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In systematic reviews, meta‐analyses are routinely applied to summarize the

results of the relevant studies for a specific research question. If one can assume

that in all studies the same true effect is estimated, the application of a meta‐

analysis with common effect (commonly referred to as fixed‐effect meta‐

analysis) is adequate. If between‐study heterogeneity is expected to be present,

the method of choice is a meta‐analysis with random effects. The widely used

DerSimonian and Laird method for meta‐analyses with random effects has been

criticized due to its unfavorable statistical properties, especially in the case of

very few studies. A working group of the Cochrane Collaboration

recommended the use of the Knapp‐Hartung method for meta‐analyses with

random effects. However, as heterogeneity cannot be reliably estimated if only

very few studies are available, the Knapp‐Hartung method, while correctly

accounting for the corresponding uncertainty, has very low power. Our aim is

to summarize possible methods to perform meaningful evidence syntheses in

the situation with only very few (ie, 2‐4) studies. Some general recommenda-

tions are provided on which method should be used when. Our recommenda-

tions are based on the existing literature on methods for meta‐analysis with

very few studies and consensus of the authors. The recommendations are

illustrated by 2 examples coming from dossier assessments of the Institute for

Quality and Efficiency in Health Care.
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1 | INTRODUCTION

In systematic reviews (SRs), meta‐analyses are routinely
applied to summarize the results of the relevant studies
for a specific research question.1 In this context, a
- - - - - - - - - - - - - - - - - - - - - - - - - -
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prerequisite is to adequately assess between‐study hetero-
geneity. If heterogeneity is too large for a meaningful
pooling of the available study results, no quantitative sum-
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ie, there is no true heterogeneity, the application of a
meta‐analysis with common effect (commonly referred to
as fixed‐effect meta‐analysis) is adequate. If a certain
amount of heterogeneity is expected but nevertheless the
pooling of study results for a joint interpretation seems to
be sensible, the method of choice is a meta‐analysis with
random effects.

A method for meta‐analyses with random effects was
proposed by DerSimonian and Laird,2 which has become
the standard method for this type of analyses. However,
for some time now, this method has been criticized due
to its unfavorable statistical properties, especially in the
case of only (very) few available studies.3-5 A working
group of the Cochrane Collaboration recommended the
use of the Knapp‐Hartung method,6,7 which was around
the same time independently proposed by Sidik and
Jonkman8 as new standard approach for random‐effects
(RE) meta‐analysis.9

However, an unsolved problem in this context is the
case of very few (ie, 2‐4) studies.10 As heterogeneity
cannot be reliably estimated if only very few studies are
available,11 the Knapp‐Hartung method, while correctly
accounting for the corresponding uncertainty, has very
low power and leads to wide confidence intervals
(CIs).12 In practice, it can happen that the Knapp‐Hartung
method yields a statistically not significant pooled effect
estimate when combining 2 statistically significant studies
with effects pointing into the same direction. This in first
place counterintuitive result follows from the application
of a model with random effects in the case of insufficient
data for the reliable estimation of between‐study
heterogeneity. Although some efforts have been made to
evaluate the Knapp‐Hartung method with an ad hoc
variance correction in the context with few studies,13

some uncertainty remains in which situations the applica-
tion of the variance correction is advisable.

The evidence synthesis in the case of very few studies
is therefore challenging as it is on the one hand often dif-
ficult to make a compelling case for a common‐effect (CE)
meta‐analysis and on the other hand difficult to estimate
the level of heterogeneity reliably. In this paper, we
review a range of alternative methods to perform mean-
ingful evidence syntheses in the situation with very few
studies. Some general recommendations are provided on
which method should be used when. Some examples
illustrating the recommendations are provided.

