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A biologically active antibacterial reagent, 2–amino-6-hydroxy–4–(4-N, N-dimethylaminophenyl)-pyr-
imidine-5-carbonitrile (AHDMAPPC), was synthesized. It was employed to investigate the binding in-
teraction with the bovine serum albumin (BSA) in detail using different spectroscopic methods. It ex-
hibited antibacterial activity against Escherichia coli and Staphylococcus aureus which are common food
poisoning bacteria. The experimental results showed that the fluorescence quenching of model carrier
protein BSA by AHDMAPPC was due to static quenching. The site binding constants and number of
binding sites (nE1) were determined at three different temperatures based on fluorescence quenching
results. The thermodynamic parameters, enthalpy change (ΔH), free energy (ΔG) and entropy change
(ΔS) for the reaction were calculated to be 15.15 kJ/mol, –36.11 kJ/mol and 51.26 J/mol K according to
van't Hoff equation, respectively. The results indicated that the reaction was an endothermic and
spontaneous process, and hydrophobic interactions played a major role in the binding between drug and
BSA. The distance between donor and acceptor is 2.79 nm according to Förster's theory. The alterations of
the BSA secondary structure in the presence of AHDMAPPC were confirmed by UV–visible, synchronous
fluorescence, circular dichroism (CD) and three-dimensional fluorescence spectra. All these results in-
dicated that AHDMAPPC can bind to BSA and be effectively transported and eliminated in the body. It can
be a useful guideline for further drug design.
& 2015 Xi'an Jiaotong University. Production and hosting by Elsevier B.V. All rights reserved. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Protein, one of the most important bioactive molecules, is re-
lated to alimentation, immunity and metabolism. The content of
proteins in body fluid can be used as a vital index for the clinical
diagnosis and health evaluation; therefore, the direct determina-
tion of protein is significant in life sciences, clinical medicine and
chemical investigation. The interaction between bio-macro-
molecules and drugs has attracted great interest for several dec-
ades [1–3] and many researches have been focused on two central
questions about proteins: what are the determinant factors that
influence the protein structures and functions, and how does a
factor affect their biological activity [4,5]. Serum albumin (SA), the
main protein in the blood plasma acting as the transporter and
disposition of many drugs, has been frequently used as a model
protein for investigating protein folding and ligand binding me-
chanism. In this regard, bovine serum albumin (BSA) has been
on and hosting by Elsevier B.V. All

University.

ar).
studied extensively, partly because of its structural homology with
human serum albumin (HSA) [6,7]. BSA is composed of three lin-
early arranged and structurally homologous sub-domains. It has
two tryptophan residues that possess intrinsic domains (I–III) and
each domain in turn is the product of two fluorescence: Trp-134,
which is located on the surface of sub-domain IB, and Trp-212,
located within the hydrophobic binding pocket of sub-domain IIA
[8,9]. The binding sites of BSA for endogenous and exogenous li-
gands may be in these domains and the principal regions of drugs
binding sites of albumin are often located in hydrophobic cavities
in sub-domains IIA and IIIA. So-called sites I and II are located in
subdomain IIA and IIIA of albumin, respectively.

Pyrimidine moiety is one of the important classes of N-con-
taining heterocycles widely used as key building blocks for phar-
maceutical agents. It exhibits a wide spectrum of pharmacophore
such as bactericidal, fungicidal, analgesic, anti-hypertensive and
anti-tumor agents [10–13]. In addition, preclinical data from lit-
erature survey indicate continuing research in polysubstituted
pyrimidine as potential anti-tumor agents [14]. 2-amino-6-hy-
droxy-4-(4-N,N-dimethylaminophenyl)-pyrimidine-5-carbonitrile
(AHDMAPPC), a pyrimidine derivative, and its analogs possessing
rights reserved. This is an open access article under the CC BY-NC-ND license

www.elsevier.com/locate/jpa
http://dx.doi.org/10.1016/j.jpha.2015.07.001
http://dx.doi.org/10.1016/j.jpha.2015.07.001
http://dx.doi.org/10.1016/j.jpha.2015.07.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpha.2015.07.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpha.2015.07.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpha.2015.07.001&domain=pdf
mailto:gbkolekar@yhaoo.co.in
http://dx.doi.org/10.1016/j.jpha.2015.07.001


