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Purpose: The purpose of this paper was to develop a deep learning algorithm to detect
retinal vascular leakage (leakage) in fluorescein angiography (FA) of patientswith uveitis
and use the trained algorithm to determine clinically notable leakage changes.

Methods: An algorithm was trained and tested to detect leakage on a set of 200 FA
images (61 patients) and evaluated on a separate 50-image test set (21 patients). The
ground truthwas leakage segmentationby two clinicians. TheDice Similarity Coefficient
(DSC) was used to measure concordance.

Results: During training, the algorithm achieved a best average DSC of 0.572 (95%
confidence interval [CI] = 0.548–0.596). The trained algorithm achieved a DSC of 0.563
(95% CI = 0.543–0.582) when tested on an additional set of 50 images. The trained
algorithm was then used to detect leakage on pairs of FA images from longitudinal
patient visits. Longitudinal leakage follow-up showed a >2.21% change in the visible
retina area coveredby leakage (as detectedby the algorithm) had a sensitivity and speci-
ficity of 90% (area under the curve [AUC]= 0.95) of detecting a clinically notable change
compared to the gold standard, an expert clinician’s assessment.

Conclusions: This deep learning algorithm showedmodest concordance in identifying
vascular leakage compared to ground truth but was able to aid in identifying vascular
FA leakage changes over time.

Translational Relevance: This is a proof-of-concept study that vascular leakage can be
detected in a more standardized way and that tools can be developed to help clinicians
more objectively compare vascular leakage between FAs.

Introduction

Uveitis is usually diagnosed clinically, however, it
is known that there can sometimes be a mismatch
between the clinical appearance of uveitis and fluores-
cein angiography (FA). In certain uveitis cases, FA is
essential for the diagnosis and management of patients
with uveitis due to its ability to display vascular
leakage. Some patientsmay appear grossly quiescent on
clinical examination but exhibit angiographic activity
that may alter treatment decisions. Although FA is the

gold standard for detecting vascular leakage, its inter-
pretation is subject to significant variability between
clinicians.1,2

Artificial intelligence (AI) is a powerful tool to find
patterns in large datasets, and its use in ophthalmologi-
cal research has ballooned in recent years. There are AI
systems to detect papilledema,3 diabetic retinopathy,4
retinopathy of prematurity,5 intraretinal fluid in optical
coherence tomography6 (OCT), to predict glaucoma
progression using Humphrey Visual Field testing,7 and
to classify age-related macular degeneration severity in
color fundus photographs.8 There are also algorithms
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developed to interpret FAs in diseases such as diabetic
retinopathy,9–11 diabetic macular edema,1 and malarial
retinopathy.12 However, no algorithms have specifically
been developed to quantify vascular leakage in uveitis,
although one system trained on diabetic retinopathy
was used to detect vascular leakage on a single patient
with retinal vasculitis.13 Segmenting vascular leakage
in fluorescein angiograms of patients with uveitis is a
difficult computer vision problem to solve, due to the
considerable variability in anatomy, associated retinal
lesions, vascular leakage patterns, and severity between
patients. In addition, unlike color fundus photographs,
Humphrey Visual Field testing, and OCT, the
time-dependent component of vascular leakage –
including the differential circulation of the dye in
choroidal and retinal vasculature – poses a unique
challenge.

In this paper, we describe a proof-of-concept, the
first of its kind, deep learning algorithm trained to
segment vascular leakage on the FA of patients with
uveitis. We quantify clinician variability in FA vascular
leakage segmentation. Finally, we use this algorithm to
aid in detecting a clinically notable change in leakage
over time in FA images obtained from longitudinal
patient visits.

