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Abstract

Current practice by clinical diagnostic laboratories is to utilize online prediction

programs to help determine the significance of novel variants in a given gene

sequence. However, these programs vary widely in their methods and ability to

correctly predict the pathogenicity of a given sequence change. The perfor-

mance of 17 publicly available pathogenicity prediction programs was assayed

using a dataset consisting of 122 credibly pathogenic and benign variants in

genes associated with the RASopathy family of disorders and limb-girdle mus-

cular dystrophy. Performance metrics were compared between the programs to

determine the most accurate program for loss-of-function and gain-of-function

mechanisms. No one program correctly predicted the pathogenicity of all vari-

ants analyzed. A major hindrance to the analysis was the lack of output from a

significant portion of the programs. The best performer was MutPred, which

had a weighted accuracy of 82.6% in the full dataset. Surprisingly, combining

the results of the top three programs did not increase the ability to predict

pathogenicity over the top performer alone. As the increasing number of

sequence changes in larger datasets will require interpretation, the current study

demonstrates that extreme caution must be taken when reporting pathogenicity

based on statistical online protein prediction programs in the absence of

functional studies.

Introduction

Clinical diagnostic laboratories are often faced with the

challenge of describing novel sequence variants in disease-

associated genes. While the establishment of mutation da-

tabases has helped to catalog previously reported variants,

the interpretation of a truly novel unpublished variant

still remains challenging. As whole-exome sequencing

(WES) expands into clinical practice, there is the poten-

tial for the identification of a vast number of unique

sequence variants that will need to be analyzed for poten-

tial impact on the specific phenotype of the individual.

The gold standard for variant analysis is functional

experimentation in an appropriate system. However, this

is beyond the scope of most clinical laboratories. Instead,

laboratories frequently utilize online pathogenicity

prediction programs, along with traditional literature and

database inquiries. These programs attempt to assign a

pathogenicity rating for missense variants using different

components concerning sequence evolution and protein

structure. As each program utilizes a different algorithm,

the interpretations can be significantly different for a

given variant. In addition, while guidelines for the use of

prediction tools for research applications have been pub-

lished, no consensus rules for their clinical validation and

application exist (Vihinen 2013). Consequently, identifica-

tion of the best possible pathogenicity prediction program

for an individual laboratory’s needs is of paramount

importance.

We evaluated the performance of 17 publicly avail-

able pathogenicity prediction programs. As input, we

generated a dataset of credibly pathogenic and benign
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variants for two distinct disease mechanisms: gain-of-

function/autosomal dominant mutations in the RASopa-

thy family of disorders and loss-of-function/autoso-

mal recessive mutations in the limb-girdle muscular

dystrophy (LGMD) family of disorders. With an eye

toward clinical implications, this study sought to iden-

tify the most effective pathogenicity prediction program

or set of programs for the clinical laboratory

diagnostician.

Materials and Methods

Variant selection

As no clinically-validated benchmark datasets are avail-

able, pathogenic and benign variants were selected for

analysis based on a review of clinical sequencing results

from the Molecular Genetics Laboratory at Nationwide

Children’s Hospital (NCH) from 2006 to 2013. Additional

benign variants were identified through an Ensembl

search for missense variants in the appropriate gene tran-

script. Only variants resulting in missense changes were

used in these analyses.

Variant classification

An ideal dataset for this exercise would consist of variants

which had all undergone functional analysis to concretely

establish their pathogenic link to a particular disease phe-

notype. As there is not a substantial number of variants

in the RASopathy- or LGMD-associated genes that meet

this criterion, we instead adopted an approach to select

variants with the greatest overall likelihood of being path-

ogenic or benign (Fig. 1). Variants defined as credibly

pathogenic for the purposes of this study met all of the

following criteria: published in a peer-reviewed journal as

disease-associated OR listed as such in a curated database

(HGMD, Leiden Muscular Dystrophy); variant identified

through clinical testing in a patient with clinical diagnosis

OR in a sample used in validation studies; and sequenced

in the NCH Molecular Genetics Laboratory. Validation

samples were specimens from verified cases obtained from

other diagnostic laboratories. Any amino acid changes

identified internally as likely pathogenic due to a lack of

published verification of pathogenicity were excluded.

