge, h(x) the Heaviside function, and ln(x) the natural
logarithm.

Quantum Calculations. The tight-binding Hamiltonian for the p-electrons is
constructed by considering only nearest-neighbor interactions with a hopping
strength t5 2.8 eV. The associatedHamiltonianmatrix-representation is real-valued
and symmetric, giving rise to real eigenvalues and eigenvectors.

The direct evaluation of the noninteracting density response matrix x0(v) of Eq.
(4) requires significant computational resources and time, amounting to ,N4

operations, which must additionally be repeated for each distinct frequency.
Significant reduction of computational complexity, to,N3, can be achieved with the
aid of Hilbert and fast Fourier transforms (FFT), following a procedure developed in
density-functional theory (DFT)65,66, and recently implemented in Ref. 40 for the
tight-binding model of graphene considered here. We adopt the same technique in
our computations.

Furthermore, consideration of the symmetry of x0(v), i.e. x0ll’(v)~x0l’l(v), leads to
an additional reduction of the computational requirements.
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