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Background: The impact of diabetes on reproductive function is still not clearly defined.
This study aimed to evaluate accelerated ovarian aging in women with type 2 diabetes
mellitus (T2DM) and its association with adverse lipid profile.

Methods: Female patients with T2DM (n=964) and non-T2DM controls (n=263) aging
from 18-80 years were included. Levels of circulating sex hormones were measured at the
follicular phase in menstruating women. We analyzed the age-specific trends in the levels
of sex hormones between T2DM and controls. The correlations of sex hormones with the
lipid profile, including low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein
cholesterol (HDL-C), total cholesterol (TC) and triglycerides (TG) were also evaluated.

Results: In the temporal trends analysis, LH and FSH both started to increase obviously
approximately from the age of 45 years among patients with T2DM, and displayed peaks
of LH and FSH among patients with T2DM aged between 61 and 65, both of which were
obviously earlier than that in non-T2DM controls and proved the accelerated ovarian aging
among patients with T2DM. E2 of patients with T2DM was continuous lower than that of
non-T2DM controls from approximately 45 years old, and LH and FSH of patients with
T2DM were higher than those of non-T2DM controls between the age of 55 to 65 years.
Multiple linear regression analyses revealed that LH was positively correlated with LDL-C
(Coefficient=0.156, P=0.001) and TC (Coefficient=0.134, P=0.025), and was negatively
correlated with HDL-C (Coefficient =-0.065, P=0.001) in patients with T2DM aged
between 51 and 60, which was independent of age, T2DM duration, body mass index
(BMI), glycosylated hemoglobin (HbA1c), FSH, E2 and other potential confounders.
Higher E2 level was significantly and independently correlated with lower LDL-C
(Coefficient= -0.064, P=0.033) in patients with T2DM aged between 51 and 60.

Conclusions: This study suggests that patients with T2DM have accelerated ovarian
aging, and it is correlated with the occurrence of disturbed lipid profile in patients with
T2DM. With an ever increasing number of female patients with T2DM diagnosed at
younger ages, the accelerated ovarian aging and its adverse impacts in T2DM need to be
carefully managed.
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INTRODUCTION

Type 2 diabetes mellitus (T2DM) is a common disease with a
serious global pandemic, and could cause substantial adverse
impacts on human health (1). The dramatically rising global
prevalence of T2DM especially in young adults further increases
its global burden (2). Apart from those common diabetic
complications such as diabetic neuropathy and diabetic
retinopathy, reproductive dysfunction or complications such as
subfertility are also prevalent in diabetic patients (3). Ovarian
aging commonly refers to the decline of female ovarian functions
with age, accompanied by the deterioration in the quantity and
quality of ovarian follicles, and dysfunction of granulosa cells and
theca cells. (4, 5) Some previous studies have found an association
between type 1 diabetes mellitus and accelerated ovarian aging
(6–8), and a few studies based on animal models demonstrate that
diabetes-obesity syndrome may be associated with impaired oocyte
quality (9, 10). However, clinical research on the association
between T2DM and accelerated ovarian aging is limited, and the
results have been inconsistent. Some studies reported accelerated
ovarian aging in patients with T2DM (11–13) while others found no
relationships between T2DM and reproductive aging (8, 14).

Cardiovascular complications and microvascular complications
are common in patients with T2DM (15, 16). Cardiovascular
disease (CVD) is the leading cause of mortality in
postmenopausal women (17, 18), and the morbidity rate of CVDs
in DM patients is more than twice of that of non-diabetic patients
(19). As one of the major causes of atherosclerotic cardiovascular
diseases, the dysregulation of lipid metabolism serves as a common
feature of T2DM, traditionally characterized by elevated fasting and
postprandial triglycerides (TC), low high density lipoprotein-
cholesterol (HDL-C), high low density lipoprotein-cholesterol
(LDL-C) (20–22). As one of the major characteristics of
dyslipdemia, increased LDL-C is an independent risk factor for
the development of CVDs, which in women usually occurs in the
postmenopausal state (23–25). Among sex hormones, negative
associations of E2 with TC and LDL-C have been demonstrated
in estrogen receptor (ERa) -deficient models, postmenopausal
women with E2 deficiency and women on E2 treatment (26–28).
However, studies on the relations between gonadotropins–
luteinizing hormone (LH) and follicle-stimulating hormone
(FSH)– and lipid levels are still limited and have reported
inconsistent findings (27, 29–31). For instance, emerging evidence
indicates that FSH level may relate to CVD risks through its
association with lipid levels, and some observational studies on
women in the menopausal transition demonstrates the association
positive (32–35), while other studies on postmenopausal women
and older postmenopausal women show it negative (18, 30, 31).
Furthermore, clinical investigations show that adoption of hormone
replacement therapy (HRT) based on E2 level alone only partially
reversed dyslipidemia or lipid oxidation in postmenopausal women.
These lead us to hypothesize that gonadotropins may have
independent impacts on the lipid profile in perimenopausal or
postmenopausal women with T2DM.