Methods

Subjects and Ground Truth Image Selection

FA images were obtained from the Uveitis/Intra-
ocular Inflammatory Disease Biobank clinical research
protocol and used for algorithm training. Eligible
biobank participants have regularly scheduled follow-
up visits and undergo clinical phenotyping, exten-
sive multimodal imaging (including wide-field color
photographs, fundus autofluorescence imaging, OCT,
and FA), full-field electroretinogram, perimetry, and
immunophenotyping. Multiple images of both eyes
were captured on all modalities at each study visit. The
prospective and longitudinal nature of this biobank
allows images and data to be captured from patients
before, during, and after treatment for uveitis. We used
200 images from the biobank for algorithm training
with 5-fold cross validation and an additional test set
of 50 images to further evaluate the trained algorithm.

FA images taken after the 1-minute timepoint, with
a clear view to the retina, and without excessive retinal
lesions were included. All images were reviewed by two
uveitis specialists to confirm they were of sufficient
quality for clinician interpretation to allow for vascular
leakage detection. Images were all taken on the Optos
200Tx platform from March 2016 to February 2020.

The study had prior approval from the National
Institutes of Health Institutional Review Board,
complied with the Health Insurance Portability and
Accountability Act of 1996, and followed the tenets of
the Declaration of Helsinki (clinicaltrials.gov identifier
NCT02656381).

Ground Truth Image Segmentation

Two teams of two clinician graders (authors D.D.,
M.Y., H.L., and L.Y.) segmented (annotated) FA
images for vascular leakage using Adobe Photoshop
version 21 (San Jose, CA). Graders were provided color
fundus photographs and several images from earlier
and later phases of the FA to aid in accurate leakage
segmentation.

The primary grader on each team performed
segmentation by outlining areas of vascular leakage in
Adobe Photoshop using the pen tool. The secondary
grader reviewed and edited the first grader’s work.
This approach was taken to compensate for grader
fatigue. Difficult images were adjudicated with senior
clinicians. Before beginning segmentation, all graders
met to discuss the definition of leakage and agreed
on a segmentation protocol defined by the senior
clinician (author H.N.S.). Graders defined leakage
as increased hyperfluorescence above the general
choroidal background fluorescence, following the
pattern of retinal blood vessels, and increasing in size
compared to earlier-frame FA images.

Graders first defined the boundary of gradable
retina (excluding eyelashes, peripheral artifacts, and
peripheral scars). Leakage due to choroidal neovascu-
larization and optic nerve leakage were not segmented
as leakage. Scars and lesions inside the boundary of
gradable retina were not segmented as leakage and
marked as such. Finally, anatomic structures in the
retina, such as the optic nerve and the macula, were
demarcated. In areas of leakage bordering large vessels,
efforts were made to exclude the large vessel from the
segmentation of vascular leakage. However, in some
cases of diffuse leakage where it was difficult to exclude
very small vessels, portions of the vessels were included
in the segmentation.

Algorithm Development

We adapted a U-Net14 architecture as a deep learn-
ing model for leakage segmentation, as U-Net is a
fully convolutional neural network and its architecture
generally demonstrates superior segmentation perfor-
mance in the biomedical image segmentation literature.
Further details regarding algorithm architecture and
are shown in Figure 1.
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Figure 1. ModifiedU-net architecture for the deep learning algorithm. The algorithm’s inputs are 224× 224× 3 FA images and the outputs
are 224 × 224 × 1 grayscale images. The model has a contracting path and an expanding path. The contracting path (left side of figure)
consists of convolutional layers and max pooling layers. The expansive path (right side of figure) consists of up sampling of the feature map
andconvolutional layers. Twodropout layers (with a 0.5dropout ratio) are added in the contractingpath to train themodelmore robustly and
to resolve overtraining issues. The two dropout layers use only 50% of randomly selected weights during training so that the deep learning
algorithm does not depend on specific features but instead depends on all features equally. The final convolutional layer maps each feature
vector to the desired classes. The model assigns a class label to each pixel as an output. Conv, convolution; MaxPool, Max Pooling.

