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Abstract: It has widely been accepted that food restriction (FR) without malnutrition has multiple
health benefits. Various calorie restriction (CR) and intermittent fasting (IF) regimens have recently
been reported to exert neuroprotective effects in traumatic brain injury (TBI) through variable
mechanisms. However, the evidence connecting CR or IF to neuroprotection in TBI as well as
current issues remaining in this research field have yet to be reviewed in literature. The objective of
our review was therefore to weigh the evidence that suggests the connection between CR/IF with
recovery promotion following TBI. Medline, Google Scholar and Web of Science were searched from
inception to 25 February 2022. An overwhelming number of results generated suggest that several
types of CR/IF play a promising role in promoting post-TBI recovery. This recovery is believed to be
achieved by alleviating mitochondrial dysfunction, promoting hippocampal neurogenesis, inhibiting
glial cell responses, shaping neural cell plasticity, as well as targeting apoptosis and autophagy.
Further, we represent our views on the current issues and provide thoughts on the future direction of
this research field.

Keywords: traumatic brain injury; calorie restriction; intermittent fasting; mitochondrial dysfunction;
hippocampal neurogenesis; glial cell responses; neural cell plasticity; apoptosis; autophagy

1. Introduction

Since ancient times, worldwide religions have advocated for food restriction (FR) due
to its physical and psychological benefits [1–3]. However, the health benefits owing to FR
have only in recent years been supported by scientific evidence. Calorie restriction (CR)
is a commonly used FR strategy that restricts everyday energy intake without incurring
malnutrition [4]. In experimental animal models, appropriate CR has been shown to have
benefits including elongation of life span [5], promotion of weight loss [6–8], suppression
of inflammation [9–11], cardiovascular disease risk reduction [12–14], and cancer preven-
tion [2,15]. Notwithstanding these benefits, there are still concerns when applying CR,
such as poor CR compliance [16]. Researchers have therefore been looking for alterna-
tive FR regimens that can provide similar benefits. One of these regimens is intermittent
fasting (IF), and it has recently become a popular trend and lifestyle [17]. IF refers to
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cycles of fasting and intermittent feeding window over a given time schedule [2,16,18].
There are various time-scheduled IF methods, the following three are the most common
approaches: periodic fasting (PE), time-restricted feeding (TRF) and alternate-day fasting
(ADF) [16]. The IF ultimately triggers a process called “the metabolic switch”, which shifts
the metabolism from glycogenolysis to the mobilization of fat via fatty acid oxidation
and ketogenesis, resulting in related biochemical pathway changes [1,19,20]. It is widely
accepted that these changes under IF positively contributes to human health in multiple
areas [21–24]. Recent studies in the field of neuroscience have found scientific evidence that
IF exerts protective effects against multiple neurological diseases and disorders, includ-
ing Alzheimer’s disease (AD) [25,26], Parkinson’s disease (PD) [27,28], multiple sclerosis
(MS) [29,30], epilepsy [31,32], ischemic stroke [33–35], and depression [36–38].

Traumatic brain injury (TBI), a temporary or permanent disruption of normal brain
function due to damage incurred by external forces [39], is a major burden on those
effected [40–42]. After the initial brain trauma, the secondary injury process spreads via a
complex sequence of events in the pathogenesis of TBI [43–45]. Therapeutics targeting the
development of the secondary injuries play a key role in limiting disabilities incurred from
TBI while achieving unsatisfactory clinical outcomes [46,47]. To improve the quality of life
for patients suffering from TBI, the search for more effective interventions for TBI has to
continue. Our study recently found that a 1-month IF regimen prior to TBI significantly
improved cognitive function following the insult, in which Npy (Neuropeptide Y)-induced
neurogenesis made a contribution [48]. In addition, several studies have shown that
multiple FR regimens, mainly CR and IF, exert positive effects on the development of
TBI via various mechanisms [19,49,50]. However, the scientific evidence bridging CR/IF
with neuroprotection in TBI has not been systematically reviewed in previous literature.
Additionally, concerns regarding this research field remain elusive. To this end, here we
have retrospectively reviewed the recent studies on CR/IF in the TBI, summarized the
current issues, and presented our consideration of future directions in this research field.