The primary purpose of this study is to assess the differences
in the age-specific trends of sex hormones in female patients with
T2DM and non-T2DM controls, thereby evaluating accelerated
Frontiers in Endocrinology | www.frontiersin.org 2
ovarian aging in women with T2DM; we also aim to study the
correlations of sex hormones with the lipid profile among
patients with T2DM.
METHODS

Study Population
Participants were selected from the database of inpatients at
Affiliated Hospital of Medical College Qingdao University
(Shandong, China). The inclusion criteria were: female patients
with or without T2DM aging between 18 and 80, hospitalized
between 2013 and 2020. The exclusion criteria were: patients with
space occupying lesion, history of polycystic ovarian syndrome or
pituitary tumor, acute complications of T2DM, autoimmune
diease and who reported taking hormone therapy, as is shown
in Figure 1. Thus, we included 964 female patients diagnosed with
T2DM and 263 non-T2DM controls in the final study. The
protocol was designed according to the Declaration of Helsinki
and was approved by the ethics committee of the Affiliated
Hospital of Qingdao University. The study was registered on
http://www.chictr.org.cn/under number ChiCTR2100045896.

Anthropometric and Laboratory Data
The characteristics of the study population include age, sex,
height, weight and hip circumference, smoking and drinking
status, diabetes duration, blood glucose, blood pressure (BP),
lipid profiles including LDL-C, HDL-C, TC, triglycerides (TG),
free fatty acid (FFA), liver and renal function, and personal
medical history. Clinical examinations were conducted by a
trained staff group according to a standard guideline. In
particular, height and weight were measured with patients
standing without shoes and with lightweight clothing. Waist
circumference was measured at the midpoint of the lowest rib
and the iliac crest. BP was reported as the means of three
consecutive measurements with an interval of 5 minutes.

Blood samples were obtained between 6:00 and 9:00 AM after
fasting for at least 8 hours. Venipuncture was performed in the
median cubital vein, and centrifugation and dispensing of serum
separated from blood samples were completed within 1 hour. Levels
of circulating sex hormones were measured at the follicular phase in
menstruating women. All samples were transported under cold
chain to a central laboratory for testing within 2 to 4 hours. Sex
hormones including total testosterone (TT), estradiol (E2), FSH,
and LHwere measured by electrochemiluminescence immunoassay
(Roche E602, Roche, Basel, Switzerland). The minimal detectable
limits for each hormone were as follows: 0.09 nmol/L (TT), 18.35
pmol/L (E2), and 0.1 IU/L (LH and FSH). Glycosylated hemoglobin
(HbA1c) was assessed by high-performance liquid chromatography
(MQ-2000PT,Medconn, Shanghai, China). Serum glucose and lipid
profiles were measured by Beckman Coulter AU 680 (Beckman
Coulter, Krefeld, Germany). Body mass index (BMI) was calculated
as weight divided by height squared (kg/m2).

