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Altered gray matter organization in children and adolescents
with ADHD: a structural covariance connectome study
KR Griffiths1, SM Grieve1,2, MR Kohn1,3,4, S Clarke1,3,4, LM Williams5,6 and MS Korgaonkar1,7

Although multiple studies have reported structural deficits in multiple brain regions in attention-deficit hyperactivity disorder
(ADHD), we do not yet know if these deficits reflect a more systematic disruption to the anatomical organization of large-scale brain
networks. Here we used a graph theoretical approach to quantify anatomical organization in children and adolescents with ADHD.
We generated anatomical networks based on covariance of gray matter volumes from 92 regions across the brain in children and
adolescents with ADHD (n= 34) and age- and sex-matched healthy controls (n= 28). Using graph theory, we computed metrics that
characterize both the global organization of anatomical networks (interconnectivity (clustering), integration (path length) and
balance of global integration and localized segregation (small-worldness)) and their local nodal measures (participation (degree)
and interaction (betweenness) within a network). Relative to Controls, ADHD participants exhibited altered global organization
reflected in more clustering or network segregation. Locally, nodal degree and betweenness were increased in the subcortical
amygdalae in ADHD, but reduced in cortical nodes in the anterior cingulate, posterior cingulate, mid temporal pole and rolandic
operculum. In ADHD, anatomical networks were disrupted and reflected an emphasis on subcortical local connections centered
around the amygdala, at the expense of cortical organization. Brains of children and adolescents with ADHD may be anatomically
configured to respond impulsively to the automatic significance of stimulus input without having the neural organization to
regulate and inhibit these responses. These findings provide a novel addition to our current understanding of the ADHD
connectome.
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INTRODUCTION
Attention-deficit hyperactivity disorder (ADHD) is the most
prevalent developmental disorder, affecting 6–7% of school-
aged children and adolescents. It is characterized by developmen-
tally inappropriate symptoms of inattention, impulsivity and
hyperactivity, and is often associated with poor academic and
social outcomes.1 Neuroimaging studies have linked these
cognitive control, attention and emotion processing related
impairments to functional and structural abnormalities in dis-
tributed brain regions including the inferior frontal gyrus, poster-
ior cingulate, caudate nucleus, inferior parietal lobe, amygdala and
cerebellum.2–4 The manner in which these regions behave within
a network is crucial in understanding these symptoms and has led
to the more recent view that ADHD may be best described in
terms of aberrance in a number of large-scale functional brain
networks such as the default mode network (DMN), ventral
attention network (VAN), frontoparietal and limbic networks.5

Whether these functional disturbances are also reflected in altered
gray matter organization of these large-scale networks still
remains to be tested.
Graph theory analysis is a powerful method for quantifying and

characterizing brain networks, and has been instrumental in a
system level understanding of the brain.6 It permits a data-driven
exploration of topological organization of large-scale brain

networks (that is, connectomes) in a way not previously possible,
producing a number of summary metrics that describe the
properties of brain networks. For instance, small-world and
network efficiency measures describe the balance between
information segregation and integration at the global level, while
regionally specific properties such as nodal degree demonstrate
the contribution of ‘hubs’ that facilitate integrative processes.6

Previous studies of graph theoretical analysis of whole-brain
resting-state functional magnetic resonance imaging (MRI) data
have reported that children and adolescents with ADHD exhibit
higher local clustering and lower global efficiency compared with
Controls. This suggests that children and adolescents with ADHD
may have less-optimized topological organization, reflecting a
maturational delay in formation of functional networks7,8 (see Cao
et al.9 also for a review including network-specific findings). Cao
et al.10 observed similar findings using white matter probabilistic
tractography of diffusion imaging data in ADHD, demonstrating
convergence between functional and structural organizational
metrics.
To date, however, no study has reported on network measures

in participants with ADHD using covariance between regional gray
matter volumes. Structurally and functionally connected brain
regions tend to show ‘in sync’ fluctuations in gray matter volume
over time. This phenomenon, known as structural covariance, is
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theorized to reflect developmental coordination or synchronized
maturation between regions of the brain due to mutually trophic
influences.11,12 A gray matter network analysis approach using
brain volume data derived from T1-weighted images measures
this covariance, thus providing a developmental ‘snapshot’ of the
brain that is complementary to diffusion and functional MRI
data.13 This is particularly relevant in ADHD, in which cortical
maturational delay is one of the leading etiological theories.14 This
data-driven approach may also shed light on the structural
networks and the key hubs mediating specific functional
impairments commonly observed in ADHD.
In this study, we use T1-weighted MRI data to parcellate the