Image Processing

Images undergo processing before they are used for
algorithm training. First, the original FA images are
augmented by rotating them 0, 10, 20, −10, and −20
degrees. Each image is also rotated across the X-axis.
The 5 rotations multiplied by the 2 X-axis rotations
allow the training image set to be increased 10-
fold. The clinician segmentations of vascular leakage
from Adobe Photoshop were converted into images
(“leakage segmentation images”) and also undergo
this augmentation. Second, the augmented images
are cropped into smaller images of w × w pixels
(“windows”) by shifting the window horizontally or
vertically. This step further increases the number
of input training images to improve segmentation
accuracy of the algorithm. Third, the FA images are
adjusted using a contrast limited adaptive histogram
equalization (CLAHE) operator. As some FA images
have a brighter background whereas others have a
darker background, the CLAHE operator improves
the contrast and edges in the images based on local
information. Last, pairs of cropped images (a cropped

FA image and its corresponding cropped leakage
segmentation image) are resized to a 224 × 224 ×
3 pixel size and inputted into the deep learning
algorithm for training (Fig. 2).

Algorithm Training and Testing

A variety of algorithm parameters such as window
size (672 × 672, 1334 × 1334, or 1792 × 1792
pixels), epochs (20, 50, 100, or 200), loss function
(binary cross entropy or dice coefficient loss functions),
and image enhancement (CLAHE or no enhance-
ment) were tested to determine the best-performing
algorithm. Learning curves for the final algorithm
are shown in Supplementary Figure S1. We used the
aforementioned fixed image augmentation strategies
(i.e. choosing the 0/10/20/-10/-20 degree rotation angles
instead of randomly generated angles) in order to allow
for standardized algorithm-to-algorithm comparisons.

After initial algorithm training/testing on the 200-
image set was complete, the final deep learning
algorithm was evaluated again on a separate test set of
50 FA images. The algorithm’s segmentation outputs
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Figure 2. Workflow for training and testing the deep learning algorithm. In training workflow (top of figure), images undergo processing
(several degrees of rotation, rotation across the X-axis, cropping into windows (window size = wxw and stride = w/2 pixels), and resizing
to a 224 × 224 × 3 image (as described in the Methods section) before it becomes a series of input images. The resizing to 224 × 224 ×
3 step is necessary for processing as the deep learning model architecture allocates a large amount of computer memory to training and
testing compared to other machine learningmodels. The 224× 224× 3 size was the largest input size that we could process in our existing
hardware. Finally, pairs of processed images (one croppedFA image and its corresponding cropped leakage segmentation image) are used as
inputs to train the deep learning algorithm. The testingworkflow (bottom of figure) consists of four steps. First, an input FA image is adjusted
using CLAHE operator. Second, the image is cropped into window sizes of w × w pixels by shifting the window (stride = w/2 pixels, or half
the window size) horizontally or vertically. Third, each cropped image is resized to 224 × 224 × 3 pixels and input into the trained deep
learningmodel. Themodel outputs grayscale images, with white pixels representing vascular leakage detected by the algorithm. Finally, all
the outputs are converted back to their original size and combined into a final image. As each pixel in the original image could havemultiple
outputs due to the windows, the maximum value of each pixel was chosen to generate the final segmentation output.

were compared to the ground truth clinician segmen-
tation using the dice similarity coefficient (DSC).

Statistical Analysis

We used the DSC to quantify concordance between
algorithm leakage segmentation and the ground truth.
The DSC is defined as the size of the intersection of
two sets divided by their average size15 and it ranges
from 0 to 1, 0 indicating no spatial overlap between 2
sets of segmentation results, and 1 indicating perfect
overlap.16

Determination of Clinically Notable Change
in Vascular Leakage

The trained algorithm was used to help determine
clinically notable change in vascular leakage in FAs

taken across different visits. We first identified an
additional 20 patient eyes. Each eye had FAs taken
at two different visits, with a clinical change between
visits (such as a treatment intervention or change in
disease activity). We chose images from each FA pair
within 45 seconds of each other. For example, if the
visit 1 FA image was from the 3-minute timepoint, a
visit 2 FA image from 2minutes 15 seconds to 3minutes
45 seconds was chosen. A senior uveitis clinician
(author H.N.S.) assessed the FA image pairs to deter-
mine if there was clinically significant change between
the vascular leakage in the images between the visits.