V.D. Suryawanshi et al. / Journal of Pharmaceutical Analysis 6 (2016) 56–63 57
anti-bacterial activity were synthesized in our laboratory [15].
AHDMAPPC was synthesized by three-component condensation of
aromatic aldehyde, ethyl cyanoacetate and guanidine hydro-
chloride in ethanol under alkaline medium.

Protein–drug interaction plays an important role in pharma-
cokinetics and pharmacodynamics. In a series of methods con-
cerning the interaction of drugs and protein, fluorescence techni-
ques are great aids in the study of interactions between drugs and
serum albumin because of their high sensitivity, rapidity, and ease
of implementation [16]. The aim of the present investigation was
to study the affinity of pyrimidine derivative (AHDMAPPC) for BSA
using UV–visible and fluorescence spectroscopy to understand the
carrier role of serum albumin for such compound in the blood
under physiological conditions. Significantly, the determination
and understanding of drug interacting with serum albumin are
important for the therapy and design of drug [17]. Knowledge of
the interaction and binding of BSA may open new avenues for the
design of the most suitable pyrimidine derivatives. All the ex-
perimental results clarify that AHDMAPPC can bind to BSA and be
effectively transported and eliminated in body, which can be a
useful guideline for further drug design.

In this paper, we have studied in vitro interaction of AHD-
MAPPC with BSA by the fluorescence quenching method. The
binding constants were obtained at different temperatures in the
medium of Tris–HCl (pH 7.4) buffer solution. The binding sites and
main sorts of binding forces have been suggested. In addition, the
conformational changes of BSA were discussed on the basis of UV–
visible spectroscopy, synchronous fluorescence (SF), circular di-
chroism (CD) and three-dimensional spectroscopy.
2. Materials and methods

2.1. Materials

BSA (essentially fatty acid free) was purchased from Hi-Media
Chemical Company (Mumbai, India) and its molecular weight was
assumed to be 66, 463 to calculate the molar concentrations. All
BSA solutions (CBSA¼2.0�10�5 M) were prepared in a pH
7.4 buffer solution and the stock solution was kept in the dark at
4 °C. Tris–HCl (0.1 M) buffer solution containing NaCl (0.1 M) was
used to keep the pH of the solution at 7.4. A dilution of the BSA
stock solution in Tris–HCl buffer solution was prepared im-
mediately before use. The stock solution of AHDMAPPC (synthe-
sized) was prepared in (5:95, v/v) ethanol water mixture. Dis-
solution of the compound was enhanced by sonication in an ul-
trasonic bath (Spectra Lab Model UCB-40). All chemicals were of
analytical reagent grade and were used without further purifica-
tion. Double distilled water was used throughout. In order to si-
mulate human body fluid surroundings and to get the best sen-
sitivity, Tris–HCl solution (pH 7.4) was chosen as the buffer solu-
tion in this work.