brain into 92 cortical and subcortical gray matter regions in
children and adolescents with and without ADHD. Volumes of
these regions were used to map structural covariance networks for
evaluation using graph theory. We hypothesized that compared
with typically developing Controls, children and adolescents with
ADHD would exhibit abnormal network topology. More specifi-
cally, we predict higher clustering and lower global integration
compared with Controls. Further, we predict that network hubs
will differ between these groups predominantly in regions crucial
to observed clinical cognitive findings.

MATERIALS AND METHODS
Participants
MRI data were drawn from 39 children and adolescents with ADHD
scanned at Westmead Hospital (Western Sydney Local Health District) as
part of the baseline data collection for the international Study to Predict
Optimized Treatment in ADHD (iSPOT-A; protocol described further in
Elliott et al.15). ADHD diagnoses were established by referring clinicians,
based on Diagnostic and Statistical Manual of Mental Disorders (4th ed.,
DSM-IV; American Psychiatric Association, 1994) criteria. Research psychol-
ogists confirmed diagnosis and subtype using the parent-rated ADHD
Rating Scale IV (ADHD-RS IV16), indicated by a score 41 in six or more
items in the inattentive and/or hyperactive-impulsive sections of the scale.
Twenty individuals with ADHD were determined to have inattentive
subtype, while 19 were combined subtype. ADHD participants were aged
8–17 years, fluent in English and stimulant naive (n=14) or unmedicated
for a minimum of 7 days prior to the time of testing (n=25). Referring
clinicians and research psychologists used the Mini International
Neuropsychiatric Interview for children and adolescents (MINI Kid; Sheehan
et al.17) to exclude any participants with learning disorders, current or past
alcohol/drug abuse, or any comorbid axis 1 disorder. Ten participants with
ADHD (29%) had comorbid oppositional defiant disorder.
Comparison was made against 30 age- and gender-matched typically

developing Controls. Controls were screened for the absence of Axis 1

mental disorders using the MINI-KID and SPHERE-12.18 Sample size was
based on previous studies investigating whole-brain connectomics using
diffusion tensor imaging and resting-state functional MRI in child and
adolescent ADHD.7,10 No participants had a history of brain injury, any
significant medical condition affecting brain function (for example,
epilepsy), or any contraindications for MRI. This study received institutional
review board approval from the Human Research Ethics Committee,
Western Sydney Local Health District and was conducted according to the
principles of the Declaration of Helsinki 2008. All participants (and/or
guardian when o16 years) provided written informed consent.

Image acquisition and preprocessing
MRI data were acquired on a 3.0T GE Sigma HDx scanner (GE Healthcare,
Milwaukee, WI, USA) using an 8-channel head coil. Three-dimensional T1-
weighted magnetic resonance images were acquired in the sagittal plane
using a 3D SPGR sequence (TR = 8.3 ms; TE = 3.2 ms; flip angle = 11°;
TI = 500 ms; NEX= 1; ASSET= 1.5; frequency direction: S/I). A total of 180
contiguous 1 mm slices were acquired with a 256× 256 matrix, with an in-
plane resolution of 1 mm×1 mm, resulting in isotropic voxels.
Pre-processing of the T1-weighted images was performed using the

VBM8 toolbox (http://dbm.neuro.uni-jena.de), implemented within the
SPM8 package (http://www.fil.ion.ucl.ac.uk/spm). First, MRI data sets were
visually inspected for artifacts and movement by two independent
investigators, and all scans passed an automated quality assurance
protocol within VBM8. Specifically, sample homogeneity was visually
assessed to identify any outliers who were two or more s.d’s of GM volume
outside of the sample distribution.
Images were corrected for bias-field inhomogeneity and tissue-classified

into gray matter, white matter and cerebrospinal fluid. Study-specific
(child/adolescent) tissue probability maps were created using the
template-o-matic toolbox,19 and implemented during registration to
standard space using high-dimensional DARTEL normalization.
Warped tissue-type images were modulated to preserve the volume of a

particular tissue using the Jacobian determinants derived from spatial
normalization. Seven subjects (5 ADHD, 2 Control) were excluded for
motion artifacts that distorted the boundary between segmented gray and
white tissue images, leaving a total of 34 ADHD subjects (25 males, 9
females) and 28 typically developing Controls (19 males, 9 females) for
analysis. The mean sample homogeneity covariance for the remaining
individuals in each group was 0.74, indicating high data quality (that is,
minimal artifacts) and no differences in scan quality between groups.