Statistical Analysis
The SPSS version 22.0 software and R were used to perform
statistical analyses. Continuous variables are presented as median
March 2022 | Volume 13 | Article 780979

http://www.chictr.org.cn/under
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Wang and Wang Ovarian Aging and Type 2 Diabetes
(interquartile range); categorical variables are presented as
frequency (%). Mann-Whitney test was used for testing
differences between T2DM group and non-T2DM control
group for continuous variables, Kruskal-Wallis H test for
testing differences between age groups and chi-square test for
categorical variables. To assess the temporal trends in circulating
sex hormones across age groups, curves were fitted using
three models (linear model, Locally Weighted regression
(LOESS) model and binary linear regression model), and
R2 representing the coefficient of determination in the linear
model was calculated. The correlations between the levels of sex
hormones and lipid profile variables were further assessed by
multiple linear regression and results were expressed as
standardized coefficients, in which potential confounders such
as age, T2DM duration, BMI, HbA1c and blood pressures were
adjusted. LH, FSH and E2 levels were divided into four quartiles,
with the first quartile (Q1) representing the lowest quartile and
the fourth quartile (Q4) being the highest quartile. All statistical
analyses were two sided; and P values less than 0.05 were
considered to be statistically significant.
RESULTS

Patients’ Characteristics and the Changes
of Circulating Sex Hormones Across Age
General demographic and laboratory characteristics of the
participants were summarized in Supplemental Table 1 and
Supplemental Table 2. This study recruited 964 female patients
with T2DM and 263 non-T2DM controls. The median age of
patients with T2DM and non-T2DM controls were respectively
62 and 59 years, and percentage of menopause were respectively
87.1% and 73.04%; patients with T2DM were more likely to
experience higher BMI compared with controls (Table 1).
Compared with non-T2DM controls, patients with T2DM had
Frontiers in Endocrinology | www.frontiersin.org 3
significantly lower levels of LH (P<0.001), FSH (P<0.001) and E2
(P<0.001); no difference in the testosterone level between
patients with T2DM and non-T2DM controls was observed
(P=0.421; Table 1). The decreased levels of LH, FSH and E2 in
patients with T2DM are consistent with findings from previous
literatures (36–39), which may be partially attributed to the
impairment of hyperglycemia on hypothalamic function
(40–42).

In general, patients with T2DM in older age groups were
more likely to experience longer diabetes duration, higher
systolic blood pressure and lower diastolic blood pressure
(P<0.001); patients in the eldest group were likely to
experience lower LDL-C and TC levels, where the increased
percentage of statins as medication may play a role; differences of
FIGURE 1 | Flowchart of the inclusion and exclusion of participants (T2DM, type 2 diabetes mellitus; PCOS, polycystic ovarian syndrome).
TABLE 1 | Summary of clinical features of patients with T2DM and
non-T2DM controls.

Items T2DM Non-T2DM controls Pa

Number 964 263
Age, year 62 (55, 69) 59 (51, 67) 0.001
DM duration, year 10 (5, 17) –* –*
BMI, kg/m2 25.6 (23.3, 28.0) 24.1 (22.1, 26.7) <0.001
Menopause (%) 840 (87.1%) 192 (73.04%) <0.001
LDL-C, mmol/L 2.73 (2.16, 3.38) 2.83 (2.22, 3.46) 0.224
HDL-C, mmol/L 1.26 (1.07, 1.48) 1.50 (1.31, 1.74) <0.001
TG, mmol/L 1.42 (0.99, 2.16) 1.05 (0.73, 1.54) <0.001
TC, mmol/L 4.62 (3.91, 5.45) 4.96 (4.20, 5.78) <0.001
LH, mIU/ml 21.75 (14.35, 29.79) 26.47 (17.77, 35.10) <0.001
FSH, mIU/ml 45.51 (29.51, 60.65) 53.39 (35.44, 70.35) <0.001
T, nmol/L 0.55 (0.28, 0.88) 0.58 (0.35-0.84) 0.421
E2, pmol/L 30.84 (18.35, 72.23) 64.28 (37.94-144.30) <0.001
March 20
22 | Volume 13 | Article
Data were shown as median (interquartile range). BMI, body mass index; DM, diabetes
mellitus; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein
cholesterol; TG, triglyceride; TC, total cholesterol; LH, luteinizing hormone; FSH, follicle-
stimulating hormone; T, testosterone; E2, estradiol. aMann-Whitney test or chi-square
test. *Not applicable.
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TG and FFA between age groups didn’t reach statistical
significance (Supplemental Table 2). LH and FSH levels were
significantly higher in groups more than 51 years old, while the T
and E2 showed an opposite trend.
Patients With T2DM Had Accelerated
Ovarian Aging
In the temporal trends analysis,we got the following results: (1)
LH and FSH both started to increase obviously approximately
from the age of 45 years among patients with T2DM, and
displayed peaks of LH and FSH among patients with T2DM
aged between 61 and 65, both of which were obviously earlier
than that in non-T2DM controls (Figures 2A, B). E2 started to
decrease obviously from earlier than 40 years old among patients
with T2DM, while it started to decrease obviously approximately
from the age of 45 years among non-T2DM controls
(Figure 2C). The earlier changes in sex hormones suggests
accelerated ovarian aging in patients with T2DM. (2) E2 of
patients with T2DM was continuous lower than that of non-
Frontiers in Endocrinology | www.frontiersin.org 4
T2DM controls from approximately 45 years old, thus proving
accelerated ovarian aging in patients with T2DM. On the other
hand, LH and FSH of patients with T2DM were higher than
those of non-T2DM controls between the age of 55 and 65 years.
The rise in levels of LH and FSH after the decrease in E2 level
could be due to the slightly delayed feedback of aggravated E2
deficiency in the secretion of gonadotropins.