2.2. Equipment and spectral measurements

All fluorescence emission spectra were recorded on PC based
Spectrofluorometer (JASCO Japan FP-750) equipped with an Xenon
lamp and 1.0 cm quartz cell. Fluorescence emission spectra were
recorded at three different temperatures, 300, 310 and 320 K.
Excitation and emission slit width was fixed to 10 nm. An excita-
tion wavelength of 280 nm was chosen, because it is exclusively
due to the intrinsic Tryptophan (Trp) fluorophore. The UV–visible
absorption spectra were measured at room temperature on a
Shimadzu UV–3600 UV–vis–NIR Spectrophotometer equipped
with a 1.0 cm quartz cell. The wavelength range was from 250 to
450 nm. All pH values were measured by a digital pH-meter with
magnetic stirrer (Equip-Tronics EQ-614A). For synchronous fluor-
escence measurements, the excitation range was 260�360 nm,
and Δλ was set at 15 and 60 nm. Circular dichroism (CD) spectra
were measured with a Jasco J-815 Spectropolarimeter (Jasco, To-
kyo, Japan) at room temperature over the wavelength range of
200–250 nm using a 1.0 cm quartz cell. The three-dimensional
fluorescence spectra were performed under the following condi-
tions: the emission wavelength was recorded between 250 and
500 nm; the initial excitation wavelength was set to 250 nm with
increment of 10 nm for each scanning curve; other scanning
parameters were identical to those of the fluorescence emission
spectra. Appropriate blanks corresponding to the buffer were
subtracted to correct the absorbance or fluorescence background.
3. Results and discussions

3.1. Fluorescence quenching studies of BSA by pyrimidine derivative
(AHDMAPPC)

Protein is considered to have intrinsic fluorescence mainly
originating from the tryptophan (Trp), tyrosine (Tyr), and pheny-
lalanine (Phe) residues [18]. When it interacts with other com-
pounds, its intrinsic fluorescence often changes with the ligand's
concentration. Consequently, fluorescence can be regarded as a
technique for measuring the mechanism of interactions between
ligands and proteins [19]. The concentration of BSA solutions was
stabilized and the concentrations of AHDMAPPC were varied in the
experiment. Fluorescence spectra of BSA, after the addition of
AHDMAPPC, were recorded upon excitation at 280 nm and 300 K,
as illustrated in Fig. 1. It was observed that BSA exhibited a strong
fluorescence emission band at 347 nm. The fluorescence in-
tensities of BSA reduced gradually with increasing AHDMAPPC
concentrations, and a blue shift was also observed, which suggests
that the fluorescence chromophore of serum albumin is placed in
a more hydrophobic environment after the addition of AHD-
MAPPC. The fluorescence quenching effect was due to the forma-
tion of non-fluorescent complex [20]. Fluorescence quenching is
the decrease of the fluorescence quantum yield from a fluorophore
induced by a variety of molecular interactions, such as excited-
state reactions, energy transfer, ground-state complex formation,
and collisional quenching. The quenching mechanisms are usually
classified as dynamic quenching and static quenching, which can
be distinguished by their different dependence on temperature
and viscosity [21]. Since higher temperatures result in large dif-
fusion coefficients for dynamic quenching, the quenching con-
stants are expected to increase with increasing temperature. In
contrast, a higher temperature may bring about the decrease in
the stability of the complexes, resulting in a lower quenching
constant for the static quenching.

3.2. Quenching mechanism analysis

To further elucidate the quenching mechanism of BSA induced
by pyrimidine derivative, the fluorescence quenching data were
analyzed with the Stern–Volmer equation [22].

F F k Q K Q/ 1 1 1q SV0 0τ= + [ ] = + [ ] ( )

where F0 and F are the relative fluorescence intensities in the
absence and presence of quencher respectively, Q[ ] is the con-
centration of quencher, KSV the Stern–Volmer dynamic quenching
constant, kq the bimolecular quenching rate constant and 0τ the
average lifetime of the fluorophore in the excited state usually for
a biomacrolecule10�8 s [23–25]. The formation of complex was
further confirmed from the values of quenching rate constants kq,



Fig. 1. The fluorescence quenching spectra of BSA in the presence of AHDMAPPC
CBSA¼2.0�10�5 M; CAHDMAPPC(10�6 M) (a–i): 0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 7.0, 8.0,
(T¼300 K, pH¼7.4, λex¼280 nm).

Fig. 2. Stern–Volmer plots describing BSA quenching caused by AHDMAPPC at
three different temperatures. CBSA is the same as that in Fig. 1.