Defining network nodes for analysis
We referenced the nodes for analysis according to the automated
anatomical labeling atlas.20 We extracted data for 92 cortical and
subcortical regions, defined using the WFU PickAtlas Toolbox.21 These
regions include the 90 regions defined in previous graph analysis studies
of structural correlation networks.22,23 We also included the bilateral

Figure 1. Association matrices for attention-deficit hyperactivity disorder (ADHD) and Control (CON) groups. The right-side color bar indicates
the strength of connectivity. These association matrices are thresholded at the minimum network density (36%) in which the networks of both
groups are not fragmented and paths exist between each node and every other node. Correlations below this threshold are set to zero. Brain
regions are organized relative to intrinsic functional connectivity networks,.27 Each region is presented as a left/right pair in the association
matrix.
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cerebellum, as functional imaging studies in ADHD commonly report an
altered dysfunction and connectivity associated with this region.24

Volumes were extracted from modulated, normalized non-linear GM
images (that is, corrected for total brain volume) for each region using
MarsBaR.25 Supplementary analyses were also conducted using cortical
area parcellations from resting-state correlations26 to determine that
results were not unduly influenced by the number of nodes or parcellation
method.

Construction of structural covariance networks
Gray matter volumes of all 92 anatomical regions for each individual were
used to construct structural covariance networks, in preparation for graph
theory analysis. To compute a structural covariance network for each
group, a 92× 92 association matrix, R, was generated. To enhance clarity,
regions were organized relative to intrinsic functional connectivity
networks27 (Figure 1). These networks were visual, somatomotor, dorsal
attention, ventral attention, limbic, frontoparietal, default mode, as well as
the basal ganglia and cerebellum (see Supplementary Table 1,
Supplementary Material for classifications). We note that the network
analyses described below were completely data driven across the whole
brain, with no a priori bias of these network definitions in the analysis. Each
entry, rij, was defined as the Pearson correlation coefficient between gray
matter volume measures of regions i and j, across participants.22,28 A
binary, undirected adjacency matrix was derived from each association
matrix, whereby each coefficient was considered 1 if it was greater than a
specific threshold and zero otherwise. The diagonal elements of the
association matrix represent self-connections and were therefore excluded
from analysis. Due to the methodological challenges in analyzing and
comparing weighted networks,29 a graph was constructed with 92 nodes,
with a network degree of E equal to number of edges (links) and a network
density (cost) representing the fraction of present connections to all
possible connections.

Graph theoretical analyses
Graph theoretical analyses were performed on the interregional covariance
matrices using the Brain Connectivity Toolbox (http://www.brain-connec
tivity-toolbox.net/) and the Graph Analysis Toolbox.22 BrainNet viewer30

was used for visualization of regional analyses.

Global network analyses. To allow comparison of global network proper-
ties between groups and avoid biases associated with using a single
threshold, the association matrices were thresholded at a range of network
densities, in 0.02 steps (Dmin: 0.02:Dmax). The minimum density was that at
which the networks of both groups were not fragmented and paths exist
between each node and every other node. The maximum density chosen
was 0.50, as after this threshold the graphs become increasingly random.22

At each of these thresholds, we calculated the following global network
measures: (1) the characteristic path length (the mean number of

connections on the shortest path between any two regions in the network
and is a measure of network integration); (2) the clustering coefficient
(quantification of the probability that two nodes connected to an index
node are also connected to each other and is a representation of network
segregration); and (3) small-worldness (the balance between local
segregation and global integration).
To evaluate these topological measures, they were benchmarked

against corresponding mean values of a null random graph. We generated
20 null networks from covariance matrices that were matched to the
distributional properties of the observed covariance matrix using the
Hirschberger–Qi–Steuer algorithm.16 ADHD and Control groups were also
compared on non-normalized global measures.