The paper is organized as follows. After a brief descrip-
tion of the generic theoretical meta‐analysis models with
common effect, fixed effects, and random effects in
Section 2, we summarize the main available qualitative
and quantitative methods for evidence synthesis in the
case of very few studies in Section 3. In Section 4, we pres-
ent 2 examples illustrating the limitations of the available
meta‐analytic approaches when only very few studies are
available. A short discussion follows in Section 5. We con-
clude with general recommendations on meaningful evi-
dence syntheses in the case of very few studies. Our
recommendations are based on the existing literature on
methods for meta‐analysis with very few studies and
expert consensus.
2 | GENERIC MODELS FOR META ‐

ANALYSIS

2.1 | Common‐effect model

When the pooling of the study results seems to be mean-
ingful, the simplest meta‐analytic approach is the CE
model assuming that the true treatment effects are all
the same in all studies included. Let yi be the observed
treatment effect in study i for i = 1, …, k, θCE the common
true treatment effect measured in terms of an appropriate
effect measure, and εi a random variable describing the
sampling error of study i. Then the CE model is given by

yi ¼ θCE þ εi; εi eΝ 0; við Þ;Var yið Þ ¼ vi:

The main parameter of interest is given by θCE, the
common true treatment effect.

It should be noted that this model is usually referred
to as “fixed‐effect model” rather than “CE model.” How-
ever, to avoid confusion with the fixed‐effects (FE) model
by Laird and Mosteller,14 which will be introduced in the
next subsection, we use the term “CE model” model here
throughout. Other terms for the CE model are given by
“equal‐effect model” or, misleadingly, also “fixed‐effects
model.”

The major limitation of the CE model is the basic
assumption that all studies estimate the same effect. This
assumption is frequently challenged in practice. Applying
a CE model in a situation where the basic CE assumption
is violated may lead to far too narrow CIs and substantially
increased type 1 error.10 Usually, whenever heterogeneity
cannot be excluded, the CE model should not be used.
2.2 | Fixed‐effects model

Less stringent than the CE assumption is the assumption
that all studies have different expected effects. In the FE
model according to Laird and Mosteller,14 it is assumed
that each study has its own true treatment effect. How-
ever, the studies are, in contrast to the RE model, not con-
sidered as a random sample of all possible studies. The
treatment effects of the studies are considered as fixed
effects, which means that, strictly speaking, conclusions
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from a FE model apply to just the studies analyzed and
not to all studies that are theoretically possible.

Let yi be the observed treatment effect in study i for
i = 1, …, k, θi the true treatment effect of study i, and εi
a random variable describing the sampling error of
study i. Then the FE model is given by

yi ¼ θi þ εi; εi eΝ 0; við Þ;Var yið Þ ¼ vi:

The main parameter of interest is given by an appro-
priate function of the treatment effects θi, in the simplest
case with equal importance of all studies the unweighted
average

θFE ¼ 1
k
∑k

i¼1 θi:

If studies are felt to have different importance, we can
specify different weights to each study and define the
average effect by using a weighted mean. One pragmatic
option to specify weights is given by the sample sizes of
the studies. In the case of equal true study effects, the
FE model simplifies to the CE model.
2.3 | Random‐effects model

In the RE model, it is assumed that the treatment effects
vary randomly from study to study according to a random
distribution (commonly and without further justification
assumed to be normal) and the studies included in the
meta‐analysis represent a random sample of theoretically
possible studies. Let yi be the observed treatment effect in
study i for i = 1, …, k, θi the true treatment effect of study
i, θRE the mean of the distribution of true treatment effects
θi, δi a random variable describing the between‐study
variation, and εi a random variable describing the within‐
study variation; the random variables δi and εi are assumed
to be independent. Then the RE model is given by

yi ¼ θi þ εi; θi ¼ θRE þ δi; εi eΝ 0; við Þ;

δi eΝ 0; τ2
� �

; Var yið Þ ¼ vi þ τ2:

The main parameters of interest are given by θRE, the
mean of the distribution of true treatment effects, and the
between‐study variation τ2 (heterogeneity).