Table 1
Stern–Volmer quenching constants and bimolecular quenching rate constants for
the interaction of AHDMAPPC with BSA at various temperatures.

T (K) Ksv (10–5, L/mol) kq (10–13, L/mol s) R

300 1.6292 1.6292 0.9968
310 1.4102 1.4102 0.9978
320 1.3135 1.3135 0.9928

R is the correlation coefficient.

Fig. 3. Modified Stern–Volmer plot for the binding of BSA–AHDMAPPC.

Fig. 4. The plots of log(F0–F)/F versus log[Q] at three different temperatures. CBSA
and CAHDMAPPC are the same as those in Fig. 1.
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Fig. 2 shows the plot of F F/0 for BSA versus [AHDMAPPC] at
300 K, 310 K and 320 K. Linear fittings of the experimental
data obtained afford KSV and kq (Table 1). The plots showed that
within the investigated concentration, the results exhibited a
good linear relationship. Table 1 shows that KSV values were in-
versely correlated with temperatures, which suggests that the
fluorescence quenching of BSA was initiated by the formation of
ground-state complex. For dynamic quenching, the maximum
scattering collision quenching constant of various quenchers is
(2.0�1010 L/mol s) [26]. The results showed that the value of kq

was much greater than 2.0�1010 L/mol s, which indicated that the
probable quenching mechanism of fluorescence of BSA by AHD-
MAPPC is not caused by dynamic collision but from the formation
of a complex. It is well known that the Stern–Volmer equation is fit
for both dynamic and static quenching mechanism. Nevertheless,
the Stern–Volmer slope (KSV ) is expected to depend on the con-
centration of BSA in a static quenching process, whereas the slope
does not change at any concentration of BSA in a dynamic process.
It again indicates that the quenching arises from the complex
formation rather than a dynamic process. The fluorescence data
were further examined using modified Stern–Volmer equation
[27]:

F F f K Q f/ 1/ 1/ 1/ 3a a a0 Δ = [ ][ [ ]] + ( )

where fa is the fraction of the initial fluorescence that is accessible
to quencher; Ka is the Stern–Volmer quenching constant of the
accessible fraction and Q[ ] is the concentration of quencher. Fig. 3
displays the modified Stern–Volmer plots; the dependence of
F F/0 Δ on the reciprocal values of the quencher concentration
Q 1[ ]− is linear. The plots showed that within the investigated
concentration, the results exhibited a good linear relationship,
which again confirms that quenching mechanism between pyr-
imidine derivative and BSA belongs to the static quenching.

3.3. Evaluation of the binding constant and binding site

The usefulness of the drugs as therapeutic agents is basically
dependent on their binding ability that can also influence the drug
stability and toxicity during their chemotherapeutic process. In
addition, the drug–protein complex may be considered as an ex-
cellent miniature model for gaining insights into the general drug–
protein interaction. To see the binding interaction between AHD-
MAPPC and serum albumin, the binding constant values were
determined from the fluorescence intensity data.

When small molecules bind independently to a set of equiva-
lent sites on a macromolecule, the equilibrium between free and
bound molecules is given by the following equation [28]:

F F
F

K n Qlog log log 4
0( − )

= + [ ] ( )

Thus, for a static quenching interaction, the binding constant



Table 2
Binding constants (K) and the number of binding sites (n) of competitive experi-
ment of AHDMAPPC–BSA system.

T (K) K (10–5, L/mol) n R

300 9.6694 1.0657 0.9964
310 12.8262 1.1005 0.9994
320 14.4249 1.2066 0.9971

R is the correlation coefficient.

Table 3
Thermodynamic parameters of AHDMAPPC–BSA interaction at pH 7.4.

T (K) ΔH (kJ/mol) ΔG ( kJ/mol) ΔS (J/mol K) R

300 15.151 �34.457 165.36 0.9871
310 �36.110
320 �37.764

R is the correlation coefficient.

