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Abstract: The incidence of infections caused by multidrug-resistant E. coli strains has risen in
the past years. Antibiotic resistance in E. coli is often mediated by acquisition and maintenance
of plasmids. The study of E. coli plasmid epidemiology and genomics often requires long-read
sequencing information, but recently a number of tools that allow plasmid prediction from short-read
data have been developed. Here, we reviewed 25 available plasmid prediction tools and categorized
them into binary plasmid/chromosome classification tools and plasmid reconstruction tools. We
benchmarked six tools (MOB-suite, plasmidSPAdes, gplas, FishingForPlasmids, HyAsP and SCAPP)
that aim to reliably reconstruct distinct plasmids, with a special focus on plasmids carrying antibiotic
resistance genes (ARGs) such as extended-spectrum beta-lactamase genes. We found that two thirds
(n = 425, 66.3%) of all plasmids were correctly reconstructed by at least one of the six tools, with
a range of 92 (14.58%) to 317 (50.23%) correctly predicted plasmids. However, the majority of
plasmids that carried antibiotic resistance genes (n = 85, 57.8%) could not be completely recovered
as distinct plasmids by any of the tools. MOB-suite was the only tool that was able to correctly
reconstruct the majority of plasmids (n = 317, 50.23%), and performed best at reconstructing large
plasmids (n = 166, 46.37%) and ARG-plasmids (n = 41, 27.9%), but predictions frequently contained
chromosome contamination (40%). In contrast, plasmidSPAdes reconstructed the highest fraction
of plasmids smaller than 18 kbp (n = 168, 61.54%). Large ARG-plasmids, however, were frequently
merged with sequences derived from distinct replicons. Available bioinformatic tools can provide
valuable insight into E. coli plasmids, but also have important limitations. This work will serve as
a guideline for selecting the most appropriate plasmid reconstruction tool for studies focusing on
E. coli plasmids in the absence of long-read sequencing data.

Keywords: WGS; plasmids; antibiotic resistance; bioinformatics; Escherichia coli

1. Introduction

Escherichia coli is a versatile micro-organism able to survive and thrive in different
ecological habitats. It is a Gram-negative facultative anaerobe that commonly resides in the
human gut as a commensal bacteria [1]. However, several members of this species also har-
bor the potential to cause severe infections, both intestinally [2] and extra-intestinally [3],
in the healthcare settings [4] as well as in the community [5]. The ‘success’ of E. coli
as a pathogen can be mostly attributed to the wide repertoire of virulence factors that
strains may carry [6] and the increasing fraction of infections caused by multidrug-resistant
strains [7]. Many of the antibiotic resistance genes and virulence factors present in E. coli
are commonly encoded on plasmids, mobile genetic elements (MGE) that can be horizon-
tally disseminated [8–10]. Therefore, precise identification and characterization of E. coli
plasmids are highly relevant from an epidemiological and clinical standpoint.
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Over the past decade, Illumina short-read sequencing platforms have become a popu-
lar technology to elucidate the genomic content and molecular epidemiology of bacteria.
However, the frequent occurrence of repeat elements prohibits the assembly of complete
replicons (plasmids and chromosomes) and often results in hundreds of contigs per genome
with an unclear origin. Plasmid and chromosome contigs are mingled in draft genome
assemblies, which challenges the accurate reconstruction of plasmids. More recently, long-
read sequencing platforms (Oxford Nanopore and PacBio) have successfully resolved
this issue, but short-read sequencing remains the de facto standard in many microbiology
laboratories [11–14].

Several fully automated bioinformatics tools are currently available to predict bacterial
plasmids from short-read sequencing data. Since 2018, at least 15 different tools have
been created for this purpose (Table S1). They can be broadly categorized into two main
classes. The first class comprises software that produces a binary classification of contigs as
either plasmid- or chromosome-derived, generating an output that predicts the complete
plasmid content of a bacterial strain, often referred to as the ‘plasmidome’. An accurate
plasmidome prediction has proven helpful to discover the genomic location of clinically
relevant genes [15–18] and their role in shaping niche specificity [19], among others. The
second class consists of tools that aim to recover distinct closed plasmid sequences. The
output of these tools provides, in theory, a more comprehensive picture of the plasmid
content of bacteria and allow to study the dissemination and epidemiology of specific
plasmids [20].

Here, we reviewed the different tools and strategies to achieve binary prediction,
for example fast k-mer based searches against reference plasmid databases (PlaScope
and PlasmidSeeker), exploitation of the natural distribution bias of protein-coding genes
between plasmids and chromosomes (Platon), and machine learning algorithms with
different underlying features (cBAR, PlasFlow, mlplasmids, PlasClass, RFPlasmid and PPR-
Meta) and others. Furthermore, we benchmarked six tools aimed at reconstructing fully
closed distinct plasmids for use with E. coli, by using complete E. coli genomes that were
recently deposited to public databases. The strategies applied by the reconstruction tools
consist of graph-based approaches (plasmidSPAdes, gplas), reference-based approaches
(MOB-Suite, FishingForPlasmids) and hybrid approaches which use reference- and graph
information (HyAsP and SCAPP). We assessed their performance based on their ability
to correctly recover different plasmids as distinct and complete predictions, including
plasmids that carry clinically relevant antibiotic resistance determinants, such as extended-
spectrum beta-lactamase (ESBL) genes.

2. Materials and Methods
2.1. Review of Plasmid Prediction Tools

We performed a systematic search of peer-reviewed publications deposited in PubMed
by August 25th 2020, using the following search terms:

((plasmid*[Title])) AND ((software[Title/Abstract]) OR (tool*[Title/Abstract]) OR pro-
gram[Title/Abstract])) AND ((predict*[Title/Abstract]) OR (sequencing[Title/Abstract])
OR (identification[Title/Abstract]) OR (prediction[Title/Abstract]) OR (contigs[Title/Abstract])
OR (assembly [Title/Abstract]) OR (NGS[Title/Abstract])).

This search resulted in 238 peer-reviewed publications that we manually curated to
obtain a list of 17 different tools with the goal to study the plasmid content of bacteria in
silico (Table S1).

In order to find tools deposited on GitHub and GitLab, we used the search term
‘*plasmid*’. This resulted in 229 repositories from which 7 relevant tools were added to
the selection (Table S1). The Github location of FishingForPlasmids was obtained through
personal communication with the developer.
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2.2. Retrieving E. coli Complete Genomes and Metadata from NCBI Database

Ncbi-genome-download v0.2.10 (https://github.com/kblin/ncbi-genome-download/)
was used to download all E. coli sequence labeled as ‘complete genomes’ up to 25 August
2020 (n = 1755). Metadata of the isolates was retrieved and parsed using Entrez-utilities
v13.9 [21]. All scripts used to carry out the analyses in this study are available in a Git
repository (https://gitlab.com/jpaganini/recovering_ecoli_plasmids).