We then used the trained algorithm to segment
vascular leakage on each FA image from the two visits.
We calculated the percentage of the visible retinal area
that was covered by the algorithm’s leakage segmenta-
tion. Then, we calculated the change in this percent-
age between visits. A receiver operating characteristic
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(ROC) curve analysis was performed to determine a
cutoff of percent change in algorithm-detected vascu-
lar leakage between visits that could differentiate “clini-
cally notable change in vascular leakage” from “no
clinically notable change in vascular leakage.” The
senior uveitis clinician’s determination of yes/no clini-
cally notable change in vascular leakage was used as the
gold standard. The sensitivity and specificity with 95%
confidence interval (CI) were reported for the percent
change in vascular leakage across visits for the value
that maximized sensitivity and specificity, and the area
under the curve (AUC) was calculated.

Quantification of Grader Variability in FA
Leakage Segmentation

Two uveitis fellowship-trained graders both
segmented the same set of 40 images and their segmen-
tations were compared to each other using the DSC.

Software and Hardware

We implemented the deep learning algorithm using
Python with Keras on a Red Hat Enterprise Linux 7
operating system. The hardware configuration used for
this studywere a single Intel(R)Xeon(R)CPUE3-1275
version 6@3.80GHz 4 cores with hyperthreading, total
8 processors, and a GTX 1080 Ti GPU.

Results

Patient and Fluorescein Angiogram Image
Characteristics

The 200 images in the training set came from 61
patients, with a median of 2 images used per patient
(interquartile range [IQR]= 1–4 images). One hundred
forty of 200 (60%) of the images were of right eyes.
Images were obtained from March 2016 to Decem-
ber 2019. Most patients had posterior segment uveitis
(Table 1, Supplementary Table S1). The FA images
were from an average timepoint of 361 seconds (SD =
174 seconds).

Table 1. Patient Disease Characteristics by Uveitis
Anatomic Location

Anatomic Location
of Uveitis

Number of Patients in
Training Image Set (n = 61)

Anterior uveitis 2
Intermediate uveitis 24
Posterior/panuveitis 35

Quantification of Grader Variability in FA
Leakage Segmentation

The average DSC between the 2 graders’ segmen-
tations was 0.483 (95% CI = 0.439–0.528). Figure 3
depicts examples of good and poor grader concor-
dance.

Algorithm Training and Testing Results

We initially achieved a best average DSC of 0.501
between the algorithm segmentation and ground truth
when all 200 images were used for algorithm train-
ing. After the inter-grader concordance results were
available and showed poor concordance, we hypoth-
esized the differences in segmentation style between
the two clinician teams confounded the deep learning
algorithm. Because one team segmented 112 images
whereas the other team segmented 88 images, we
retrained and tested the algorithm on the 112 images
using the 5-fold cross validation method. This retrain-
ing allowed us to achieve a maximum average DSC of
0.572 (95% CI = 0.548–0.596), using a window size of
672 × 672 pixels, the Dice Coefficient loss function,
CLAHE image enhancement, and 200 epochs (Supple-
mentary Table S2). Examples of algorithm perfor-
mance compared to the manual segmentation ground
truth are provided in Figure 4. Finally, testing the final
trained algorithm on a separate set of 50 FA images
resulted in an average DSC of 0.563 (95% CI = 0.543–
0.582).