Fig. 6. Spectral overlap of AHDMAPPC excitation (curve A) with BSA emission
(curve F). T¼300 K, CBSA¼2.0�10�5 M, CAHDMAPPC¼2.0�10�6 M.

Fig. 5. Van't Hoff plot for the binding of BSA to AHDMAPPC.
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(K) and the number of binding sites (n) per BSA molecule can be
determined at physiological pH 7.4, where F0, F , and Q[ ] are the
same as those in Eq. (1). A plot of F F Flog /0[( − ) ] versus Qlog [ ]
(Fig. 4) gives a straight line, whose slope equals n and the intercept
on the Y-axis equals Klog . The values of K and n at 300, 310 and
320 K are listed in Table 2. The values of n for serum albumin, BSA,
are approximately equal to one, indicating that there is one
binding site in BSA for pyrimidine derivative during their inter-
action. The binding strength of the drug to BSA is the main
factor in its availability to diffuse from the circulatory system to
target [29]. Most ligands are bound reversibly and exhibit mod-
erate affinities for protein [binding constants in the range
(1–15)�104 L/mol] [30]. So the K values show that the binding
between AHDMAPPC and BSA is moderate, which indicates that a
reversible AHDMAPPC–BSA complex formation and AHDMAPPC
can be stored and carried by BSA.

3.4. Thermodynamic parameters and binding forces

The interaction forces between a small organic molecule and a
biological macromolecule mainly consist of four types: hydro-
phobic interactions, hydrogen bonding, van der Waals forces, and
electrostatic interactions. Ross and Subramanian have character-
ized the signs and magnitudes of the thermodynamic parameters
( HΔ and SΔ ) associated with various individual kinds of interaction
that may take place in protein association process [31]. That is, if
ΔH40 and ΔS40, the main force is hydrophobic interaction. If
ΔHo0 and ΔSo0, van der Waals and hydrogen-bonding inter-
actions play major roles in the reaction. Electrostatic forces are
more important when ΔHo0 and ΔS40. If the temperature
changes only a little, the enthalpy change (ΔH) can be regarded as
a constant.

To obtain such information, the implications of the present
result have been discussed in conjunction with thermodynamic
characteristics obtained for AHDMAPPC–BSA binding, and the
thermodynamic parameters were calculated from the van't Hoff
equation,

K
H

RT
S

R
ln 5T = − Δ + Δ

( )

K is the binding constant at temperature T and R is gas con-
stant. The enthalpy change H(Δ ) is calculated from the slope of the
van't Hoff relationship. The free energy change G(Δ ) is estimated
from the following relationship:

G H T S 6Δ = Δ − Δ ( )∘ ∘ ∘

According to the binding constants at the three different tem-
peratures, 300, 310 and 320 K, the thermodynamic parameters
were determined from linear van't Hoff plot (Fig. 5) and were
presented in Table 3. (The plot of Kln versus T1/ gave a straight
line according to the van't Hoff equation). According to the values
of the thermodynamic parameters (Table 3) for the interaction of
the studied pyrimidine compound with BSA, the binding of pyr-
imidine derivative to BSA is a spontaneous process, as indicated by
the negative free energy change G(Δ ), accompanied by a positive
entropy change S(Δ ). This binding involves an endothermic reac-
tion as manifested by the positive enthalpy change H(Δ ) that is
consistent with the increase in K values with temperature.