Regional network analyses. Local nodal characteristics of individual
network regions were also examined using the following measures: (1)
nodal degree, which is the number of connections that a node has with
the rest of the network, and (2) betweenness centrality, which is a measure
of the number of shortest paths that traverse a given node and is used to
detect nodes that are highly central for important anatomical or functional
connections.
Hubs are nodes that are critical for efficient communication in a

network, and have a key role in the regulation of information flow.6 A node
was considered to be a hub if its degree was at least one s.d. higher than
the mean network degree.23 Nodes were normalized by the mean network
betweenness and degree of each group before between-group
comparisons.22,23

Comparing network measures between groups
A nonparametric permutation test with 1000 repetitions was conducted to
test the statistical significance of ADHD-associated differences in global
and regional network topologies. In every permutation, each participant
was randomly reassigned to the ADHD or Control group such that each
group maintained their original number of subjects. We subsequently
obtained an association matrix for each randomized group, thresholded at
a range of network densities, which led to a binary adjacency matrix at
each threshold. Network measures were calculated for all binary adjacency
matrixes at each density. Differences in network measures between
randomized groups were then calculated, resulting in a permutation
distribution of difference under the null hypothesis. Differences in ADHD
and Control network measures were placed in the corresponding
permutation distribution and two-tailed P-values were calculated based
on their position.31 This nonparametric permutation approach inherently
accounts for multiple comparisons across densities.32 False discovery rate-
corrected P-values were reported for all between-group differences to
account for multiple comparisons (three global measures).
In addition to comparing global network measures at every density,

functional density analyses were performed to make the between-group
comparison less sensitive to the thresholding process. As network metrics
were calculated across each of the specified densities (Dmin:0.02:0.50), they

Figure 2. Differences between attention-deficit hyperactivity disorder (ADHD) and Control (CON) groups in global network measures across a
range of network densities. (a) Normalized path length, (b) normalized clustering coefficient, (c) normalized small-worldness index. Asterisks
represent the difference between ADHD and Control groups, with dashed lines indicating 95% confidence intervals (CIs). Asterisks outside of
the CI indicate densities in which the difference is significant at Po0.05. Positive values show ADHDoCON and negative values show
ADHD4CON. ADHD exhibited a significant increase in normalized clustering coefficient relative to the Control group at all network densities.
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were represented by a curve depicting change in network metric as a
function of network density. Permutation tests were subsequently applied
to the functional density analyses output to determine whether there were
significant group differences. As comparison at every network density
would result in a large number of comparisons (number of densities ×
number of regions of interest), the group comparison of regional measures
was based on the functional density analyses result.22 False discovery rate-
corrected P-values were reported for regional differences to account for
multiple comparisons across the multiple nodes of interest.

RESULTS
ADHD and Controls did not differ in age (ADHD, m= 13.28 ± 2.7;
Controls, m= 13.33 ± 2.7), t(60) =− 0.07, P= 0.95, or gender (ADHD,
25 males (64.1%); Controls, 19 males (67.9%)), χ2(1,N= 62) = 0.24,
P= 0.78. Using the ADHD-RS, mean total symptom severity was
34.4 ± 7.4.

Global network analyses
Within each group, the minimum density in which all nodes
became connected in the network was 0.36. Greater than 93% of
all regional covariances were significant at Po0.05 in the matrices
of both groups.
The ADHD group exhibited an increased clustering coefficient

relative to the Control group (Figure 2), a finding that occurred
across all measured network density thresholds (minimum
density, corrected P= 0.017). The functional density analysis
confirmed that this result was not driven by differences in
correlation strengths in regional gray matter volumes that would
make the analysis less sensitive to thresholding, corrected
P= 0.017. There were no significant differences at any network
density thresholds between ADHD and Control groups for
characteristic path length or small-worldness. Small-worldness
was 41 across all network densities in both groups (Figure 1,
Supplementary Materials). Comparison of non-normalized net-
work measures also indicated increased clustering in ADHD
relative to Controls (corrected P= 0.028), and no difference in
path length or small-worldness.

Regional network analyses
Group comparison of regional network measures highlighted
significantly greater nodal degree for the bilateral amygdalae for

the ADHD group relative to Controls (left, corrected P= 0.027;
right, corrected P= 0.048). The ADHD group had significantly
reduced nodal degree compared with Controls in the left anterior
cingulate (corrected P= 0.016; DMN), left mid temporal pole
(corrected P= 0.008; DMN) and right rolandic operculum (cor-
rected P= 0.011; VAN). Nodal betweenness was increased in ADHD
compared with Controls in the left amygdala (corrected P= 0.04)
and precuneus (corrected P= 0.01; DMN), and right lingual gyrus
(corrected P= 0.013; visual network), but reduced in the left
posterior cingulum (P= 0.047; DMN) and right rolandic operculum
(corrected P= 0.025; VAN; Figure 3)
The hub analysis revealed 15 network hubs in the Control group