The RE model encompasses within‐study (νi) as well
as between‐study variation (τ2), whereas the CE model
includes only the within‐study variation. If the between‐
study variation is zero (τ2 = 0), the RE model simplifies
to the CE model.
3 | METHODS FOR EVIDENCE
SYNTHESIS

3.1 | Qualitative evidence synthesis

In the situation of large heterogeneity where the pooling
of study results seems to be not meaningful, no quantita-
tive summary of the study results should be performed. If
the heterogeneity can be explained and it is possible to
divide the available data into fairly homogenous subsets
(studies with certain conditions or subgroups within stud-
ies), separate meta‐analyses can be performed within the
homogenous subsets. However, in meta‐analyses with
very few studies, heterogeneity between studies can typi-
cally not be explained due to the small number of studies
if only summary data are available. In this case, the only
choice is a qualitative evidence synthesis in which the sin-
gle study results are presented together with the results of
the heterogeneity evaluations.

Nevertheless, there are situations in which clear state-
ments on the effect direction are possible. For example, in
the case of 2 or more statistically significant studies of
high quality (ie, randomized controlled trials with low
risk of bias) with estimated effects in the same direction
demonstrating beneficial effects, the clear statement can
be made that a benefit of the considered intervention is
proven. However, due to unexplained heterogeneity, a
meaningful quantification of the effect size is not possible.

An example where this approach is useful is given
by the benefit assessment of new drugs according to
the German Act on the Reform of the Market for
Medicinal Products (Gesetz zur Neuordnung des
Arzneimittelmarktes, AMNOG) in Germany. Here, one
defined category to describe the extent of added benefit
is given by a “nonquantifiable” added benefit.15 In a
situation as described above, the result of the benefit
assessment would be a proof of added benefit with non-
quantifiable extent.
3.2 | Meta‐analysis assuming a common
effect

In cases where the pooling of the study results seems to be
meaningful, the simplest meta‐analytic approach is given
by the CE model assuming a true common treatment
effect in all studies included in the meta‐analysis. For con-
tinuous endpoints, the usual standard estimation
approach is the inverse variance method, where the
pooled effect estimate is calculated by a weighted average
of the effect estimates in each study and the weight given
to each study is chosen to be the inverse of the estimated
variance of the corresponding effect estimate, ie,
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bθCE ¼ ∑k
i¼1yiwi;CE

∑k
i¼1wi;CE

with wi;CE ¼ 1bvi:
The (1−α) CI for the common effect in the CE meta‐

analysis is calculated by

bθCE ± z
1 −

α
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

∑k
i¼1wi;CE

;

s
(1)

where zq is the q‐quantile of the standard normal distribu-
tion. By using this approach, larger studies having smaller
standard errors (SEs) are given more weight than smaller
studies having larger SEs.1 In the case of binary endpoints,
this approach is also applicable but not recommended
due to undesirable statistical properties (see section 3.5).
3.3 | Meta‐analysis assuming fixed effects

In a meta‐analysis with fixed effects and equal importance
of all studies the average effect is estimated by means of
the simple unweighted average of the estimated study
effects,14 ie,

bθFE ¼ 1
k
∑k

i¼1yi:

The (1−α) CI for the pooled effect in the FE meta‐
analysis is calculated by

bθFE ± z
1 −

α
2

1

k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑k

i¼1bviq
:

In the case we think that the studies have different
importance, we can specify different weights to each study
and estimate the average effect by using a weighted mean.
One pragmatic option to specify weights is given by the
sample sizes of the studies.

However, the specification of study weights by the
investigator is problematic in practice. Usually, larger
studies with smaller SEs are more reliable than smaller
studies with larger SEs. But specifying weights according
to SEs would lead again to the usual CE meta‐analysis.
Rice et al16 argue that the usual point and interval esti-
mates of the CE model under standard conditions are also
valid estimates for a weighted average effect under the FE
model. However, a disadvantage of this approach is that
the theoretical parameter of interest (θFE) is dependent
on the sample size of the considered studies. In practice,
the FE meta‐analysis has not gained acceptance in medi-
cal statistics. Obvious theoretically “correct” weights for
the studies in a meta‐analysis to define a meaningful
parameter of interest are not available in general. On
the other hand, the estimation of the average effect by
means of the simple unweighted average of the estimated
study effects appears not to be helpful in the typical situ-
ation of a SR regarding a medical intervention.
3.4 | Meta‐analysis assuming random
effects