2. Neuroprotective Effects of CR and IF in TBI
2.1. Alleviating Mitochondrial Dysfunction

The preservation of normal mitochondrial function is critical for inhibiting the de-
terioration of secondary TBI injury [51–53]. Davis et al. reported that acute fasting (for
a single 24 h) in adult male rats, after receiving moderate cortical control impact (CCI),
significantly increased tissue-sparing postinjury [54]. The underlying mechanism is sug-
gested to be reduced mitochondrial damage, as indicated by lower levels of mitochondrial
reactive oxygen species (ROS) production, calcium loading, lipid peroxidation and protein
carbonyls [55]. Additionally, administration and maintenance of serum d-bHB at a level
similar to the fasting state also alleviated mitochondrial dysfunction and increased tissue
sparing after moderate CCI, indicating the neuroprotective role of fasting was achieved
by elevated d-bHB level. Notably, a higher dose of d-bHB did not present similar neu-
roprotective effects, suggesting a dose-dependent effect on the efficacy of serum ketones
in TBI [54]. Studies on the effects of CR on mitochondrial protection following TBI are
limited. However, since CR usually induces ketone production, the study of ketogenic
diet (KD) may provide some clues. KD was recently found to reduce oxidative stress
following CCI, while inducing the levels of antioxidants, superoxide dismutase (SOD1/2),
and NAD(P)H dehydrogenase, thereby improving mitochondrial respiratory complex
activity [56]. Whether this effect can be achieved by fasting or simply calorie restriction
still needs to be explored. Additionally, several variables must be considered; for instance,
current studies only involve male animal models, so whether food restriction has a similar
effect on the female remains to be determined. Moreover, age should also be taken into
consideration. Furthermore, although Davis et al. reported that a prolonged fasting (48 h)
did not show profound neuroprotection, further investigation would be required to deter-
mine whether IF or daily calorie restriction could produce the mitochondrial protection.
Finally, CR alters the level of numerous factors [57–61] besides d-bHB, but other factors
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contributing to the improved mitochondrial function also requires further investigation.
The screening of overlapping differentially expressed genes (DEGs) by CR-induced and
brain injury-induced transcriptional changes may be valuable.

2.2. Promoting Hippocampal Neurogenesis

Hippocampal dysfunction is a major pathological aspect of TBI that generally affects
patients’ spatial learning and memory [62–65]. We recently found that a 1-month IF
regimen other than acute fasting prior to CCI significantly enhanced the proliferation of
neural stem cells (NSCs) in the subgranular zone (SGZ) of the hippocampus and improved
cognitive function postinjury [48]. A subsequent loss of function study demonstrated
that the neurogenesis-promoting effect of IF following TBI was achieved by increasing
the neuronal NPY expression in the hippocampus [48]. Our study, contrary to that of
Davis, suggests the health benefits of an IF regimen in TBI and its underlying mechanisms.
Davis’s conclusion demonstrated that a single 24 h period of fasting after moderate CCI
exhibited neuroprotection postinjury [54]. The cause of this contradiction may be due to
the differences in species, but this requires further investigation.

To the best of our knowledge, no other study has reported the effects of IF or other
types of CR on hippocampal neurogenesis after TBI. In ischemic brain injury, a three-month
IF regimen prior to injury was found to limit both the proliferation of basal cells and cell
death in the subgranular region of the hippocampus and SVZ—two regions of sustained
neurogenesis in the adult brain [66]. However, this regimen promoted cell proliferation in
the dentate gyrus of intact mice. These results raised the following questions: (1) Does the
1-month IF regimen promote or inhibit hippocampal basal cell proliferation following TBI?
(2) If the fasting regimen was prolonged to 3 months, would there be any difference in the
behavior of NSCs in the SGZ as we reported [48]?