We further analyzed the age-specific trends in sex hormones by
clarifying differences in the circulating sex hormones between
patients with T2DM and non-T2DM controls stratified by age.
Patients with T2DM had significantly lower LH and FSH than non-
T2DM controls before 50 years old, but the difference disappeared
in the age groups of 51-60 years (Supplemental Figure 1 and
Figure 3). Both LH and FSH were significantly higher in patients
with T2DM compared with non-T2DM controls in the age groups
of 61-65 years (p < 0.001). Moreover, patients with T2DM appeared
to keep having significantly lower E2 level than non-T2DM controls
from the age of 51 years (Figure 4). The findings above confirmed
the age-specific differences in sex hormones between women with
and without T2DM indicated by Figure 2.
A B

DC

FIGURE 2 | Temporal trends in circulating sex hormones across age groups in patients with T2DM and non-T2DM controls [(A) Temporal trends in circulating LH
across age groups. (B) Temporal trends in circulating FSH across age groups. (C) Temporal trends in circulating E2 across age groups. (D) Temporal trends in
circulating testosterone (T) across age groups].
March 2022 | Volume 13 | Article 780979
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Correlations of Sex Hormones With Lipid
Profile in Patients With T2DM Aged
Between 51 and 60
As Figure 3, Supplemental Figure 1 and Figure 4 suggests, the
aging-related changes in sex hormones of patients with T2DMwere
much more obvious in the age group of 51-60 years than the earlier
age groups. Given that our second aim is to evaluate the association
of accelerated ovarian aging with adverse lipid profile including
LDL-C, HDL-C, TC, TG and FFA in patients with T2DM, we chose
the age group of 51-60 years to assess the relationship of sex
hormones with lipid profile considering that: (1) levels of sex
Frontiers in Endocrinology | www.frontiersin.org 5
hormones in this age group not only show drastic changes, but
also were approximate to perimenopausal levels, thus worth
investigating; (2) this age group was also characterized by
disturbed lipid profile (Supplemental Table 2).

In the analyses of clinical characteristics of patients with T2DM
aged between 51 and 60 by the quartiles of LH and FSH
(Supplemental Tables 3, 4), patients with the higher level of LH and
FSH were more likely to experience significantly higher TC and
HDL-C compared with those with the bottom quartile of LH and FSH.

The correlations of lipid profile with LH, FSH and E2 in
patients with T2DM aged 51-60 years were then analyzed
FIGURE 3 | Difference in the circulating FSH level between patients with T2DM and non-T2DM controls stratified by age.
March 2022 | Volume 13 | Article 780979

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Wang and Wang Ovarian Aging and Type 2 Diabetes
(Figure 5). LH had significantly positive correlations with LDL-
C and TC levels (P<0.001; Figure 5), suggesting a driving role of
LH in dyslipidemia. FSH had significant positive correlations
with LDL-C and TC levels (P<0.001), and had a modest positive
correlation with HDL-C (P=0.008; Figure 5). E2 had
significantly negative correlations with LDL-C and TC levels
(P<0.01; Figure 5), suggesting a protective role of E2
against dyslipidemia.