and 18 in the ADHD group (Figure 4). Hubs present in the ADHD
group that were not present in the Controls included the bilateral
amygdala, paracentral gyrus, right cingulate cortex and bilateral
temporal cortex. Hubs that were unique to the Control group were
the right orbital inferior frontal gyrus, right medial orbital frontal
gyrus, bilateral medial superior frontal gyrus, left lingual gyrus, left
mid occipital gyrus, left inferior parietal gyrus, left postcentral
gyrus and right rolandic operculum. Hubs that were present in
both Control and ADHD networks were the bilateral insula, left
inferior orbital cortex, fusiform gyrus and left inferior
temporal lobe.
When using a different parcellation method, there was a

replication of the finding that the amygdalae were hubs in ADHD
but not Controls (see Supplementary Materials for full results using
alternate parcellation method).

DISCUSSION
To the best of our knowledge, this is the first study to investigate
gray matter volume covariance networks of children and
adolescents with ADHD. As hypothesized, there was evidence of
altered large-scale brain network organization in ADHD relative to
age- and gender-matched typically developing Controls. Specifi-
cally, ADHD participants exhibited greater segregation in global
network organization, indexed by significantly increased cluster-
ing. At a regional level, the ADHD group had significantly greater
bilateral amygdalae participation, as well as reduced hub strength
within regions of the DMN and VAN networks. These differences in
brain network hubs align with the behavioral disturbances

Figure 3. Differences between attention-deficit hyperactivity disorder (ADHD) and Control (CON) groups in regional degree and betweenness.
Regions with significant group differences in regional degree (left) and betweenness (right) for networks thresholded at minimum density of
full connectivity, overlaid on ICBM152 surface template. The color bar represents log(1/P-value). Hot colors indicate regions with higher
degree or betweenness in ADHD compared with Controls, while cold colors indicate regions with higher degree or betweenness in Controls
compared with ADHD. ADHD had greater nodal degree in the bilateral amygdalae, and reduced degree in left (L) anterior cingulate, L mid
temporal pole and right (R) rolandic operculum. Nodal betweenness was increased in ADHD compared with Controls in L amygdala and
precuneus, and R lingual gyrus, but reduced in L posterior cingulum and R rolandic operculum.
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commonly observed in ADHD such as emotional dysregulation
and poor executive control.33–35

Although, functional MRI or diffusion tensor imaging measures
have been widely used to evaluate brain connectivity, covariance
of morphological metrics derived from anatomical MRI scans have
been shown to extract information about brain connectivity.11,12

At least 40% of anatomical covariance across the cerebral cortex
has also been shown to converge with white matter
connections.36 As with functional connectivity, anatomical correla-
tion does not depend on the existence of a direct fiber connection
between regions and could arise from indirect connections that
are mediated by another source. In that respect, network
connectivity based on anatomical covariance measures could
have greater concordance with functional connectivity. Covar-
iance matrices derived from anatomical measures is amenable to
network analysis in a manner analogous to functional network
analysis with graph properties of networks derived from
anatomical covariance measures found to change with normal
development as well as with disease.13,23

Increased clustering in network topology
Convergent evidence from graph theory measures in other
imaging modalities supports our finding of increased global
clustering or network segregation in children and adolescents
with ADHD. We did not however observe any significant
differences for measures of integration and small-worldness
between the groups. Previous studies using resting-state fMRI7

and white matter probabilistic tractography10 have found
increased local segregation, combined with reduced distribution
or integration of processing in ADHD participants relative to
Controls. Using delta frequency electroencephalogram, Ahmadlou
et al.8 also found higher clustering within the left hemisphere.
Diversity of imaging modalities, methodology and sample

characteristics may have contributed to any discrepancies in
these quantitative global network measures; however, all studies
show an overall phenomenon of less-optimized networks in child
and adolescent ADHD.
Healthy neurodevelopment is thought to follow a local to

distributed organizational principle.37,38 Late childhood and early
adolescence are particularly important times due to synaptic
pruning of gray matter occurring in conjunction with increased
myelination of white matter tracts.39 This improves neural
efficiency and allows for rapid information transfer between
distant brain regions, which is important for the integrative nature
of many higher-order cognitive processes that develop during this
critical period.38 As such, greater localized segregation in ADHD
relative to age-matched Controls is supportive of the notion of
maturational delay in whole-brain network organization. Although
longitudinal studies have been instrumental in mapping regions
of maturational lag in cortical thickness and surface area in
children and adolescents with ADHD,14 our data support a shift in
focus from variance within localized gray matter morphometry to
more large-scale alterations happening within distributed net-
works and their organization. Future longitudinal studies will be
required however to determine whether this network topology is
merely delayed or whether it represents aberrance in the
neurodevelopmental trajectory.