For a long time, the standard method for meta‐analyses
with random effects was given by the method described
in the seminal paper by DerSimonian and Laird.2 Using
this approach, the mean of the distribution of true treat-
ment effects is estimated by

bθRE ¼
1
n
∑k

i¼1 yiwi;RE

1
n
∑k

i¼1wi;RE

with wi;RE ¼ 1= bvi þ bτ2� �
:

DerSimonian and Laird2 discussed 3 methods to
estimate τ: noniterative method of moments procedure
as well as iterative maximum likelihood and restricted
maximum likelihood methods. The suggestion of the
authors to use the method of moments estimator is based
on comparability of results and its simplicity. A CI for the
random effects mean can be constructed by using
Equation 1 and replacing wi,CE with wi,RE.

For some time, the DerSimonian‐Laird method is crit-
icized due to its unfavorable statistical properties, espe-
cially in the case of few available studies.4,5,9,10,17-19 The
main problem of the DerSimonian‐Laird method is that
the uncertainty of the estimation of the between‐study
and within‐study variance is ignored.4,12,18 A number of
alternative methods to perform meta‐analyses with ran-
dom effects have been proposed (see below) including var-
ious methods to estimate the between‐study variance.19

Veroniki et al19 recommended the use of the Paule‐Man-
del method20 instead of the method of moments proce-
dure to estimate the between‐study variance in practice.

A working group of the Cochrane Collaboration
recommended the use of the Knapp‐Hartung method6,7

in combination with the Paule‐Mandel estimator for the
between‐study variance instead of the DerSimonian‐Laird
method as new standard approach in RE meta‐analysis.9

Using this approach, estimation of the mean of the distri-
bution of true treatment effects is unchanged. However, a
different (1−α) CI for the mean of the distribution of true
treatment effects in the RE meta‐analysis is utilized

bθRE ± t
k−1;1−

α
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑k

i¼1wi;RE yi−bθRE� �
2

k−1ð Þ∑k
i¼1wi;RE

;

vuut
where tm,q is the q‐quantile of the t‐distribution with m
degrees of freedom. As is apparent from the simulations
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presented in Friede et al,21 the coverage probabilities of
the CIs are not markedly improved by use of the Paule‐
Mandel estimator in comparison to the DL estimator in
meta‐analyses with only few studies.

In cases with very homogeneous study results, the
variance of the estimated mean of the distribution of true
treatment effects according to the Knapp‐Hartung
method may turn out to be arbitrarily small, which means
that the CI is misleadingly narrow.6,22 For this case, a
simple ad hoc variance correction was proposed,7 which
is given by

Var bθRE� �
¼ max

1

∑k
i¼1wi;RE

;
∑k

i¼1wi;RE yi−bθRE� �
2

k−1ð Þ∑k
i¼1wi;RE

24 35:

This variance correction avoids arbitrarily narrow CIs.
Röver et al13 recommended the use of the variance
correction, especially in the case of very few studies.
However, in the extreme case of only k = 2 studies, the
Knapp‐Hartung method with variance correction tends
to be over‐conservative. Therefore, the situation of k = 2
studies was considered as effectively unsolved.10,13

Wiksten et al22 recommended to apply the RE meta‐
analysis based upon the Knapp‐Hartung method and to
conduct a sensitivity analysis using the CE meta‐analysis
in practice to avoid misleading results.
3.5 | Methods for binary endpoints

Under the CE model, well‐established statistical methods,
eg, Mantel‐Haenszel and Peto methods, are available for
the meta‐analysis of binary endpoints.23-25 In contrast,
several evaluations show that the standard inverse‐vari-
ance method can perform very poorly with binary end-
points both under the CE and the RE model; especially
in the case of rare events.24,26 Accordingly, other meta‐
analytic methods should be considered under the RE
model.