In the multiple linear regression analyses by adjusting for age,
T2DM duration, BMI, blood pressures, HbA1c, sex hormones
and other potential confounders (Table 2), LH was positively
correlated with LDL-C (Coefficient=0.156, P=0.001) and TC
Frontiers in Endocrinology | www.frontiersin.org 6
(Coefficient=0.134, P=0.025), and was negatively correlated
with HDL-C (Coefficient =-0.065, P=0.001) in patients with
T2DM aged between 51 and 60. Higher E2 level was
significantly and independently correlated with lower LDL-C
(Coefficient= -0.064, P=0.033) in patients with T2DM aged
between 51 and 60.
DISCUSSION

A major finding in this study is the accelerated ovarian aging
among patients with T2DM. Reproductive aging such as
FIGURE 4 | Difference in the circulating E2 level between patients with T2DM and non-T2DM controls stratified by age.
March 2022 | Volume 13 | Article 780979
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premature ovarian failure can promote the development of
cardiovascular diseases and has been reported among patients
with T1DM (6–8). However, the reproductive aging of patients
with T2DM is less well understood, and evidence from clinical
studies is still limited. In the present study, we found that LH and
FSH both started to increase obviously approximately from the
age of 45 years among patients with T2DM, and displayed peaks
of LH and FSH among patients with T2DM aged between 61 and
65, both of which were obviously earlier than that in non-T2DM
controls; meanwhile, E2 started to decrease obviously
approximately from the age of 40 years among patients with
T2DM, while it started to decrease obviously approximately from
the age of 45 years among non-T2DM controls (Figure 2). The
findings above prove that aging-related changes in sex hormones
occur earlier in patients with T2DM and patients with T2DM
have accelerated ovarian aging than controls.

The age-specific trends of LH, FSH and E2 in patients with
T2DM and non-diabetic controls are consistent with findings
from several studies (11–13). Previous clinical research found a
decline in ovarian volume, total antral follicle count, inhibin B
secretion and anti-Miller hormone level in patients with T2DM
compared with healthy controls, all of which were also markers
for ovarian aging (9, 43). And a few studies based on animal
models demonstrated that diabetes-obesity syndrome was
associated with suppression of cyclic ovarian follicular
recruitment patterns, anovulation, acyclicity, depressed ovarian
steroid hormone synthesis and release, hypovascularization and
tissue ischemia, enhanced follicular atresia, premature tissue
atrophy and involution (9, 10). Despite such supporting
evidence for accelerated ovarian aging in patients with T2DM,
the underlying mechanisms are far from being clarified. Here, we
deduced several possible mechanisms as follows: 1) It’s well
established that low-grade chronic inflammation is involved in
the pathophysiology T2DM (44), due mainly to the activation of
the myeloid cell lineage (e.g., macrophages and neutrophils) (45).
Inflammation of the whole body can affect oocytes via the follicle
microenvironment and oxidative stress (46), thus impairing
oocyte meiosis and oocyte quality (47). Indeed, chronic
inflammation is found in aging ovaries, which is proved by the
increase of multiple proinflammatory transcription factors,
cytokines and chemokines (4, 48). For example, TNF-a binds
to its death receptors (such as Fas) and then activates apoptosis
of granular cells and oocytes through Fas-associated death
Frontiers in Endocrinology | www.frontiersin.org 8
domain-dependent activation of caspase-8; while TNFa
knockout mice proved higher levels of granular cell
proliferation (49). In addition, macrophage infiltration could
induce the accumulation of collagen fibers in extracellular
matrix, thereby promoting ovarian fibrosis (50). 2) Oxidative
stress plays a key role in the pathophysiology of T2DM. During
the progression of diabetes, hyperglycemia promotes
mitochondrial dysfunction and induces the formation of
oxygen species (ROS) that causes oxidative stress in several
tissues including ovaries (45). And several studies have shown
that the accumulation of ROS in the ovaries deteriorates oocyte
quality, induces granulosa cell apoptosis, and accelerates
degeneration of the corpus luteum (51). Excessive ROS may
change the mitochondrial membrane potential by regulating the
ratio of pro-/anti-apoptosis factors (49, 52), which eventually
leads to the activation of caspase-3 which cleaves various
structural and regulatory proteins in ovarian cells and causes
apoptosis (46, 49). Moreover, oxidative stress and the
accumulation of acquired mtDNA mutations could cause
mtDNA damage (53). The effect of mtDNA alterations in
ovarian follicle cells on qualitative ovarian reserve depletion
and ovarian aging is also supported by the robust evidence (46,
53), though the mechanisms require further probe. 3) Vascular
damage is one of the most common complications of diabetes,
characterized by endothelium cell dysfunction, impaired
angiogenesis, platelet activation and subsequent microembolisms
(45). According to previous research, vascular impairment could
lead to early menopause (54), in which the pathophysiological
features of diabetic vascular damage may play an important part.
And it’s worth noticing that dyslipidemia also could accelerate the
impairment of oocyte quality, as it promotes endothelial
dysfunction and platelet hyperactivation, potentially causing
vascular damage and imposing cytolipotoxic effects (9, 45). 4)
Diabetes is known to be associated with an accelerated rate of the
accumulation of advanced glycation end products (AGEs) (55). The
accumulation of AGEs has been reported to be closely related to
declining ovarian function (56). The glycation process causes
protein damage, and the interaction of AGEs and their receptors
could lead to the activation of a number of proinflammatory
pathways, increased production of ROS in oocytes, and
endothelial dysfunction via inactivation of endothelial nitric oxide
synthase and prostacyclin synthase, thereby inducing a premature
decline in ovarian function (48, 56). Moreover, AGEs were reported
TABLE 2 | Correlations of lipid profile with LH or FSH in patients with T2DM aged 51-60 years.