Differences in regional network measures in ADHD
Nodes with high degree and betweenness typically suggest highly
interactive regions that likely participate in more functional
interactions.6 These nodes may also be considered ‘hubs’ if they
have greater degree relative to the average of the network. Our
hub analysis revealed a slightly greater number of hubs in the
ADHD cohort relative to Controls, with hubs distributed across the
limbic, DMN, VAN, somatomotor and frontoparietal networks.

Figure 4. Summary of network hubs. Red nodes denote network hubs present in both attention-deficit hyperactivity disorder (ADHD) and
Control (CON) groups. Blue nodes are unique to the ADHD group while green nodes are unique to CON group. The size of the sphere
represents the degree of the corresponding brain region. Network hubs that were present in both ADHD and CON were L orbital inferior
frontal gyrus, L fusiform gyrus, bilateral insula, R lingual gyrus and L inferior temporal gyrus. Hubs unique to ADHD were bilateral amygdalae, R
anterior cingulate, L mid cingulate, L medial orbito frontal cortex, R fusiform, bilateral paracentral lobules, L rectus, R inferior temporal gyrus
and bilateral mid temporal gyri. Hubs unique to CON were R orbital inferior frontal gyrus, R orbital medial frontal gyrus, bilateral superior
medial frontal gyrus, L lingual gyrus, L mid occipital gyrus, L inferior parietal lobule, L postcentral gyrus and R rolandic operculum.
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A direct group comparison revealed that the amygdala had
greater network influence in the ADHD cohort relative to Controls
as reflected by greater nodal degree bilaterally and increased
betweeness in the left amygdala. This is also reflected as the
amygdalae were hubs regions for the ADHD groups but not for
the Control group. This increased nodal degree might be a basis
for amygdala-related limbic functional disruptions observed
in ADHD.
Children and adolescents with ADHD often exhibit symptoms of

increased emotional sensitivity,40,41 higher rates of depression and
anxiety42 and deficits in identifying threat-related emotional
expressions accompanied by an inability to differentiate emotions
at a neural level.35 Amygdala hyperactivation and abnormalities
within bottom-up processing networks have been reported during
emotion and reward processing in ADHD (see Shaw et al.41 for a
review), as well as abnormalities in amygdalar dopamine receptor
density.43 Increased amygdala activation and amygdala-lateral
prefrontal cortex connectivity during viewing of fearful faces have
been posited to underlie increased emotional sensitivity in
adolescents with ADHD.44 Emotion dysregulation-related associa-
tions with resting functional connectivity between the amygdala
and the rostral anterior cingulate have also been reported in
children with ADHD.45 Our results provide new evidence that
there may be an anatomical network disorganization surrounding
the amygdala in ADHD.
In addition to emotion dysregulation, hallmark symptoms of

ADHD are impaired attention and response inhibition. We found
significantly reduced nodal degree in ADHD relative to Controls in
the anterior cingulate cortex. A number of studies have found
dysfunction of the anterior cingulate cortex in ADHD,46 which has
been identified as part of the so-called ‘rich club’—a group of
high-degree nodes that tend to be densely interconnected and
have a key role in global information integration.47 This supports
Ray et al.,48 who recently reported that individuals with ADHD
exhibit reduced connectivity within rich-club networks. It is an
important node within multiple networks, including the DMN,
frontoparietal, salience and limbic networks. The frontoparietal
network has an essential role in top-down regulation and enabling
goal-directed processes, which is particularly relevant to the
motivational and cognitive theories of ADHD.49 The cognitive
division of the anterior cingulate specifically has a role in
attentional processing by modulating stimulus selection and
mediating response selection.50 The DMN on the other hand is
thought to reflect task-independent introspection or ‘mind
wandering’ and has an antagonistic relationship with networks
engaged during conditions demanding attention.51 As such,
default mode interference may also contribute to attentional
dysregulation.52