A distinctive and frequently overlooked advantage of
binary endpoints is that individual patient data (IPD) for
endpoint and intervention are readily available if
information on the studies' 2 × 2 tables is given.27 Even
if only effect estimates together with CI or SEs are given,
2 × 2 tables can be reconstructed by using the method of
Di Pietrantonj.28 The application of standard inverse‐
variance meta‐analytic methods based upon summary
measures (models with common effect or random effects)
is probably not efficient in these cases, and methods that
use the full IPD information should be preferred.25,29

Essentially all of these models fall into the class of logistic
regression models for correlated data, where the single
models differ by model formulation and the respective
estimation procedures, an overview is given by Agresti.30

Prominent class members are generalized linear mixed
models with penalized quasi‐likelihood or numerical inte-
gration by Gaussian quadrature, marginal models with
generalized estimation equations, conditional models
with partial likelihood, and models with closed‐form like-
lihood functions such as the beta‐binomial model.31,32

These models are suitable for zero and double‐zero trials
and allow the consideration of trial duration as well as
other covariates on trial level. Additionally, models with
fixed study effects are possible, ie, the standard logistic
regression model with the study effect as a categorical
covariate. For these methods, a number of simulation
studies are available.31,33-36 Under the assumption that
the situation with few studies is similar to the situation
with few observed events, beta‐binomial models might
have favorable properties,31 but additional simulation evi-
dence is needed before drawing definite conclusions here.
3.6 | Individual patient data

Meta‐analyses of IPD are in general more reliable than
meta‐analyses based upon aggregate data.37 If IPD are
available, the use of linear mixed models for continuous
endpoints and survival time methods for time‐to‐event
endpoints offer the same advantages as the use of general-
ized linear mixed models for binary data (see Section 3.5)
or count data. Thus, an effort should be made to obtain
access to IPD, especially in the case of very few studies.
However, in practice, access to IPD is frequently not pos-
sible for a variety of reasons.
3.7 | Bayesian methods

A competitive alternative to frequentist methods of
meta‐analysis is given by Bayesian methods. A general
framework on how Bayesian RE models can be applied
in practice is given by Smith et al.38 In a Bayesian anal-
ysis, often noninformative prior distributions are chosen
for the unknown parameters. Inferences about the
effects of interest are made by integrating out the
unknown parameters from the joint distribution of the
prior and the likelihood. Bayesian methods can have
advantages compared with frequentist methods in spe-
cific data situations such as rare events.39 Fitting the
models presented here does not require application of
MCMC sampling, but can be done by application of
robust approximation methods.40,41 Furthermore, the
practical application is supported by available R pack-
ages such as bayesmeta.21

In the situation of few studies, the main difficulty is
given by the fact that heterogeneity cannot be reliably
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estimated. The use of Bayesian methodology allows the
inclusion of prior knowledge about the heterogeneity
parameter in the form of (weakly) informative prior distri-
butions in the analysis to improve statistical inference on
the effects of interest. This approach is described by
Friede et al12,21 in meta‐analyses of few small studies in
rare diseases.

To apply Bayesian methods with informative priors for
the between‐study heterogeneity, reliable information on
the prior distribution of the unknown parameters is
required. By using empirical data from the Cochrane
Database of Systematic Reviews, Turner et al42 and
Rhodes et al43 provide predictive distributions for the
expected between‐study variance in different settings
(defined by outcome type, intervention comparison type,
and medical area), which can be used as informative prior
distributions in future meta‐analyses.

The use of informative prior distributions in Bayes-
ian RE meta‐analyses seems to be a promising approach
for special data situations. A discussion of sensible
choices of prior distributions for the heterogeneity
parameter can for instance be found in Spiegelhalter
et al44 In the setting with (very) few small studies as fre-
quently encountered in rare diseases, the use of half‐
normal priors with scale 0.5 and 1 were suggested,
which led to an acceptable compromise in terms of
coverage probabilities and lengths of the resulting cred-
ibility intervals in the settings considered.12,21 However,
the choice of prior information in Bayesian meta‐
analyses with very few studies can have substantial
effects on the final results.25 Moreover, it cannot be
expected that reliable prior information is available for
all intervention types and all medical disciplines, so that
this approach cannot be routinely applied in all future
meta‐analyses.
3.8 | Other methods