2.3. Phylogenetic Analysis

Phylogroups were determined in silico by using ClermonTyping v1.4.0 [22]. Core- and
accessory-genome distances were calculated by using PopPUNK v1.2 [23] with standard
parameters. PopPUNK was also used to build a core-genome neighbor-joining tree with
1381 complete E. coli genomes downloaded from the NCBI database on 25 August 2020.
Tree visualization and metadata information were integrated in Microreact [24] (Table S2).

2.4. Benchmark Data Set Selection

Isolates that were not sequenced by both long- and short-read technologies (n = 559)
were excluded, as well as sequences that were predicted as Escherichia cryptic clades [25] by
in silico ClermonTyping (n = 12) and genomes that exhibited a predicted accessory-genome
distance larger than 0.5 by PopPUNK (n = 2). We used a script written in R (version = 3.6.1)
to remove genomes that had been used for developing the tested tools (n = 601). Moreover,
we excluded genomes that did not carry any plasmids (n = 170), except for 19 randomly
selected E. coli isolates without plasmids that were included as negative controls. In order
to get a balanced data set, we removed a random sample of genomes isolated from farm
animals (n = 161). Finally, we removed 30 genomes containing short-read-only assembled
contigs that did not align to any replicon in their respective closed reference genome. The
data set resulted in 240 E. coli complete genomes, which carried a total of 631 plasmids
(Figure S1, Table S3).

2.5. Evaluating Plasmid Diversity in Benchmarking Data

We used Mash v2.2.2 (k = 21, s = 1000) to estimate the pairwise k-mer distances
of all plasmids (n = 3264) from all complete E. coli genomes (n = 1381). The obtained
distances were clustered using the t-distributed stochastic neighbor embedding (t-SNE)
algorithm with a perplexity value of 30, and data points (which represents individual
plasmid sequences) were colored in orange if they were part of the benchmarking data set.

2.6. Plasmid Predictions

Illumina raw reads were downloaded using SRA Tools (v2.10.9). Reads were trimmed
using trim-galore (v0.6.6) (https://github.com/FelixKrueger/TrimGalore to remove adapter
contamination and bases with a phred quality score below 20. SPAdes (v3.14.0) [26] was
applied to perform de novo assembly in careful mode and using kmer lengths of 37, 57 and
77. For isolates GCA_014117345.1_ASM1411734v1, GCA_006352265.1_ASM635226v1 and
GCA_003812945.1_ASM381294v1, SPAdes was run using the –isolate option. The resulting
contigs, assembly graphs and trimmed-reads were used as input for the different plasmid
reconstruction tools, following the input requirements of the respective tools (Table S1).
All tools were run with default parameters. Tool’s versions were: FishingForPlasmids (no
version information), MOB-suite (v3.0.0), SCAPP (v0.1.3), plasmidSPAdes (v3.14.0), gplas
(v0.6.1), HyAsP (v1.0.0).

2.7. Analysis of the Plasmid Bins Composition

We used QUAST (v5.0.2) to align the contigs of each bin to the respective closed
reference genome. An extended description of the parameters used is available at Sup-
plementary Materials. Based on the alignment results, we calculated precision, recall and
F1-score as specified below.

https://github.com/kblin/ncbi-genome-download/
https://gitlab.com/jpaganini/recovering_ecoli_plasmids
https://github.com/FelixKrueger/TrimGalore
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Precision (bp) = Alignment.length.against.re f erence.plasmid (bp)
Total.length.o f .predicted.bin (bp)

Recall (bp) = Alignment.length.against.re f erence.plasmid (bp)
Total.length.o f .re f erence.plasmid (bp)

F1Score (bp) = 2×Precision (bp)×Recall (bp)
Precision (bp)+Recall (bp)

If a bin was composed of contigs derived from different plasmids, precision, recall
and F1-score were reported for each plasmid-bin combination.

In order to quantify the chromosomal sequence content (if any) on a bin, we defined a
chromosome contamination metric as follows.

Chromosomecontamination =
Alignment.length.against.chromosome (bp)

Total.length.o f .predicted.bin (bp)

2.8. Evaluating Maximum Theoretical Recall for Each Reference Plasmid

Depending on the input requirement of the respective tools (graph or contigs), we
converted assembly graph nodes to FASTA format using the tool Any2Fasta (https://
github.com/tseemann/any2fasta). or used the contigs produced by SPAdes and aligned
them to their respective closed reference genomes using QUAST. Based on these alignments
we calculated the maximum recall that could be obtained for reconstruction of every
reference plasmid using short-read sequencing data (Supplementary Materials).

2.9. Antibiotic Resistance Gene (ARG) Prediction

Resistance genes were predicted by running Abricate (v1.0.1) against the resfinder
database (database indexed on 19 April 2020) with reference plasmids as query, using
80% as identity and coverage cut-off. The same software and parameters were used
to predict the presence of ARGs in the plasmid bins generated by each of the plasmid
reconstruction tools.

2.10. Evaluating Reconstruction of ARG Plasmids

For bins that carried ARGs, we calculated RecallARG, as indicated below.

Recall(ARG) =
Nr.o f .correctly.predicted.ARGs.on.bin
Total.nr.o f .ARGs.on.re f erence.plasmid

Bins that included the complete ARG content of the reference plasmid (RecallARG = 1)
and were linked to the correct plasmid backbone (F1-score ≥ 0.95) were considered as
correct reconstructions of the ARG-plasmid.

3. Results
3.1. Computational Methods to Predict the Plasmidome or Distinct Plasmids

We used a systematic search of peer-reviewed publications and two popular software-
repository hosting web services and retrieved a total of 25 plasmid- or plasmidome- pre-
diction tools (Table S1). Most of the tools (n = 24) were fully automated and harbored
the potential to be included in computational pipelines. Of these 24 tools, 13 tools were
designed to analyze the plasmidome of multiple species using whole-genome sequencing
data as input, while 8 tools can be applied to metagenomic sequences. A total of two
tools, Recycler and RFPlasmid, worked with both types of input. Notably, we found one
tool (FishingForPlasmids) that was developed to exclusively study the plasmid content of
E. coli.