3.5. Energy transfer between pyrimidine compound and BSA

Energy transfer phenomena have wide applications in the en-
ergy conversion process. According to Föster's nonradiative energy
transfer theory, the energy transfer will happen under the fol-
lowing conditions: (i) the donor can produce fluorescence light;
(ii) the fluorescence emission spectrum of the donor and the UV
absorption spectrum of the acceptor have more overlap; and
(iii) the distance between the donor and the acceptor is o8 nm.
The overlap of the absorption spectrum of AHDMAPPC with the
fluorescence emission spectrum of BSA at pH 7.4 is shown in Fig. 6.
The efficiency (E) of energy transfer between the donor and the
acceptor can be calculated by the following equations [32]:

E
F
F

R

R r
1

70

0
6

0
6 6

= − =
+ ( )

where r is the binding distance between donor and receptor, and
R0 is the critical distance when the efficiency of excitation energy
transferred to the acceptor is 50%. It can be calculated from donor



Fig. 8. Effect of AHDMAPPC on the UV–vis absorption of BSA. CBSA¼1.0�10�5 M;
CAHDMAPPC(10�6 M): 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0 (T¼300 K, pH¼7.4).
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emission and acceptor absorption spectra using the Föster for-
mula:

R K n J8.79 10 80
6 25 2 4φ= × ( )− −

where K 2 is the spatial orientation factor of the dipole, n is the
refractive index of the medium, φ is the fluorescence quantum
yield from the donor, and J is the overlap integral of the fluores-
cence emission spectrum of the donor with the absorption spec-
trum of the acceptor, which can be calculated by the following
equation:

J
F d

F d 9

0
4

0

∫
∫

λ ε λ λ λ

λ λ
=

( ) ( )

( ) ( )

∞

∞

where F λ( ) is the fluorescence intensity of the fluorescent donor at
a wavelength λ to λ λ+ Δ ; and ε λ( ) is the molar absorption coeffi-
cient of the acceptor at wavelength λ. In the present caseK 2/32 = ,
n 1.336= and φ¼0.15 [33]. Hence, from Eqs. (7)–(9), we
could calculate that R0¼2.573 nm, E¼0.37 and r¼2.79 nm,
r 7< nm. The values for R0 and r are on the 2–8 nm scale and

R r R0.5 1.50 0< < indicating an interaction between pyrimidine
derivative and BSA (Trp-212). The data suggested that the energy
transfer from BSA to AHDMAPPC could occur with high probabil-
ity. In accordance with prediction by Förster's nonradiative energy
transfer theory, these results indicated again a static quenching
interaction between pyrimidine derivative and BSA.

3.6. Analysis of the conformation of BSA upon addition of
AHDMAPPC

Although it has been confirmed that the binding of pyrimidine
derivative to BSA results in the fluorescence quenching of BSA, it is
still a puzzle about whether the binding affects the structure and
the microenvironment of BSA. Therefore, we utilized the methods
of UV–vis absorption, synchronous fluorescence, three-dimen-
sional fluorescence spectroscopy and circular dichroism to further
investigate the conformational changes of BSA.

3.6.1. UV–vis absorption spectral studies
UV–vis absorption measurement is a very simple method and

applicable to explore the structural changes and to know the
complex formation [34,35]. The UV absorption spectrum
(Figs. 7 and 8) shows the effect of pyrimidine derivative, AHD-
MAPPC on the BSA absorption spectrum. As shown in Fig. 8, a
strong absorption peak was observed at 279 nm and 390 nm, and
the peak intensity increased with the concentration of AHD-
MAPPC. Furthermore, the formation of AHDMAPPC–BSA complex
resulted in a slight shift (from 279 nm to 284 nm) of the spectrum
towards longer wavelengths indicating the interaction between
pyrimidine derivative and BSA. The presence of isosbestic point
also implies the formation of complex.
Fig. 7. UV–visible spectra of AHDMAPPC only, AHDMAPPC–BSA 1:1 complex, and
BSA only (T¼300 K, pH¼7.4).
The obvious enhancement of absorbance intensity also in-
dicated the formation of a new complex between them; in addi-
tion, the structure of BSA changed upon interaction with AHD-
MAPPC. The strong absorption peak at around 278 nm is due to the
aromatic amino acids (tryptophan, tyrosine and phenylalanine).
With gradual addition of AHDMAPPC, the peak intensity of BSA at
278 nm increases with a red shift, which indicated that the in-
teraction between them leads to the loosening and unfolding of
the protein backbone and decreases the hydrophobicity of the
microenvironment of BSA.