Several alternative methods have been proposed in the lit-
erature such as the combination of exact confidence
curves (also called P‐value functions or confidence
distributions), which contains the combination of P‐values
and CIs as special cases,45 or nonparametric approaches
based upon permutation tests and resampling.18 However,
none of the existing approaches solves the main problem
that heterogeneity cannot be reliably estimated if only
few studies are available. Guolo and Varin18 recom-
mended the use of the Knapp‐Hartung method if a
sufficient number of studies is available and that very
complex and computer‐intensive methods should be
avoided. In the case of few studies, Guolo and Varin18

proposed to apply various methods and draw
corresponding conclusions from the comparison of the
results of different methods.
4 | EXAMPLES

For illustration, we consider 2 examples coming from dos-
sier assessments of the Institute for Quality and Efficiency
in Health Care.46,47 In both examples, no pooling of the
study results had been performed in the dossier assess-
ments due to large heterogeneity. Nevertheless, both
examples can be used to illustrate the limitations of the
available meta‐analytic approaches in the case of very
few studies.
4.1 | Example 1: Belatacept after kidney
transplant

In the first example, the added benefit of belatacept
compared with ciclosporin A in combination with corti-
costeroids and mycophenolate mofetil as the appropriate
comparator therapy for prophylaxis of graft rejection in
adults receiving a renal transplant was assessed.46 Only
k = 2 studies were available in this assessment. One
of the considered patient relevant outcomes was the
time‐to‐event endpoint “renal insufficiency in chronic
kidney disease stage 4/5.” Both studies were statistically
significant demonstrating a clear added benefit of
belatacept. The Knapp‐Hartung method yields a very
wide 95% CI due to the insufficient data to estimate
the heterogeneity reliably (see Figure 1). Considering
the result of 2 statistically significant studies demon-
strating a clear added benefit of belatacept, the Knapp‐
Hartung method is over‐conservative in this example.
A decision that no added benefit of belatacept is proven
based upon the results of the Knapp‐Hartung method
would be critical, because a merely qualitative evidence
synthesis would yield a clear added benefit. On the
other hand, under the assumption of heterogeneous
effects, the statistically significant result of the
DerSimonian‐Laird method is unreliable due to the
potentially increased type‐1 error (or, equivalently,
reduced coverage probability of the CIs). The use of
Bayesian RE meta‐analysis represents an alternative to
these methods as the intervals are much shorter than
the uninformative Knapp‐Hartung interval but yet con-
siderably wider than the DerSimonian‐Laird interval.
As this example demonstrates, however, prespecification
of the prior distribution for the between‐study variation
τ2 is important when interpreting the intervals in a
frequentist sense as a hypothesis test because the
application of the half‐normal prior with scale 0.5 for
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DerSimonian‐Laird method (DSL), the Knapp‐Hartung method (KH), and Bayesian method using half‐normal priors for τ with scales 0.5
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388 BENDER ET AL.
τ leads to a statistically significant pooled effect estimate
in contrast to the half‐normal prior with scale 1 (see
Figure 1).
4.2 | Example 2: Sipuleucel‐T in prostate
cancer

In the second example, the added benefit of sipuleucel‐T
compared with the appropriate comparator therapy for
treatment of asymptomatic or minimally symptomatic
metastatic (nonvisceral) castrate‐resistant prostate can-
cer in male adults in whom chemotherapy is not yet
clinically indicated was assessed.47 In this example,
k = 3 relevant studies were available. One of the consid-
ered patient relevant binary outcomes was the side
effect fever. In all 3 studies, there was, based upon exact
statistical inference, a statistically significant difference
between the treatment groups to the disadvantage of
sipuleucel‐T; the effects were therefore clearly in the
same direction (see Figure 2). There was an outcome‐
specific high risk of bias for all studies. Hence, there
FIGURE 2 Results of the common‐effects model with inverse‐varianc