A number of recent studies have found dysregulation within the
DMN and its connectivity with task-positive networks in
ADHD.53–55 In the current study, the ADHD network exhibited
decreased degree and/or betweenness compared with Controls
for three nodes within the DMN: the left anterior and posterior
cingulate and mid temporal pole. In contrast, the ADHD group
also exhibited increased betweenness for the left precuneus
relative to Controls. Increased betweenness suggests that this
prominent DMN node participates with disparate parts of the
whole-brain network (more so than in Controls). Given the
antagonistic relationship between the DMN and task-positive
networks, this may support the view that default mode
interference has a role in attentional impairment.
Reduced nodal degree and betweenness was observed in the

right rolandic operculum for the ADHD group. This region is
considered to be an important language hub56 and is also part of
the VAN, which monitors for salient stimuli and reorients attention
when appropriate.57 Reduced interactions of this region with
other parts of the brain may contribute to the increased
prevalence of language dysfunction in ADHD children compared

with typically developing Controls.58 This region is not typically
associated with ADHD pathology. In addition, we did not find the
typically reported abnormalities within fronto-striatal circuits.2

This, however, may be a function of the structural covariance
methodology and shines light on difference aspects of ADHD
pathology.
Overall the findings suggest that ADHD is characterized by a

disruption to the normal anatomical organization of neural circuits
at the whole-brain level. This disruption involves a greater reliance
on subcortical connections specifically with the amygdala, a
region at the core of appraising emotional significance, at the
expense of cortical hubs important to the dynamical regulation of
multiple neural circuits, such as the anterior and posterior
cingulate.46 A shift toward more subcortical but fewer cortical
connections may imply that the brains of children and adolescents
with ADHD are likely to be anatomically configured to respond
impulsively to the automatic significance of stimulus input
without having the neural organization to regulate and inhibit
these responses. Although not tested directly in this study, this fits
with behavioral symptoms observed in previous studies.41

Analysis of the organization and functioning of entire networks
contributes to a more complete picture of neuropathology and
has tremendous potential for providing new insights that would
have previously been missed using a regionally focused frame-
work. Enhanced knowledge of the mechanisms underlying ADHD
through new methodologies provides greater diagnostic preci-
sion, which has potential for informing animal models of ADHD
and identifying new treatment targets.

Limitations
This study has several limitations. First, our findings are based on
cross-sectional observations, which limit how we can interpret
maturational lag in network topology. Future longitudinal studies
will be required to determine whether network topology is merely
delayed or whether it represents aberrance in the neurodevelop-
mental trajectory. Second, we parcellated brains using the
automated anatomical labeling atlas, which divides the cortex
and subcortical structures into regions based on anatomical
landmarks. This may be relatively arbitrary with respect to
functional areas and nuclei. Nonetheless, our supplementary
analyses using 347 nodes derived from functional connectivity
reproduced the key regional finding of hubs distributed pre-
dominantly within ventral emotion and reward centers
(Supplementary Figure 2). Although organizational principles of
structural brain networks seem to be largely independent of
parcellation approach, it may significantly modulate quantitative
measures of these principles,59 which we saw in our inability to
replicate the finding of increased clustering with the different
parcellation method. We also found an opposing effect in our
group comparison of nodal degree in the left anterior cingulate
when using a different parcellation approach. This highlights the
importance of parcellation approaches when interpreting data
and comparing across studies. Third, our structural covariance
approach is confined to a population-based definition of
connectivity, which restricts direct correlation of network mea-
sures with individualized clinical and behavioral metrics. Recent
findings show that rich-club connectivity and higher global
network integration are associated with higher intellectual abilities
in typically developing children.60 We did not have a reliable
measure of IQ in this sample, therefore we cannot determine
whether our results were mediated by group differences in IQ.
Finally, our sample size is modest considering that ADHD is quite a
heterogeneous disorder. Long-term effects of previous medication
use and oppositional defiant disorder comorbidity are additional
factors that may have increased biological heterogeneity within
our sample and potentially impacted structural covariance.61,62 It
will be important to replicate these findings in independent
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cohorts with larger sample size and more homogenous, well-
characterized populations.
Despite these limitations, our findings advance our under-

standing of the ADHD connectome. The findings demonstrate that
ADHD is characterized by disruptions to both the global and local
organization of brain morphometry. Structural covariance metrics
offer promise for helping to refine the mechanistic understanding
of ADHD and for potential treatment targets.
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