Variable LH (mIU/mL) FSH (mIU/mL) E2 (pmol/L)

Coefficient* P value Coefficient# P value Coefficient& P value

LDL-C (mmol/L) 0.156 0.001 -0.079 0.127 -0.064 0.033
HDL-C (mmol/L) -0.065 0.001 0.078 <0.001 -0.011 0.373
TG (mmol/L) 0.027 0.809 -0.068 0.584 0.049 0.502
TC (mmol/L) 0.134 0.025 0.0001 0.999 -0.046 0.240
FFA (mmol/L) -0.018 0.402 -0.006 0.782 0.004 0.782
March
 2022 | Volume 13 | Article
The values of LH, FSH, E2 and testosterone were log2-transformed, and multiple linear regression analyses were performed. *Adjusted for age, T2DM duration, BMI, blood pressure,
smoking, drinking, HbA1c, FPG, uric acid, FSH, testosterone and E2. #Adjusted for age, T2DM duration, BMI, blood pressure, smoking, drinking, HbA1c, FPG, uric acid, LH, testosterone
and E2. &Adjusted for age, T2DM duration, BMI, blood pressure, smoking, drinking, HbA1c, FPG, uric acid, FSH, LH and testosterone. LDL-C, low-density lipoprotein cholesterol; HDL-C,
high-density lipoprotein cholesterol; TG,triglyceride; TC, total cholesterol; FFA, free fatty acid.
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to accelerate the progression of nuclear maturation, though the
mechanisms still unknown (57).