Laird method (DSL) and the Knapp‐Hartung method (KH), the beta‐bin

for τ with scales 0.5 (B‐HN(0.5)) and 1.0 (B‐HN(1.0)) for the sipuleucel‐T
was an indication of greater harm from sipuleucel‐T.47

However, the Knapp‐Hartung method again yields a
very wide 95% CI due to the insufficient data to esti-
mate the heterogeneity reliably. Thus, even in the case
of k = 3 studies, the Knapp‐Hartung method can be
over‐conservative in that it yields very long, uninforma-
tive CIs. The inverse‐variance method and the beta‐
binomial model yield very similar results in this exam-
ple (see Figure 2). If the CE assumption can be justified,
both methods seem to deliver useful pooled effect esti-
mates supporting an about 2.5‐fold increased risk of
fever in patients in the sipuleucel‐T arm. If the CE
assumption is rejected, a qualitative evidence synthesis
would also lead to the conclusion that fever is more fre-
quent in patients in the sipuleucel‐T arm because all
studies are statistically significant in the same direction
to the disadvantage of sipuleucel‐T (without quantifica-
tion of the effect size). The same conclusion could be
made on the basis of the Bayesian RE meta‐analyses
using the half‐normal priors for τ with scale 0.5 and 1
(see Figure 2).
e method (CE IV), the random‐effects model with the DerSimonian‐

omial model (BBIN), and Bayesian method using half‐normal priors

example [Colour figure can be viewed at wileyonlinelibrary.com]
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5 | DISCUSSION

No satisfactory universal method is currently available to
perform meta‐analyses in the case of very few studies. The
major limitation of the CE model is the basic assumption
that all studies estimate the same effect. This assumption
is frequently questionable in practice. It is, however, often
overlooked that the interpretation of the outcome of the
meta‐analysis may also be challenging as soon as we have
to acknowledge that 2 studies that were considered
combinable in the beginning turn out to support different
true treatment effects. Applying a CE meta‐analysis in a
situation where the basic assumption of a true common
treatment effect is violated may lead to substantially
increased type 1 error (or, equivalently, reduced coverage
probability of the CIs). In general, as soon as observed
results indicate that the available studies are not suffi-
ciently homogeneous, the CE model should not be used
for evidence synthesis.

However, in situations with only one single study,
results of this study are interpreted and conclusions
are made for the considered population. This analysis
can be considered as a degenerated CE meta‐analysis
with full weight given to the available study. How-
ever, this study is just a sample (with sample size
k = 1) of all studies, which are theoretically possible.
If heterogeneity of all theoretically possible studies
cannot be excluded, a better approach to generalize
the results to the whole population is given by a
meta‐analysis with random effects, which, however,
cannot be performed by using frequentist methods if
there is only a single study. Using the same logic in
the case of k = 2 studies would lead to the
application of the CE or the FE model. However, in
the case of 2 or more studies, we can technically
investigate heterogeneity and because this is a basic
step in SRs and important for conclusions referring
to the whole population, we try to assess heterogene-
ity even if heterogeneity cannot reliably be estimated
in the case of very few studies. It is interesting thus
to compare the approach of a meta‐analysis with the
assessment of consistency within a single study,
which is usually done during the assessment of the
results of a single study over all relevant endpoints
(benefit/risk in drug approval or benefit assessment
in health technology assessment).

To avoid a large discontinuity in making conclusions
from k = 1 study or k = 2 studies, the use of the CE or
the FE model should be considered. The use of the FE
model would have the advantage that the strong CE
assumption is not required. However, the unweighted
FE model cannot be recommended because large studies
provide in general better evidence than small studies.
The use of the weighted FE model with weights
inversely proportional to the variances of the effect esti-
mates leads to the same estimator as the CE model but
has the disadvantage that the theoretical parameter of
interest is dependent on the sample size of the consid-
ered studies. Moreover, the difference between the CE
and the FE model will be frequently not understood in
practice. Therefore, we recommend not to use the FE
model but to consider the use of the CE model. It
should be carefully assessed whether an amount of het-
erogeneity should be expected, which would make the
usual CE model unreliable. Situations where the appli-
cation of the CE model seems to be appropriate are
given by 2 studies with identical design (so‐called twin
studies) or with large estimated effects and negligible
between‐study heterogeneity. In summary, in the situa-
tion with very few studies, the simple CE model should
be applied more frequently compared with situations
with a large number of studies where the RE model is
in general the model of choice.