Based on the output, most of the tools (n = 23) can be broadly categorized into one of
the following three classes. The first class comprises software that predicts the plasmidome,
thus producing a binary classification of contigs as either plasmid- or chromosome-derived
(n = 10). The second class consists of tools that aim to recover distinct plasmid sequences
(n = 11) (Figure 1, Table S1). The third class of tools seeks to facilitate the detection of known
plasmids (n = 2). Below, we briefly review the computational strategies applied by 17 tools

https://github.com/tseemann/any2fasta
https://github.com/tseemann/any2fasta
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that belong to the first two categories. Four tools were excluded from this review for
distinct reasons: plasmIDent uses long-reads as input, plasmidID and plasmidAssembler
use a similar approach to MOB-suite for plasmid reconstruction and PLACNET requires
manual intervention from the user.
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3.1.1. Binary Classification Tools

Binary classification tools take previously assembled contigs as input and classify
them as being plasmid- or chromosome-derived.

PlaScope [27] and PlasmidPicker perform k-mer searches against reference plasmid
databases. This strategy is very fast but limited to detecting k-mers that are present in the
underlying database. Consequently, this produced high specificity and precision values
but lower recall in a study that included a benchmark of PlaScope [27,28].

cBAR, PlasFlow and PlasClass all share a common underlying principle: using short k-
mer frequencies and machine learning (ML) algorithms to classify metagenomic assemblies.
More specifically, cBAR relies on observed differences in pentamer frequencies and uses
a sequential minimal optimization (SMO) model. PlasFlow calculates the frequencies of
multiple k-mers sizes (between 5 and 7 nt) and utilizes a neural-network voting classifier
to integrate predictions. PlasFlow has a better performance than cBAR [29,30], but shows
less reliable results for short contigs [31]. PlasClass addresses this issue by using a set
of four logistic regression classifiers, each trained on sequences of different length [31].
Similar to cBAR, mlplasmids also relies on pentamer frequencies but uses a Support Vector
Machine (SVM) model to determine the origin of contigs for a single species, and contains
models for Escherichia coli, Klebsiella pneumoniae and Enterococcus faecium. Mlplasmids
outperformed both cBAR and PlasFlow when classifying data derived from whole-genome
sequencing experiments, and it can also accurately predict the plasmid localization of
several antimicrobial resistance genes [29]. RFPlasmid [32], a recently released tool, uses
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a random forest classifier trained with a hybrid approach by identifying chromosomal
and plasmids marker genes using two databases and also pentamer frequencies. This
tool also works with metagenomic assemblies, albeit only for contigs from the 17 different
species for which classifiers were trained. Platon exploits the natural distribution bias of
protein-coding genes between plasmids and chromosomes and also analyzes higher-level
characteristics of the contigs: circularization, presence of replication and mobilization
proteins, presence of oriT and incompatibility sequences [28].

Finally, PPR-Meta [33] allows simultaneous identification of both phages and plasmids
fragments from metagenomes by using a Convolutional Neural Network. Notably, instead
of k-mer frequencies, this tool uses one-hot matrices to represent nucleotides and amino-
acids sequences [33].

Despite the differences in approaches and performances, none of the aforementioned
tools attempted to further sort the predicted plasmidome into individual plasmids. As a
consequence, these tools are not suitable for studying the epidemiology of specific plasmids.

3.1.2. Plasmid Reconstruction Tools

Based on their computational strategies, we can roughly subdivide plasmid recon-
struction tools into three different categories: (i) de novo reconstruction of plasmids using
assembly graph information, (ii) reference-based approaches and (iii) hybrid approaches.

PlasmidSPAdes, Recycler, metaplasmidSPAdes and gplas [34–36] perform a de novo
reconstruction of plasmids using assembly graph information. PlasmidSPAdes and Recy-
cler were released in 2016 and were the first tools that exploited the information on the
assembly graph for identifying individual plasmids. PlasmidSPAdes is based on the as-
sumption that plasmids have a different copy number than the chromosome, and therefore
plasmid contigs will exhibit a different read coverage than chromosomal contigs. A number
of studies have shown that this tool is able to reconstruct bacterial plasmids with high
recall [11,37,38], but they have also revealed two major disadvantages of this approach:
(1) plasmidSPAdes fails to identify large plasmids that have the same copy number as the
chromosome and (2) it has a tendency to merge different plasmids together. Recycler also
tries to identify plasmid-paths in the assembly graph by using coverage information but
incorporates additional data regarding the topology of the selected paths. The main ratio-
nale behind this algorithm is that selected plasmid-paths should be cyclic, coverage should
be homogeneous amongst all contigs and mated pair-end reads should map to the same
path. Recycler appears to successfully identify short plasmids but yields very low precision
values for long plasmids [11,37]. This issue is partially addressed by metaplasmidSPAdes,
released in 2019 as an improvement on the original prediction algorithm of plasmidSPAdes.
This tool allows prediction of dominant plasmids in metagenomes, defined as plasmids
with coverage exceeding that of chromosomes and other plasmids. The algorithm itera-
tively extracts cyclic subgraphs with increasing coverage from the metagenome assembly
graph. These potential plasmid sequences are later analyzed by a naive Bayesian classifier,
called plasmidVerify, that further assesses the gene content of potential plasmids. None of
the aforementioned tools takes advantage of the information embedded in the nucleotide
sequences of the assembled contigs to a priori simplify the task of identifying plasmid
subgraphs. In contrast, gplas initially classifies assembled contigs as plasmid-derived or
chromosome-derived by using mlplasmids (or plasflow), a tool that exploits short k-mer
frequencies for achieving such classification. Subsequently, plasmid-derived unitigs act as
seeds for finding plasmid-walks with homogeneous coverage in the assembly graph, using
a greedy approach. Gplas generates a plasmidome network in which nodes corresponding
to plasmid unitigs and edges are created and weighted based on the co-existence of the
nodes in the solution space of the computed walks. Finally, this plasmidome network is
queried by a selection of network partitioning algorithms for generating bins of contigs
that belong to the same plasmid [36].

MOB-suite and FishingForPlasmids use a reference-based approach for reconstructing
individual plasmids. MOB-suite works as a modular set of tools for clustering, reconstruc-
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tion and typing of plasmids from assemblies. This software initially uses Mash [39] and
a single-linkage clustering algorithm to create clusters of similar plasmids present in a
reference database. Input contigs are then aligned against this database using Blast and
assigned to a plasmid cluster according to the best hits obtained. Contigs assigned to the
same reference cluster constitute potential individual plasmid units. Also, the topology
of the contigs is evaluated and every circular contig is considered an individual plas-
mid. Finally, each identified plasmid is queried against a different database for finding
known replication and mobilization proteins and oriT sequences. According to the authors,
MOB-suite performs better than plasmidSPades at correctly reconstructing plasmids from
a benchmarking data set that included more than 370 plasmids from 14 different bacte-
rial species [38]. However, the authors identified that MOB-suite splits single plasmids
into different predictions more often than plasmidSPAdes. FishingForPlasmids attempts
to reconstruct individual plasmids from Escherichia coli assemblies. This tool identifies
plasmid-contigs by using BlastN to align each contig against a curated E. coli database.
Each plasmid-derived sequence is further classified into discrete components by using a
combination of plasmidFinder and pMLST [14].