We also found that LDL-C and TC levels were positively
correlated with LH and FSH, and negatively correlated E2 with
LDL-C and TC levels in patients with T2DM aged between 51
and 60, suggesting perimenopausal changes of gonadotropins
and E2 are correlated with dyslipidemia. According to previous
studies, consistent cross-sectional and longitudinal associations
of menopause with worsening lipid profile have been observed
(58), and for decades the associations have been mainly
attributed to estrogen deficiency. Negative associations of E2
with TC and LDL-C has been demonstrated in ERa-deficient
models, women with E2 deficiency and postmenopausal women
on E2 treatment (59–65), results consistent with our study
findings. These protective effects of E2 can be largely attributed
to its upregulation of low-density lipoprotein receptors (LDLR)
on hepatic cells: 1) through nuclear receptor ER, E2 stimulates
the expression of transcription factors related to cholesterol
metabolism, which upregulates LDLR expression as a
downstream target (66); 2) through G protein-coupled
estrogen receptor, E2 prevents PCSK9-dependent LDLR
degradation, thus reducing the levels of TC and LDL-C as well
(67). In terms of gonadotropins, although studies regarding the
role of LH in dyslipidemia are scarce, several previous studies
addressing the links between FSH and lipid levels in
postmenopausal women have demonstrated that higher FSH in
postmenopausal women was related to higher levels of both TC
and LDL-C, with stronger relations seen in younger compared to
older postmenopausal women, which were close to the results of
our results (29, 68). In the animal model of ovariectomized mice
which simulated the postmenopausal period, an increase in both
TC and LDL-C was also found when FSH was elevated
independent of E2 (68); in postmenopausal women, adjusting
the estrogen dose in HRT to attain a target FSH decrease might
lead to beneficial alterations in TC and LDL-C (68). Further,
studies on women in the menopausal transition suggests that an
increase in FSH accompanying the menopause transition may
contribute to the higher risk of CVDs including subclinical
atherosclerosis after menopause (32–34). The biological
mechan i sms iden t ified so fa r come down to the
downregulation of LDLR expression (68). LDLRs in the liver
determine the turnover rate of LDL-C and thus regulate the
plasma LDL concentrations. FSH may interact with its receptors
(FSHR) in hepatocytes and reduce LDLR levels, which
subsequently attenuates the endocytosis of LDL-C, resulting in
an elevated circulating LDL-C level (68). All in all, FSH might
reduce the uptake and metabolism, especially degradation of
LDL-C in liver (68).

According to our study, the LH and FSH levels began to
increase obviously approximately from 45 years old, indicating
the beginning of perimenopausal stage, which commonly lasts 2
to 10 years and is characterized by less regular menstruation (69);
the relations between gonadotropins and LDL-C and TC were
found in female patients with T2DM aged between 51 and 60,
generally a perimenopausal or early postmenopausal state.
Correspondingly, the indication from 2019 ACC/AHA
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Guideline on the Primary Prevention of Cardiovascular
Disease directly recommends patients 40 to 75 years of age
with LDL-C>70 mg/dL (1.8 mmol/L) to start moderate-
intensity statin therapy for primary prevention once diagnosed
with DM, indicating that the cholesterol management in women
with T2DM should start from a relative early age to prevent from
CVDs (70). Interestingly, randomized controlled trials suggest
that hormone treatment achieves most cardiovascular benefits if
initiated soon after menopause, and is potentially harmful if
initiated late (>10 years) after menopause (26). However, the
early prevention is not fully implemented clinical work, and
diabetic women are less likely to be on optimal lipid-lowering
therapy compared to men (71), though the British Heart
Foundation states that the number of women living with
CVDs is now roughly the same as the number of men (26).
Combined with our finding of T2DM accelerating ovarian aging,
more research is needed on metabolic changes in women with
T2DM of an age range linked with drastic changes of sex
hormone levels.

This study had some limitations. The retrospective study
cannot infer cause and effect; the restricted sample size may
not be generalized to the larger population; there is insufficient
experimental evidence to explain the relationships we found.
Further, the varied amount of subjects taking statins between age
groups and groups divided by LH and FSH quartiles could cause
bias in results; but the correlations we found in subjects aged
between 51 and 60 were more likely to be underestimated since
the percentage of statins taking was higher in groups of higher
LH and FSH levels compared with groups with the bottom
quartile of LH and FSH. Finally, this study emphasizes the
necessity of an early management of ovarian aging in patients
with T2DM, and lends credibility to the suggestion to adopt the
cholesterol management as early as the age of 40 in women with
T2DM; while the mechanisms of the association between T2DM
and accelerated ovarian aging, and the correlations of
gonadotropins with the lipid profile and other cardiovascular
risks still require investigation.

Overall, the study indicates that patients with T2DM have
accelerated ovarian aging, and the elevated LH and FSH levels
together with the decreased E2 level caused by the accelerated
ovarian aging are correlated with the occurrence of disturbed
lipid profile in patients with T2DM. With an ever increasing
number of female patients with T2DM diagnosed at younger
ages, the accelerated ovarian aging and its adverse impacts in
T2DM need to be carefully managed. Besides, further evaluation
of these relations and the mechanisms underlying them is
warranted, especially via prospective studies that can provide a
clearer understanding for accelerated ovarian aging in patients
with T2DM.
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