Besides the problem that between‐study heterogene-
ity cannot be estimated reliably, meta‐analyses of very
few studies also suffer from further limitations. For
instance, publication bias cannot adequately be explored
and the application of meta‐regression techniques is also
not useful.
6 | CONCLUSIONS

In summary, in the case of slightly heterogeneous
studies, the highest certainty of results (best evidence
situation) is given by a statistically significant pooled
effect estimate coming from a RE meta‐analysis (with
application of the Knapp‐Hartung method or an
alternative adequate method), because this result allows
to generalize the findings to the whole population from
which the included studies are assumed to be randomly
sampled. On the other hand, in the case of very few stud-
ies, the available data are insufficient to estimate the
between‐study heterogeneity reliably with the conse-
quence that a RE meta‐analysis has insufficient power.
If there is only one study available, the estimation of
between‐study heterogeneity is technically impossible.
Nevertheless, conclusions are drawn from the results of
this single study. Thus, it should also be possible to draw
conclusions from the results of 2 studies, even if the
application of a RE meta‐analysis is technically possible
but not sensible.

In conclusion, we recommend the following proce-
dure to perform a sensible evidence synthesis in the case
of very few studies:
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If heterogeneity is too large for a meaningful
pooling of the available study results, no quantitative
summary of the study results should be performed. In
this situation, a merely qualitative evidence synthesis
is recommended.

If the assumption seems to be valid that the same
true effect is estimated in all studies, ie, there is no
true heterogeneity, a meta‐analysis with common effect
should be applied even if heterogeneity is observed.
Twin studies where the same (or at least a very simi-
lar) protocol is replicated in a second study are a
scenario where this assumption appears to be reason-
able. More generally, in the case of only k = 2
available studies, the CE model might be used as a
default unless there are strong arguments against the
CE assumption. Nevertheless, sensitivity analyses, eg,
in a form of RE meta‐analyses, by fixing the heteroge-
neity variance at reasonable values in frequentist anal-
yses or by using suitable priors in Bayesian analyses
are recommended.

When a certain amount of heterogeneity can be
expected (as it is often the case), but nevertheless, the
pooling of study results is meaningful, the method of
choice is a meta‐analysis with random effects. The best
evidence situation (highest certainty of results) is given
by an adequate RE meta‐analysis with a statistically
significant pooled effect estimate. In general, the
recommended standard approach for RE meta‐analysis
is the Knapp‐Hartung method. In the case of very few
studies with quite different precisions, the application of
the variance correction should be considered. As the CIs
resulting from application of the Knapp‐Hartung method
can be very long and therefore uninformative when only
very few studies are combined, there is a need for alterna-
tive methods. In the case of binary data, alternative
approaches are given by logistic regression models for cor-
related data. In the case of reliable prior information
regarding the heterogeneity parameter, the application
of Bayesian methods with (weakly) informative prior
distributions for the heterogeneity is another option. The
choice of an adequate method can only be made on a
case‐by‐case basis.

If the application of a frequentist RE meta‐analysis
is warranted but not possible (only one study is avail-
able) or not sensible (heterogeneity parameter not reli-
ably estimable), conclusions on treatment effects
should be based (with lower certainty of results) on
the one available study or on the CE s meta‐analysis
or on a qualitative evidence synthesis. A qualitative evi-
dence synthesis represents a meaningful option espe-
cially in the situation, where the few available studies
are all statistically significant with effects pointing into
the same direction, but the Knapp‐Hartung method
nevertheless yields a statistically not significant pooled
effect estimate.
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