Finally, HyAsP and SCAPP use a hybrid approach, mixing principles from reference-
based and de novo methods. In HyAsP, a set of potential plasmid contigs is first selected
based on: (1) a high density of known plasmid genes, identified by using a database, (2) high
read coverage and (3) a length that does not exceed a maximum threshold. These plasmid-
contigs will be used as seeds for finding plasmid-walks within the original assembly graph
using a greedy algorithm. Plasmid-walks must satisfy the following conditions: (1) have a
uniform GC content and sufficient read coverage, (2) do not have large gene-free segments
and (3) total length of the plasmid-walk does not exceed a threshold. SCAPP, on the other
hand, is designed for finding plasmids in metagenome assemblies. This algorithm starts
by finding potential plasmid-contigs based on two strategies: (1) searching for plasmid-
specific genes by using a curated database and (2) assigning weight to each contig based
on the output from PlasClass, a ML-based binary classifier. The assembly graph is then
queried to find cyclic walks of uniform coverage, similar to Recycler, but prioritizing the
inclusion of contigs with strong evidence of plasmid-origin [40].

3.2. The Benchmark Data Set Represents the Diversity of Sequenced Plasmids

To benchmark the aforementioned plasmid reconstruction tools, we used a data set
of 240 E. coli strains with complete genome sequences and short read data available from
public databases that harbored 631 plasmids. These E. coli genomes were absent from all
training data sets used to develop the selected plasmid prediction tools. The majority of
the genomes derived from Europe (n = 170), Asia (n = 39) and North America (n = 24)
(Figure 2A). They were isolated from multiple sources such as animals (n = 103), humans-
clinical samples (n = 27), humans-community samples (n = 4), environmental sources
(n = 86) and unknown sources (n = 13) (Figure 2B).

To assess if the selected genomes were a representative sample of the phylogenetic
diversity of E. coli, we built a neighbor-joining tree combining our data set with 1141 com-
plete E. coli genomes and determined the phylogroup of each of these genomes in silico.
This analysis revealed that the selected genomes were distributed across the core-genome
tree and that all phylogroups were represented with at least five strains. (Figure 2C).

Most of the genomes carried one (n = 73), two (n = 49) or three (n = 28) plasmids, but
notably some genomes contained as much as nine (n = 3), ten (n = 1) or eleven (n = 1), with a
median of two (mean = 2.62 plasmids). We found a clear bimodal plasmid size distribution,
with peaks around 4500 bp and 100,000 bp (Figure 2D). Consequently, plasmids with a
length smaller than 18,000 bp were classified as ‘small’ (n = 273), while plasmids that
exceeded this cut-off value were classified as ‘large’ (n = 358).

Next, we wanted to assess the diversity of plasmids included in the benchmark data
set. We used Mash to estimate the pairwise k-mer distances of all plasmids (n = 3264)
from all complete E. coli genomes (n = 1381) and clustered them with the t-SNE algorithm.
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Plasmids included in this study were distributed among all major clusters, suggesting
that this data set is able to properly capture the diversity of the E. coli pan-plasmidome
currently available at NCBI (Figure 2E).
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3.3. A Third of All Plasmids Could Not Be Correctly Reconstructed by Any of the Tools

We selected six tools to reconstruct distinct plasmid sequences. These tools applied
different computational strategies: graph-based (plasmidSPAdes, gplas), reference-based
(MOB-Suite, FishingForPlasmids) and hybrid (HyAsP and SCAPP).

The rest of the plasmid reconstruction tools were not included in the analysis because
of a variety of reasons: Plasmid Assembler couldn’t be installed, plasmidID predictions
were not completed due to errors during execution, PLACNET required manual interven-
tion of the user, Recycler provided suboptimal results in comparison with plasmidSPAdes
and HyAsP in previous studies [11,37] and metaplasmidSPAdes uses a similar approach to
plasmidSPAdes but optimized for metagenomic samples.

We evaluated the predictions obtained with the six selected plasmid reconstruction
tools in terms of (i) speed and memory requirements, (ii) the number of plasmid predictions,
(iii) correct reconstruction of reference plasmids, (iv) chromosomal contamination included
in predicted plasmids, and (v) correct reconstruction of ARG-plasmids.

We used a High-Performance Cluster (HPC) to run the tools with minimal resources
(number of cores = 2, 4GB of RAM per genome), and documented the total CPU-time
and memory required by each of them (Table 1, Figure S2). Most tools required less
than 100 CPU hours to complete all predictions, except for plasmidSPAdes which used
321.07 CPU hours. In contrast, FishingForPlasmids was the fastest tool and completed the
task in 10.60 CPU hours. PlasmidSPAdes and SCAPP had the highest memory requirements,
utilizing a total of 442.03 Gb and 435.23 Gb of RAM, respectively. The remaining tools
required less than 300 Gb to complete all predictions. Notably, FishingForPlasmids only
required a total of 36.57 Gb.

Next, we evaluated the number of plasmid predictions produced by each tool and
calculated the difference between this number and the true number of plasmids present
in the benchmark data set (Table 1, Figure S3). The total number of plasmid predic-
tions ranged from 377 (FishingForPlasmids) to 2590 (HyAsP). plasmidSPAdes, MOB-suite,
SCAPP and HyAsP overestimated the true number of plasmids (n = 631), while gplas
and FishingForPlasmids underestimated this number. PlasmidSPAdes displayed the least
deviation by producing 642 bins, and therefore exceeding the total number of plasmids by
11. Nevertheless, these absolute numbers do not reflect whether predictions were correct
or incorrect.

In order to evaluate how the different tools performed at recovering E. coli plasmids
as distinct and complete predictions, we studied the distributions of recall, precision and
F1-score (Table 1, Figure S4A–C) for all plasmid predictions made by the tools. Based
on these results, we determined an F1-score cut-off value of 0.95 to define a plasmid as
correctly reconstructed (or recovered) (Figure S4D).