3.6.2. Synchronous fluorescence spectroscopic studies of BSA
Synchronous fluorescence spectroscopy, with several ad-

vantages such as sensitivity, spectral simplification, spectral
bandwidth, reducing and avoiding different perturbing effects, is a
very useful method to study the microenvironment of amino acid
residues by measuring the emission wavelength shift and several
advantages, such as sensitivity, spectral simplification, spectral
bandwidth reduction and avoiding different perturbing effects
[36,37]. Miller suggested a useful method to study the environ-
ment of amino acid residues by measuring the possible shift in
wavelength emission maximum λmax. The shift in position of
emission maximum corresponds to the changes of the polarity
around the chromophore molecule [38]. As is known, synchronous
fluorescence spectra show Trp residues of BSA only at the wave-
length interval (Δλ) of 60 nm and Tyr residues of BSA only at Δλ
of 15 nm. Fig. 9 shows the synchronous fluorescence spectra of Trp
residues in BSA and those of Tyr residues in BSA with various
amounts of pyrimidine derivative, respectively. It can be seen from
Fig. 9 that the maximum emission wavelength kept the position at
the investigated concentrations range when Δλ¼15 nm while the
maximum emission wavelength had a slight blue shift (337 nm-

334 nm) when Δλ¼60 nm. It indicated that the polarity around
tryptophan residues decreased, which suggested that tryptophan
residue was placed in a more hydrophobic environment. This im-
plies that the interaction of AHDMAPPC with BSA may cause a
minor conformational change of Trp residue micro-regions.

3.6.3. Three-dimensional (3D) fluorescence spectra
Three-dimensional fluorescence spectra has become a popular

fluorescence analysis technique in recent years. It is well known
that three-dimensional fluorescence spectrum can provide more
detailed information about the change of the configuration of
proteins [39]. In addition, the contour map can also provide a lot of
important information. Fig. 10 presents the three-dimensional
fluorescence spectra and contour ones of BSA (A) and AHDMAPPC–
BSA (B), respectively with the corresponding parameters shown
in Table 4. The contour map displays a bird's eye view of the



Fig. 9. Synchronous fluorescence spectrum of BSA (T¼300 K, pH¼7.4, CBSA¼2.0�10�5 M, CAHDMAPPC(10�6 M): 0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0). (A) Δλ¼15 nm and (B)
Δλ¼60 nm.
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fluorescence spectra. In Fig. 10A, peak A is the Rayleigh
scattering peak (λex¼λem) and typical fluorescence peaks also can
be easily observed in the isometric three-dimensional projection
or three-dimensional fluorescence contour map of BSA
(λex/λem¼260/340 nm). From Fig. 10B, it can be seen that the
fluorescence intensity of peak A decreased with the increase of
pyrimidine compound, due to the formation of a drug–BSA com-
plex after the addition, making the diameter of BSA decreased,
which in turn resulted in the decrease of the scattering effect. As
referred to peak B, we think that it mainly reveals the spectral
characteristic of tryptophan and tyrosine residues. The reason is
that when serum albumin is excited at 280 nm, it mainly reveals
the intrinsic fluorescence of tryptophan and tyrosine residues,
which is related to changes in the conformation of the peptide
backbone associated with the helix-coil transformation. The
Fig. 10. The three-dimensional projections and the corresponding excitation–
emission matrix fluorescence diagrams of BSA before (A) and after (B) AHDMAPPC
addition. CBSA¼2.0�10�5 M, CAHDMAPPC¼6.0�10�6 M, T¼300 K, pH¼7.4.
fluorescence intensity of the peak decreased markedly following
the addition of AHDMAPPC, indicating that the conformations of
the peptide backbone, tryptophan and tyrosine residues of BSA
were altered. This suggests that the binding of AHDMAPPC–BSA
induced some microenvironmental and conformational changes in
BSA; a complex between them has been formed.