Other issues must also be addressed. For instance, in a noninjury study, IF was
reported to promote neurogenesis by stimulating ketogenic effects [67]. In our TBI study, the
1-month IF regimen was also found to be ketogenic; thus, whether the increased expression
of Npy and enhanced neurogenesis under IF were achieved through the ketogenic effect
remains to be explored. Further, some noninjury studies found that factors such as brain-
derived neurotrophic factor (BNDF) and neurotrophic molecule-3 (NT-3) also participate
in the IF-induced neurogenesis or differentiation of neurons in the hippocampus [68,69].
Therefore, investigations targeting other pathways or factors in the IF-induced benefits
following TBI are valuable.

2.3. Inhibiting Glial Cell Responses

It is generally accepted that glial cell activation following brain injury plays a critical
role in the progression of secondary injury following the primary insult [70–74], such as
triggering the neuroinflammatory responses [75–79]. Adult male mice on a three-month CR
regimen (50% of a normal daily diet) prior to TBI were found to have significantly reduced
microglia activation one month after injury. As a result, the release of proinflammatory
cytokines (e.g., TNF-α) was profoundly inhibited, thus reducing the neuroinflammation
and ameliorating neurological damage after TBI [80]. Consistently, another non-TBI study
in rats also demonstrated the anti-inflammatory properties of CR, which reduced microglia
activation in the hypothalamic arcuate nucleus (ARC) [81].

For astrocytes [82], a 3-month 50% CR prior to cortical puncture has been shown to
lower the number of reactive astrocytes in the injured area [83]. Consistently, in another rat
model study, a 1-month CR regimen following moderate TBI demonstrated the reduction
of GFAP-positive cells in the hippocampal CA3 region, and improved cognitive dysfunc-
tion [84]. Notably, a ketogenic diet following moderate TBI was also found to prevent
neuroinflammation and inhibit astrocytes activation in male mice [50]. Therefore, suppres-
sion of astrocyte activation by CR may involve the production of ketone bodies. In addition,
IF has been shown to reduce astrocyte activation in other types of brain injury, s86uch as
the kainic acid-induced brain injury [85]. In summary, these results suggest that the CR,
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either prior to or post injury, inhibits astrocyte activation and glia scar formation following
TBI. These results, in future medicine, have the potential to guide clinical intervention in
the progression of secondary brain injury [86–88].

2.4. Shaping Neural Cell Plasticity

In the pathogenesis of TBI, neural cell plasticity (including synaptogenesis, alterations
of neural cell structure, and change in growth factor signaling, etc.) remodels to promote
functional recovery [89–93]. Earlier, Nataša et al. reported that male rats maintained
on a 3-month 50% food restriction (FR) prior to TBI exhibited quantitative changes in
synaptophysin (SYP), growth-associated protein 43 (GAP-43), and glial fibrillary acidic
protein (GFAP)—markers of neuronal and glial plasticity, respectively [83]. FR profoundly
raised GAP-43 and SYP expression in the cortex surrounding the lesion, indicating increased
axonal branching and synapses [83]. In ad libitum (AL) rats, reactive astrocytes have
been observed without immunoactivity for GAP-43 or SYP [83]. These results suggest
that the FR promotes recovery by enhancing neuronal plasticity while inhibiting reactive
astrogliosis. In a noninjury study, a daily IF regimen (22 h fasting per day) for 3 weeks
significantly increased mushroom dendritic spine density and hippocampal expression of
BDNF, suggesting a change in the dendritic spine remodeling (2). Altogether, these data
point to the conclusion that a relatively long period of FR may improve cognitive function
following TBI by shaping neural cell plasticity, in which multiple pathways and factors are
involved. Whether short-term or acute calorie restriction has similar benefits still remains
to be determined. In addition, the effect of IF on female animal models remain elusive and
need to be investigated in future studies.