MOB-suite correctly recovered 317 (50.24%) plasmids (F1-score ≥ 0.95), including
70 (11.10%) that couldn’t be reconstructed by any other software (Figure 3A,B, Table 1).
Similarly, plasmidSPAdes reconstructed a total of 263 (41.68%) plasmids, including 55
(8.72%) that were not recovered by other tools. Interestingly, 14 of these ‘unique reconstruc-
tions’ were also missing from the short-read assembly graphs (Supplementary Materials,
Tables S4 and S5). The rest of the tools achieved smaller quantities of correct plasmid re-
constructions, with values ranging from 92 (14.58%) to 152 (24.09%) (Figure 3A,B, Table 1).

We found that a total of 418 (66.25%) plasmids were correctly reconstructed by at
least one of the tools (Figure 3C). Out of these, only 7 (1.11%) were reconstructed by
all tools concurrently, 273 (43.26%) by multiple tools and 138 (21.9%) by a single tool.
Interestingly, combining MOB-suite and plasmidSPAdes predictions together achieved the
correct reconstruction of 400 (63.39%) plasmids, and incorporating the predictions from
the remaining tools only resulted in the reconstruction of 18 (2.85%) additional plasmids.
Notably, a total of 213 (33.75%) plasmids were incorrectly reconstructed (F1 score < 0.95) by
all tools, including 21 (3.32%) that were not even detected. The majority of ARG-plasmids
(n = 85, 57.8%) could not be correctly reconstructed by any of the tools (Table S6).
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Table 1. Summary of tool’s performances.

HyAsP MOB-Suite gplas plasmidSPAdes SCAPP FishingFor Plasmids

Computational Performance

Memory Usage (GB) 299.2 202.82 150.36 442.03 435.23 36.57

CPU-Time (hr) 46.57 46.62 83.64 321.07 70.96 10.6

Nr. of plasmid predictions

Nr. total predicted plasmids (bins) 2590 738 550 642 986 377

Nr. correct predictions of plasmid absence (%) 2 (10.53) 13 (68.42) 17 (89.47) 9 (47.37) 17 (89.47) 18 (94.74)

Plasmids reconstruction
All Plasmid (n = 631)

Nr. correctly reconstructed plasmids (%) 127 (20.13) 317 (50.24) 130 (20.6) 263 (41.68) 152 (24.09) 92 (14.58)

Nr. small plasmids (%) 82 (30.04) 151 (55.31) 87 (31.87) 168 (61.54) 98 (35.9) 14 (5.13)

Nr. large plasmids (%) 45 (12.57) 166 (46.37) 43 (12.01) 95 (26.54) 54 (15.08) 78 (21.79)

Nr. incorrectly reconstructed plasmids (%) 358 (56.74) 231 (36.61) 289 (45.8) 252 (39.94) 291 (46.12) 243 (38.51)

Nr. small plasmids (%) 53 (19.41) 50 (18.32) 17 (6.23) 47 (17.22) 59 (21.61) 14 (5.13)

Nr. large plasmids (%) 305 (85.20) 181 (50.56) 272 (75.98) 205 (57.26) 232 (64.80) 229 (63.97)

Nr. undetected plasmids (%) 146 (23.14) 83 (13.15) 212 (33.6) 116 (18.38) 188 (29.79) 296 (46.91)

Nr. small plasmids (%) 138 (50.55) 72 (26.37) 169 (61.9) 58 (21.25) 116 (42.49) 245 (89.74)

Nr. large plasmids (%) 8 (2.23) 11 (3.07) 43 (12.01) 58 (16.2) 72 (20.11) 51 (14.25)

F1-score (median-IQR) * 0.12
(0.04–0.41)

0.89
(0.3–0.98)

0.59
(0.3–0.94)

0.95
(0.49–0.99)

0.18
(0.07−0.81)

0.64
(0.29–0.93)

Small plasmids * 0.98
(0.76–0.99)

0.98
(0.94–0.99)

0.99
(0.98–0.99)

0.98
(0.96–0.99)

0.96
(0.88–0.99)

0.95
(0.7–0.98)

Large plasmids * 0.11
(0.04–0.32)

0.74
(0.17–0.97)

0.49
(0.21–0.76)

0.6
(0.31–0.97)

0.12
(0.06–0.41)

0.61
(0.28–0.91)

Recall (median-IQR) * 0.07
(0.02–0.32)

0.89
(0.21–0.99)

0.5
(0.22–0.93)

0.99
(0.88–1)

0.13
(0.04–0.78)

0.51
(0.18–0.93)

Small plasmids * 1
(0.92–1)

1
(0.96–1)

1
(0.98−1)

1
(1–1)

0.99
(0.92–1)

1
(0.96−1)
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Table 1. Cont.

HyAsP MOB-Suite gplas plasmidSPAdes SCAPP FishingFor Plasmids

Large plasmids * 0.06
(0.02–0.2)

0.63
(0.12–0.96)

0.4
(0.16–0.72)

0.94
(0.36–0.99)

0.07
(0.03–0.31)

0.46
(0.16–0.84)

Precision (median-IQR) * 0.87
(0.5–0.98)

0.98
(0.68–1)

0.97
(0.55–1)

0.93
(0.41–0.98)

0.8
(0.39–0.94)

1
(1−1)

Small plasmids * 0.96
(0.86–0.98)

0.98
(0.95–0.99)

0.98
(0.97–0.99)

0.96
(0.92–0.98)

0.95
(0.83–0.98)

0.96
(0.65–0.97)

Large plasmids * 0.84
(0.48–0.98)

0.97
(0.53–1)

0.93
(0.47–1)

0.58
(0.33–0.99)

0.75
(0.34–0.92)

1
(1–1)

Chromosome contamination (Median-IQR) 0.88
(0.59–0.99)

0.1
(0.03–0.99)

0.45
(0.11–1)

0.75
(0.14–0.92)

0.3
(0.09–0.66)

1
(0.6–1)

Nr. bins with chromosome contamination (%) 1340 (51.73) 297 (40.2) 197 (35.81) 295 (45.95) 249 (25.25) 7 (1.86)

Nr. pure chromosome bins 1251 65 70 20 1 4

Plasmids reconstruction
ARG-plasmids (n = 147)

ARGs in bins

Nr. plasmid-derived ARGs (%) 525 (84.95) 548 (88.67) 331 (53.56) 390 (63.11) 223 (36.08) 133 (21.52)

Nr. chromosome-derived ARGs 130 92 71 29 34 1

Reconstruction status

Nr. plasmids correctly reconstructed (%) 5 (3.4) 41 (27.89) 10 (6.8) 23 (15.65) 10 (6.8) 13 (8.84)