Algorithm-Assisted Determination of
Clinically Notable Change in Vascular
Leakage

We used the algorithm to help determine if there
was a clinically notable change over time in vascular
leakage across pairs of FA images taken from two visits.
The algorithm was used to detect vascular leakage on
a pair of images. We found that if there was a change
of greater than 2.21% of the visible retinal area covered
by the algorithm leakage segmentation (127,520 pixels),
we were able to correctly classify image pairs as having
“clinically notable change” with 90% sensitivity and
specificity, with anAUCof 0.95 (Fig. 5, Fig. 6, Table 2).
For reference, the average optic disc area in our dataset
was 10,020 pixels.

Conclusions/Discussion

In this study, we identified variability between clini-
cian segmentation of FA images, developed a prelim-
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Figure3. Exampleof goodconcordance (A) DSC0.642andpoor concordance (B) DSC0.095between twocliniciangraders’vascular leakage
segmentations.

inary deep learning algorithm that was fairly able to
segment vascular leakage on FA images despite having
an ambiguous ground truth, and successfully used it
to help determine clinically notable changes in vascu-
lar leakage. As FA is frequently used to diagnose
uveitis, assess a patient’s response to treatment, and to
aid in clinical decision making,17 quantifying vascular
leakage on patients with uveitis FAs is critical. A tool
to standardize the quantification of vascular leakage
would thus be very useful in the clinical and research
settings.

We initially hypothesized the algorithm could
achieve a best average DSC of 0.7 or greater when
its performance was compared to the ground truth.
However, the best average DSC we were able to achieve
was 0.572. In the brain and lung imaging segmenta-
tion literature, groups report achieving average DSCs
of 0.9 and higher.15,18,19 However, because the calcu-
lation for DSC is highly dependent on the area of
interest,15,16 it becomes more difficult to achieve higher
DSCs on smaller structures such as the retina. As

examples, Deeley et al.20 reported average DSCs of 0.4
to 0.5 when segmenting nerves and the optic chiasm
on brain magnetic resonance imaging (MRI) scans,
whereas Liefers et al.21 reported a mean DSC of 0.6
when developing an algorithm to segment features of
age-related macular degeneration on OCT. Addition-
ally, our segmentation was more challenging as the
leakage boundary was more ambiguous compared to
boundaries for other forms of imaging.

Another difficulty with using the DSC was noted
when we reviewed individual algorithm segmentation
results. We noted that in several cases, the algorithm
segmentations were comparable to the ground truth,
however the DSC was very poor (see Fig. 4D).
These images tended to have very small amounts of
vascular leakage. Because theDSC is exquisitely depen-
dent on the size of the area of interest, if the algorithm
segmented even a few pixels inaccurately, the DSC
would decrease dramatically.

An additional challenge is the time-dependent
nature of vascular leakage. Our algorithm was only
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Figure 4. Example of good algorithm concordance with the ground truth (A) DSC 0.718 and (B), DSC 0.750. Examples of poor algorithm
concordance with the ground truth (C) DSC 0.482 and (D) DSC 0.263.

able to evaluate one image from an FA series, whereas
a clinician would compare an image to previous and
later frames. Because the algorithm did not have previ-
ous images available for comparison, in some cases,
the algorithm detected leakage that was not actually
present or was due to background choroidal fluores-

cence. Additionally, as FA flow rates differ, it is nearly
impossible to capture exact and repeatable timing for
image capturing and consecutive labeling. However, in
the clinical setting using current commercially available
equipment, it is also impossible to capture these exact,
repeatable timings. It should also be noted that whereas
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Figure 5. (A) Depicts a patient’s FA at their first visit. (B) depicts the same patient’s FA at their second visit 2 months later. An expert uveitis
specialist identified the patient as having clinically notable improvement in the second FA compared to the first. The algorithm was used
to segment vascular leakage on both images, and the percent of the visible retinal area in each image covered by the algorithm’s leakage
segmentation was calculated. In this example, the second image had a 2.33% decrease in the visible retinal area covered by algorithm
segmentation of vascular leakage compared to the first visit image (134,610 fewer pixels of vascular leakage). An ROC curve analysis showed
a change of greater than 2.21% of the visible retinal area covered by the algorithm’s vascular leakage segmentation (a change of greater
than 127,520 vascular leakage pixels) could differentiate between yes/no clinically notable change in vascular leakage with 90% sensitivity
and specificity. For comparison, the average optic disc area in our dataset was 10,020 pixels.