3.6.4. Measurement of circular dichroism
The alterations in the secondary structure of the protein in the

presence of the probe were studied by measuring CD on a J-815CD
spectrophotometer using a quartz cuvette of path length 0.1 cm at
1 nm data pitch intervals. All CD spectra were taken in a wave-
length range 190–250 nm. The spectrophotometer was sufficiently
purged with 99.9% nitrogen before starting the instruments. The
spectra were collected at a scan speed of 50 nm/min with response
time of 1 s at 300 K temperature. Each spectrum was baseline
corrected and the final plot was taken as an average of four ac-
cumulated plots. The results were expressed as the mean residue
ellipticity (MRE in deg cm2 dmol�1 res�1), which is defined by the
following equation [40]:

ObservedCD
C n l

MRE
m deg

10 10p
= ( )

× × × ( )

where n is the number of amino acid residues (583 for BSA), l is
the path length of the cell (0.1 cm), and Cp is the protein con-
centration in moles dm�1. Helicity content was calculated from
the MRE values at 222 nm using the following equation [40]:

MRE
% helix %

2340
30300

100 11
222α‐ ( ) =

−( − )
× ( )

Far UV CD spectra were recorded to examine the secondary
structure of BSA in the presence of AHDMAPPC. Fig. 11 shows the
CD spectra of free BSA and BSA�AHDMAPPC complex. As seen in
Fig. 11, BSA and its complex with probe exhibit negative absorp-
tion bands with maxima at ∼208 nm (n-π*) and 222 nm (π-π*),
which are the characteristic band of the α-helical structure of BSA
[41–44]. In presence of AHDMAPPC, we observed that the intensity
of the negative band increased without any discernible shift of the
band maxima. This increase in ellipticity indicates stabilization of
the complex with respect to free BSA [40]. We also calculated the
percentage of α-helix by using Eqs. (10) and (11) for free BSA and
BSA in the presence of AHDMAPPC. From these calculations, we
found that α-helical content of BSA increased from 56.4% for free
BSA to 58.6% at a molar ratio AHDMAPPC:BSA of 1:1 and to 66.3%
at 1:4 concentration upon binding to BSA. Such slight changes in
α-helical content of BSA, upon binding with small ligands, are
consistent with reported literature [45–49].



Table 4
Three-dimensional fluorescence spectral characteristics of BSA and BSA-AHDMAPPC system.

Peaks BSA BSA-AHDMAPPC

Peak position λex/λem (nm/nm) Stokes Δλ (nm) Intensity (F) Peak position λex/λem (nm/nm) Stokes Δλ (nm) Intensity (F)

Rayleigh scattering peaks 280/280 0 83.6 280/280 0 64.3
Fluorescence peaks 280/342 62 273.1 280/344 64 118.7

Fig. 11. Circular dichroism spectra of free BSA and AHDMAPPC–BSA complexes.
CBSA¼2.0�10–5 M, CAHDMAPPC¼2.0�10�6 M, T¼300 K, pH¼7.4.
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4. Conclusions

Binding interaction of a biologically active pyrimidine deriva-
tive with BSA was investigated in detail using different spectro-
scopic methods. We used different approaches to explore the in-
teractions under physiological conditions. The experimental re-
sults showed that the fluorescence quenching of model carrier
protein, BSA, by reagent was a result of the formation of complex
between them by static quenching. The site binding constants and
number of binding sites were determined at three different tem-
peratures. The thermodynamic parameters indicated that the re-
action was endothermic and spontaneous process, and hydro-
phobic interactions played a major role in the binding of drug to
BSA. The distance between donor and acceptor and alterations of
BSA secondary structure in the presence of pyrimidine derivative
were also confirmed. All these experimental results and theore-
tical data clarified that pyrimidine derivative can bind to BSA and
be effectively transported and eliminated, which can be a useful
guideline for further clinical study.
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