Nr. plasmids predicted with incorrect backbones (%) 62 (42.18) 49 (33.33) 38 (25.85) 59 (40.14) 23 (15.65) 9 (6.12)

Nr. plasmids predicted with incomplete ARG content (%) 66 (44.9) 47 (31.97) 59 (40.14) 28 (19.05) 39 (26.53) 28 (19.05)

Nr. plasmids with no ARGs predicted (%) 14 (9.52) 10 (6.8) 40 (27.21) 37 (25.17) 75 (51.02) 97 (65.99)

Large ARG-plasmids reconstruction metrics (n = 143)

Recall (Median-IQR) * 0.06
(0.02–0.16)

0.38
(0.09–0.88)

0.29
(0.14–0.62)

0.87
(0.2–0.96)

0.06
(0.03–0.17)

0.35
(0.15–0.55)

Precision (Median-IQR) * 0.84
(0.46–0.99)

0.92
(0.42–1)

0.86
(0.44–1)

0.47
(0.31–0.92)

0.71
(0.32–0.88)

1
(1–1)
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Table 1. Cont.

HyAsP MOB-Suite gplas plasmidSPAdes SCAPP FishingFor Plasmids

F1-score (Median-IQR) * 0.1
(0.04–0.26)

0.44
(0.13–0.9)

0.41
(0.19–0.65)

0.53
(0.24–0.73)

0.1
(0.05–0.26)

0.51
(0.25–0.69)

Nr. detected plasmids (%) 141
(98.60) 141 (98.60) 135

(94.41)
129

(90.21)
113

(79.02)
138

(96.50)

Plasmids reconstruction ESBL-plasmids (n = 60)

ESBL genes in bins

Nr. plasmid-derived (%) 52 (86.67) 57 (95) 27 (45) 40 (66.67) 23 (38.33) 11 (18.33)

Nr. chromosome-derived (%) 10 8 7 2 2 0

Reconstruction status

Nr. ESBL genes in correct plasmid backbone (%) 0 (0) 20 (33.33) 4 (6.67) 10 (16.67) 5 (8.33) 6 (10)

Nr. ESBL genes in incorrect plasmid backbone (%) 52 (86.67) 37 (61.67) 23 (38.33) 30 (50) 18 (30) 5 (8.33)

Reconstruction metrics

F1-score (Median-IQR) * 0.29
(0.07–0.46)

0.93
(0.72–0.97)

0.69
(0.45–0.88)

0.65
(0.51–0.95)

0.27
(0.09–0.84)

0.98
(0.71–0.99)

Recall (Median-IQR) * 0.18
(0.04–0.31)

0.89
(0.77–0.96)

0.65
(0.36–0.84)

0.96
(0.89–0.97)

0.23
(0.05–0.84)

0.95
(0.56–0.99)

Precision (Median-IQR) * 0.91
(0.54–0.98)

0.98
(0.93–1)

0.97
(0.89–1)

0.52
(0.38–0.95)

0.85
(0.72–0.92)

0.99
(1–1)

* In all cases, undetected plasmids were not included in the calculation of Precision, Recall and F1-score.
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We also compared the performance of the software when attempting to reconstruct
small- and large plasmids separately. For small plasmids, we discovered that all tools
displayed similar F1-score distributions, with medians ranging from 0.95 to 0.99. However,
the tools did not detect 21.25–89.74% of small plasmids (Figure S6A,B). PlasmidSPAdes
and MOB-suite were the only tools that achieved the correct reconstruction of most of
these replicons, with a total of 168 (61.54%) and 155 (55.31%), respectively (Table 1). When
considering the reconstruction of large plasmids, percentages of not-detected plasmids
were much lower and ranged from 2.23% to 20.11% across tools. MOB-suite exhibited
the highest F1-score values (median = 0.74, IQR = 0.17–0.97) and correctly reconstructed
166 (46.3%) of these replicons, significantly surpassing the reconstruction capacity of the
rest of the tools, which ranged from 45 (12.57%) to 95 (26.54%) (Table 1, Figure S6A,B).
Not surprisingly, most tools correctly reconstructed a higher fraction of small plasmids,
and also displayed higher F1-score values (Table 1, Figure S6A,B) when comparing with
the reconstruction of large plasmids. FishingForPlasmids was the only exception as it
recovered a total of 14 (5.13%) small and 78 (21.79%) large plasmids.

All tools incorrectly incorporated chromosome-derived sequences into their predic-
tions (Figure S7, Table 1). FishingForPlasmids performed best at avoiding this error, and
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only 7 (1.8%) predictions contained chromosomal contamination. In contrast, HyAsP intro-
duced chromosomal contigs in 1340 (51.7%) predictions with a chromosome contamination
median of 0.88 (IQR = 0.5–0.99), including 1251 pure chromosome bins (chromosome
contamination = 1). Notably, plasmidSPAdes and MOB-suite had a similar proportion of
contaminated bins, 295 (46%) and 297 (40.2%), yet with different chromosome contami-
nation medians of 0.75 (IQR = 0.14–0.92) and 0.10 (IQR = 0.03–0.99), respectively. Out of
these, MOB-suite produced 65 predicted bins which exclusively consisted of chromosome
sequences, while plasmidSPAdes generated 20 of them. SCAPP introduced chromosomal
sequences in 249 (25.2%) predictions, but notably only 1 of them was only composed of
chromosome sequences. Finally, gplas incorporated chromosomal sequences in 197 (35.8%)
predictions, of which 70 were exclusively composed of these types of sequences.

3.4. Plasmids Carrying Antibiotic Resistance Genes Were Difficult to Reconstruct for All Tools

Our data set included 147 (23.3%) plasmids containing antibiotic resistance genes
(ARG-plasmids), carrying a total of 618 resistance genes. Most of these replicons carried
one (n = 43), two (n = 17), three (n = 12) or four (n = 17) ARGs (Table S6). Interestingly,
plasmids carrying ARGs had a median length of 109,773 bp (IQR = 83,300–132,865 bp),
and were markedly larger than plasmids with no resistance determinants (median length
6930 bp; IQR = 4072–91,111 bp). Furthermore, 143 (97.2%) ARG-plasmids were classified
as large, while only 4 (2.8%) were small plasmids (Figure S8A).

To investigate how the tools performed at reconstructing ARG-plasmids, we analyzed
Recall, Precision and F1-score values for these replicons (Figure S8B–D). Furthermore, we
extracted the bins that contained antibiotic resistance genes, and explored the fraction of
detected ARGs in each prediction -Recall(ARG)-. An ARG-plasmid was considered as cor-
rectly reconstructed if the prediction simultaneously included all ARGs -Recall(ARG) = 1-
and correctly represented the reference plasmid backbone (F1-score ≥ 0.95).