2.5. Targeting Apoptosis and Autophagy

Studies have shown that apoptosis and autophagy play detrimental roles in the
pathogenesis of TBI [94–97]. By targeting apoptosis or the activity of autophagy, progression
of TBI can possibly be attenuated [94,95]. Earlier, Natasa et al. demonstrated that a 50%
CR regimen lasting 3 months, prior to cortical stab injury (CSI), suppressed caspase-3
expression in the ipsilateral cortex, which attenuated the secondary injury after the primary
insult (3). The same group later reported that the 50% dietary restriction (DR) for 3 months
before TBI affected the intrinsic apoptotic pathway [98]. The DR prevented the increase of
the proapoptotic gene Bax while enhanced the expression of antiapoptotic genes Bcl-2 and
Bcl-xl in the ipsilateral cortex post injury (4).

Additionally, CR has been reported to affect autophagy. In one study, rats were fed
a 70% CR diet for a period of 3 months after mild TBI (mTBI) was induced, the findings
revealed decreased the mammalian target of rapamycin (mTOR) activity [84], which is
responsible for the inhibition of autophagy. In the same study, enhanced LC3B expression
in the hippocampus [84], which promotes autophagy, was also noted. In addition, the
postinjury cognitive dysfunction was ameliorated under the CR. These results suggest that
the CR after mTBI improves cognition by enhancing hippocampal autophagy.

The above studies support the idea that a variable degree of calorie cut promotes
neural cell survival in both the cortex and hippocampus, via different pathways. However,
investigations on female animal models are still lacking. A more systematic comparative
study on the effect of different ratios and durations of energy cuts in preventing cell death
or promoting cell survival in different brain regions is still needed. More reputable loss-of-
function studies could be helpful in bridging these mechanisms with improved cognition
or tissue spares after TBI.

3. Current Issues and Perspectives

Although various types of CR have been shown to bring health benefits via multiple
mechanisms in TBI, there are still several issues to be addressed. (1) The IF and simply CR
must be clearly distinguished. In simply CR studies, as the everyday insatiety promotes
cravings for food, pellets are consumed in a short time once provided. Therefore, the
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experimental subjects were left without food for the time remaining, consequently allowing
them to enter the IF state. In some IF studies, whether the neuroprotective effect is achieved
via a specific fasting regimen or simply by energy restriction should also be determined.
To clearly distinguish between these two conditions, we suggest that food pellets be
provided several times per day in simply CR studies, to avoid long fasting intervals.
(2) As the recovery process initiates immediately after TBI, but acute CR was not able to
cause significant improvement in the recovery within a very short time, thus previous
studies usually planned the long-term CR regimen before injury. This raises the question
of whether the therapeutic relevance of such an approach might be zero. Investigating
the neuroprotective mechanisms of long-term CR and thence screening for therapeutic
targets that mimic the benefits of CR may be helpful. In future research, the post-traumatic
CR regimen may need to be modified to test for a therapeutic effect. (3) Female animal
models are usually not involved in previous studies. Due to the roller-coaster ride of
the sex hormone in menstrual cycle, female subjects usually exhibit huge variability in
response to CR. Keeping the other variables consistent and largely increasing the N number
in the experiment could potentially ameliorate this issue. (4) In our study, we found that
when the daily energy cut was more than 30% over a prolonged period of 10 days, the
mice become thin, weak, and inactive. Thus, h18ealth conditions, especially the risk of
malnutrition, should be carefully monitored and reported in CR studies. (5) Circulating
metabolites, such as blood glucose, β-hydroxybutyric acid, and insulin, greatly change
during CR; however, this has yet to be extensively studied in TBI cases. Some of them
might act as the mediators connecting the CR with its neuroprotective effect. Furthermore,
the levels of these metabolites can easily be changed through clinical interventions. Thus,
we suggest further investigations of the role of these metabolites in future TBI studies.
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