Figure 6. Reciever operating characteristic curve of various thresh-
olds (percent change in the visible retinal area covered by algorithm
segmentation of vascular leakage between two visits). The gold
standard was a uveitis expert’s assessment of the yes/no clinicially
significant change in vascular leakagebetweenvisits. The areaunder
the curve (AUC) was 0.95.

the algorithm performance was less than initially
expected (DSC of 0.572), the agreement between the
algorithm and ground truth was superior to the agree-
ment between two graders (DSC of 0.483).

Although the algorithm requires further refinement,
it already demonstrates superior speed in segmentation
compared to manual segmentation. When using 672
× 672 pixel window sizes, the deep learning algorithm

took an average of 4.7 seconds to process an FA image.
Additionally, as the trained algorithm performed well
in classifying clinically notable (or insignificant) change
in leakage over time, this could also prove useful in
clinical practice or in clinical trials.

Strengths of this study include the variety of uveitis
etiologies (see Supplementary Table S1) and vascular
leakage patterns and the prospectively collected uveitis
biobank database. Limitations of this study include the
relatively small dataset, which we tried to overcome
with image augmentation. Unfortunately, obtaining
large sample sizes for rare diseases such as uveitis
is challenging, and future directions should include
multicenter collaborations. Another limitation was
variability between graders even in the ground truth.
We attempted to overcome this problem by meeting
beforehand to discuss a standard definition of vascu-
lar leakage. We also used a team-based approach
where one clinician double checked the other clinician’s
segmentation. However, even with these attempts to
standardize manual segmentation, one team tended to
over-segment vascular leakage whereas the other team
tended to under-segment. The discrepancy between
teams led to decreased uniformity in the training set
and thus, decreased algorithm performance. However,
we do note that even between expert human graders,
we measured considerable, and higher, inter-rater relia-
bility. Others have also observed intra-grader variabil-
ity in FA1 and more easily interpretable images such as
OCT.21 This discordance between clinicians could have
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Table2. ROCTable of Percent Change in theVisible Retinal Area in the FA ImageCoveredWithAlgorithmSegmen-
tation of Vascular Leakage Differentiating the Presence or Absence of a Clinically Significant Change in Vascular
Leakage

% Change in the Visible Retinal Area
Covered With Algorithm Segmentation Sensitivity (%) 95% CI Specificity (%) 95% CI

>0.05% 100% 72–100% 10% 0.5–40%
>0.42% 100% 72–100% 40% 17–69%
>1.39% 90% 60–99% 60% 31–83%
>1.77% 90% 60–99% 70% 40–89%
>2.21% 90% 60–99% 90% 60–99%
>6.94% 60% 31–83% 100% 72–100%
>17.06% 20% 4–51% 100% 72–100%

The boldface number are to highlight the threshold (>2.21%) at which the algorithm was able to best differentiate the
presence or absence of clinically significant change.

serious impacts on patient care, and thus a more objec-
tive tool to evaluate FAs has great clinical importance.

Future directions include validation on external
datasets, as is testing the performance on more
challenging data (for example, FAs with extensive
lesions). Further work on determining a threshold for
algorithm detection of clinically notable change in
vascular leakage would be useful – for example, using
FA images obtained before and after patients with
uveitis receive treatment. There is a great clinical need
for a tool to objectively evaluate FAs in uveitis, and
this project represents the beginning of using machine
learning to detect vascular leakage on FAs of patients
with uveitis.
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