We discovered that the reconstruction of large ARG-plasmids was particularly chal-
lenging for the evaluated tools, since all of them exhibited lower F1-score values in com-
parison with the reconstruction of large non-ARG-plasmids (Figure S8B,E, Table 1). We
excluded small plasmids from this comparison due to the low amount of small ARG-
plasmids present in our data set.

MOB-suite correctly identified 548 (88.67%) plasmid-derived ARGs, and achieved 41
(27.89%) correct ARG-plasmid reconstructions (Figure 4A,B, Table 1). In 49 (33.3%) addi-
tional predictions, all ARGs were assigned into a single bin -Recall(ARG) = 1-, but the bin in-
correctly represented the reference plasmid backbone (F1-score < 0.95) (Figure 4C) by being
incomplete, hybridized with sequences derived from other replicons, or both (Figure S9).
Moreover, we discovered that MOB-suite incorrectly incorporated 92 chromosome-derived
ARGs, distributing them among 39 bins. Finally, we found that when predicting large ARG-
plasmids, this tool presented remarkably lower recall values (median = 0.38, IQR = 0.09–0.88)
in comparison with reconstruction of large non-ARG-plasmids (median = 0.87, IQR = 0.19–0.98)
(Figure S8C).

PlasmidSPAdes detected 390 (63.11%) plasmidderived ARGs, and correctly recon-
structed 23 (15.65%) ARG-plasmids. Additionally, in 59 (40.14%) predictions all ARGs were
assigned to a single bin, but the plasmid backbone was most frequently contaminated with
sequences from other replicons (Figure S9). Notably, this tool couldn’t predict any of the
ARGs present in 37 (25.17%) reference ARG-plasmids (Figure 4A,B, Table 1). Finally, for
the reconstruction of large ARG-plasmids, plasmidSPAdes presented remarkably lower
precision values (median = 0.47, IQR = 0.31–0.92) in comparison with reconstruction of
large non-ARG-plasmids (median = 0.9, IQR = 0.35–1) (Figure S8D).

The rest of the tools successfully reconstructed smaller fractions of ARG-plasmids,
ranging from 5 (3.4%) to 13 (8.84%). Interestingly, HyAsP detected a high fraction of
plasmid-derived ARGs (n = 525, n = 84.95%), but it only achieved the correct reconstruction
of 5 (3.4%) ARG-plasmids. For most HyAsP predictions, all ARGs couldn’t be assigned to
a single bin (n = 66, 44.9%) or presented an incorrect plasmid backbone (n = 62, 42.18%).
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FishingForPlasmids detected the least amount of resistance genes (n = 133, 21.52%) and
couldn’t predict any of the ARGs present in 97 (66%) reference ARG-plasmids.
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Figure 4. (A) Bar plot displaying the number of plasmid-derived ARGs that were detected/not detected by each of the tools.
This plot also shows the number of chromosome derived ARGs included in the plasmid predictions. (B) Bar plot displaying
the number of reference ARG-plasmids belonging to each different reconstruction category. Reconstruction categories were
defined as follows. Correct reconstruction: all ARGs were predicted in the same bin (Recall(ARG) = 1) and the backbone of
the plasmid was correct (F1-score ≥ 0.95). Incorrect backbone: all ARGs were predicted in the same bin (Recall(ARG) = 1)
but the backbone of the plasmid was incorrect (F1-score < 0.95). Incomplete ARGs: Not all ARGs were included in the same
bin (Recall(ARG) < 1). No ARGs detected: None of the ARGs derived from the reference plasmids were included in any
bins created by the tool. (C) Scatter-plot showing relation between Recall(ARG) and F1-score (bp) values for predictions
that carry at least one ARG of plasmid origin. Dots are colored according to the same criteria as in B.

Next, we evaluated the performance of the tools when reconstructing plasmids that
carry ESBL genes (ESBL plasmids). Our data set included 60 ESBL plasmids, each carrying
a single ESBL gene. Most abundant ESBL variants were CTX-M15 (n = 16, 25%), CTX-M55
(n = 12, 20%) and CTX-M1 (n = 6, 10%) (Figure S10A). Furthermore, we observed that ESBL
genes were harbored by plasmids with diverse sequences (Figure S10B).

MOB-suite correctly identified a total of 57 (95%) ESBL genes of plasmid origin, of
which 20 were also assigned to the correct plasmid backbone (F1-score ≥ 0.95), resulting
in a 33% correct reconstruction of the ESBL plasmids (Table 1, Figure S11A). Despite
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this, MOB-suite predictions achieved high F1-scores for reconstruction of ESBL plasmids
(median = 0.93, IQR = 0.72–0.97) (Table 1, Figure S11B).

The rest of the tools reconstructed ESBL plasmids with less success, ranging from 0
(0%) to 10 (16.67%) total correct reconstructions (Table 1, Figure S11A). HyAsP detected
a high fraction of plasmid-derived ESBL genes (n = 52, 86.67%), but did not achieve the
correct reconstruction of any plasmids. PlasmidSPAdes detected the majority of plasmid-
derived ESBL genes (n = 40, 66.66%), and these were included in bins that presented
high recall (median = 0.97, IQR = 0.77–0.96) but low precision values (median = 0.52,
IQR = 0.38–0.95) (Table 1, Figure S11C).

4. Discussion

A tool that is able to correctly predict E. coli plasmids will assist in identifying clinically
relevant plasmids [41–44] and improve our understanding of the complex dynamics of ARG
dissemination across different ecological niches [45–47]. From the vast offer of software
to predict plasmids from short-read data we selected six tools and benchmarked their
performances when attempting to reconstruct individual E. coli plasmids, with a special
focus on plasmids that carry ARGs.

A total of 418 (66.24%) plasmids were correctly reconstructed by at least one of the tools
compared in this benchmark. Interestingly, 400 (63.39%) of these plasmids were recovered
by combining the predictions from MOB-suite and plasmidSPAdes alone. Therefore,
adding the predictions from the rest of the tools resulted only in 18 (2.85%) additional
correct reconstructions.

We observed that plasmidSPAdes correctly reconstructed the highest fraction of small
plasmids (n = 168, 61.5%). This result is consistent with the observations that small plasmids
usually have high copy numbers [48] and therefore exhibit a higher coverage; which in
theory would facilitate their prediction using this tool. A similar success at predicting small
plasmids was also reported by [11,38]. Nevertheless, it is worth noticing that most small
plasmids (n = 215, 79%) are represented as a single node in the assembly graph. Therefore,
using a binary classification tool would be sufficient for correctly predicting these replicons.

MOB-suite correctly reconstructed a total of 166 (46.37%) large plasmids, and consid-
erably outperformed the rest of the tools, which ranged from 45 (12.57%) to 95 (26.54%)
correct reconstructions. Nevertheless, MOB-suite’s performance strongly depends on its
underlying database, which is enriched for Enterobacteriaceae plasmid sequences [38]. Con-
sequently, the reconstruction capacity of this tool could be different when attempting to
predict plasmids from bacterial species less frequently represented in its database.

A third (n = 213, 33.76%) of all plasmids could not be correctly reconstructed by any
of the evaluated tools. In particular, the reconstruction of ARG-plasmids proved to be
problematic. We hypothesize that ARG-plasmids constitute a particularly hard puzzle to
solve for all compared computational approaches, for several reasons.

Firstly, ARG-plasmids usually carry a high number of repeated sequences [49–52],
and therefore exhibit highly entangled assembly graphs. Secondly, ARGs are frequently
located on large plasmids with low copy number, and therefore have coverage values that
are similar to chromosomes [48,52]. Consequently, finding plasmid-walks with differential
coverage in the assembly graphs could be challenging for all tools relying on this strategy.
This hypothesis is supported by the observation that plasmidSPAdes predicted large ARG-
plasmids with the lowest precision values (median = 0.47, IQR = 0.31–0.92) of all tools,
indicating that these plasmids are more frequently merged with sequences derived from
other replicons. Additionally, this tool failed to predict 37% of all plasmid-located ARGs,
which would be explainable in case that these contigs should have coverage values similar
to the chromosomes.

Thirdly, ARG-plasmids are frequently built as mosaic-like structures, containing
mobile components that can be found in different plasmid backbones [48,52–55]. This
type of genomic organization also complicates their reconstruction using reference-based
methods, since databases might contain very similar fragments that are shared by a variety
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of plasmids. Consequently, unequivocally assigning these “shared fragments” to a unique
reference plasmid (or plasmid group) could be problematic. This is supported by the results
obtained using MOB-suite. This software identified the highest proportion of plasmid-
derived ARGs (n = 548, 88.67%), but most ARG-plasmids reconstructions had either an
incomplete ARG content (n = 47, 31.97%) or an incorrect backbone (n = 49, 33.33%). These
results, in combination with the low recall values observed (median = 0.38, IQR = 0.09–0.88)
seems to suggest that large ARG-plasmids were frequently split into multiple bins.

Despite the aforementioned limitations, MOB-suite was the most effective tool at
predicting ARG-plasmids in E. coli, achieving the correct reconstruction of 41 (27.89%) of
these, while the rest of the tools ranged from 5 (3.4%) to 23 (15.65%) correct ARG-plasmid
reconstructions. Additionally, MOB-suite was the best performing tool for prediction
of ESBL-plasmids. It identified 57 (95%) plasmid-borne ESBL-genes and had a median
F1-score of 0.93 (IQR = 0.72–0.97). However, it must be noted that a fraction (n = 13, 22.80%)
of ESBL-plasmid predictions presented low F1-score values, implying that in these cases
the contigs carrying the ESBL gene were associated with the incorrect plasmid backbone.

All tools exhibited chromosomal contamination in their predictions. Notably, Fish-
ingForPlasmids outperformed the rest of the tools and only included chromosomal se-
quences in 7 (1.8%) bins. The rest of the tools included chromosomal sequences in a
range from 25.25% to 51.73% of the bins. Surprisingly, MOB-suite included chromosomal
sequences in 297 (40.2%) bins, including 65 chromosome-only predictions (chromosome
contamination = 1).

A fraction of the plasmids (n = 28, 4.4%) were completely absent (recall = 0) from
contig sequences and nodes in the assembly graph. Interestingly, 14 of these replicons
were correctly reconstructed by plasmidSPAdes when using pair-end reads as input. This
suggests that the quality of the assembly has impacted the ability of the tools to reconstruct
certain plasmids. Consequently, it is possible that plasmid predictions for E. coli could
be optimized by running SPAdes with different parameters, by performing assembly
with different assemblers or through construction of Illumina libraries with a different
read length.

The results from our study indicate that accurate reconstruction of E. coli plasmids
from short-reads is still challenging using currently available bioinformatic methods. Long
reads generated by Oxford Nanopore or PacBio technologies can span repeat elements
in the bacterial genomes and are therefore useful to obtain complete plasmid sequences.
However, long-reads still exhibit a lower sequencing accuracy than Illumina reads [56],
and small plasmids (size < 10 kb) are frequently underrepresented or absent in Nanopore
libraries [57,58]. Consequently, combining long- and short-read sequences is currently
the best option for correctly reconstructing E. coli plasmids. Nevertheless, the accuracy
of long-reads has been increasing in recent years, mainly due to the release of improved
hardware and also owing to the development of bioinformatic tools designed for read error
correction [56]. It is possible that in the near future long-read only assemblies will provide
the best alternative for obtaining complete bacterial genomes.

Nonetheless, in the absence of long-reads, bioinformatic tools can be applied to gain
valuable insight on different aspects of the plasmidome of E. coli. MOB-suite presented the
best overall performance of all tools, but predictions were frequently contaminated with
chromosomal sequences. Consequently, using MOB-suite coupled to a binary classification
tool could improve plasmid predictions in E. coli. Furthermore, these predictions could be
used as an initial screening step for selecting interesting isolates for long-read sequencing.

Supplementary Materials: All Supplementary Materials are available online at https://www.mdpi.
com/article/10.3390/microorganisms9081613/s1. The file ‘Supplementary_Materials.pdf’ contains
the following, Figure S1: Benchmark data set selection flowchart, Figure S2: Tools CPU and memory
requirements, Figure S3: Number of predicted bins per genome, Figure S4: Reconstruction met-
rics for all plasmids, Figure S5: Maximum theoretical recall for plasmid reconstruction, Figure S6:
Reconstruction metrics for plasmids according to size category, Figure S7: Chromosomal contam-
ination, Figure S8: Large ARG-plasmids reconstruction metrics, Figure S9: Precision vs. recall for
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ARG-plasmids, Figure S10: ESBL plasmids in benchmark, Figure S11: Reconstruction metrics of
ESBL plasmids. Additionally, Supplementary Tables are also available. Table S1: Plasmid prediction
tools summary, Table S2: Microreact metadata visualization, Table S3: Metadata of benchmark
dataset, Table S4: QUAST alignment results, Table S5: Self-alignment results, Table S6: Reference
plasmids metadata.
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