These included variants that resulted in a different amino

acid change than that which had previously been reported

Figure 1. Scheme for the selection of variants used in this study. Functional studies are the gold standard by which to establish the disease

association (pathogenic) or normal variation (benign) status of any sequence variant. Unfortunately, functional studies have only been preformed

for a small portion of identified variants. To ensure the greatest likelihood that we were using pathogenic and benign variants to examine this

series of prediction programs, we used this selection criteria to establish our dataset. Thirty-six additional benign variants were extracted from

Ensembl as few had been identified by clinical sequencing analysis. For detailed descriptions of criteria, please see the Materials and Methods

section.
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as pathogenic for a given codon (i.e., PTPN11

p.Asp106Gly rather than p.Asp106Ala).

Variants defined as credibly benign met all of the follow-

ing criteria: seen in at least two sources that utilized large

populations (1000 Genomes, Exome Sequencing Project,

etc.); entry in dbSNP OR 1000 Genomes databases with a

minor allele frequency listed as greater than 0.001 (for

RASopathy genes) OR 0.010 (for LGMD genes) in at least

one population; and listed as “validated” in dbSNP OR

published in a peer-reviewed journal as benign. Of note, a

recent analysis of pathogenic variants found in the ESP

dataset did not list any variants in any of the genes in our

dataset (Dorschner et al. 2013).

Variant analysis

All variants were analyzed using the following publicly

available prediction programs: PolyPhen-2 (Adzhubei

et al. 2010), SIFT (Kumar et al. 2009), PMut (Ferrer-

Costa et al. 2004), SNPs3D (Yue et al. 2006), PANTHER

(Thomas et al. 2003), FATHMM (Shihab et al. 2013),

MutationTaster (Schwarz et al. 2010), Condel (Gonzalez-

Perez and Lopez-Bigas 2011), PROVEAN (Choi et al.

2012), Mutation Assessor (Reva et al. 2011), MutPred (Li

et al. 2009), nsSNPAnalyzer (Bao et al. 2005), PhD-SNP

(Capriotti et al. 2006), SNAP (Bromberg and Rost 2007),

and SNPs&GO (Calabrese et al. 2009). The majority of

these programs had only a single algorithm option for

analysis, with two exceptions. For PolyPhen-2, this

included HumDiv and HumVar algorithms (Adzhubei

et al. 2010); for FATHMM, this included Weighted and

Unweighted algorithms (Shihab et al. 2013).

Programs were used in the manner of a basic user

without high-level bioinformatics skills. Default settings

were used for each program, with the exception of PhD-

SNP; for this program, the option of a 20-fold cross-vali-

dation prediction was used. For programs utilizing a mul-

tiple sequence alignment, the native alignment was used.

Detailed descriptions of each program are listed in Data

S1.

Program performance

The performance of each of the protein prediction pro-

grams was analyzed by comparing a variety of statistical

measures using the following calculations:

Positive Predictive Value ¼ TP/(TP + FP)

Negative Predictive Value ¼ TN/(TN + FN)

Specificity ¼ TN/(FP + TN)

Sensitivity ¼ TP/(TP + FN)

Accuracy ¼ (TP + TN)/(TP + FP + TN + FN)

Performance Weight ¼ VarUse / VarCall

Weighted Accuracy ¼ Accuracy � Performance Weight

For these calculations, TP, True Positives, pathogenic

variants called as pathogenic; FP, False Positives, benign

variants called as pathogenic; TN, True Negatives, benign

variants called as benign; and FN, False Negatives, patho-

genic variants called as benign. For Performance Weight,

VarUse, number of variants that had usable pathogenicity

calls, that is, Damaging or Benign [possible predictions

were not included (i.e., Possibly Damaging), nor were

predictions with low reliability]; and VarCall, number of

variants that generated output predictions from a given

program.

Results

Study design

Two distinct datasets populated by variants defined as

credibly pathogenic or benign were used as input for 17

different pathogenicity prediction programs (Thomas

et al. 2003; Ferrer-Costa et al. 2004; Bao et al. 2005; Cap-

riotti et al. 2006; Yue et al. 2006; Bromberg and Rost

2007; Calabrese et al. 2009; Kumar et al. 2009; Li et al.

2009; Adzhubei et al. 2010; Schwarz et al. 2010; Gonz-

alez-Perez and Lopez-Bigas 2011; Reva et al. 2011; Choi

et al. 2012; Shihab et al. 2013). The first dataset consisted

of 35 credibly pathogenic and 19 credibly benign variants

in genes involved in RASopathy syndromes (Table S1).

The proteins implicated in this family of disorders all

interact via the RAS/ERK/MAPK signaling pathway.

Mutations in any of the involved genes result in increased

pathway signaling, which causes increased cell prolifera-

tion and abnormal responses to growth factor, hormones,

cytokines, and cell adhesion molecules. All RASopathy

mutations are inherited in an autosomal dominant man-

ner, and those analyzed in this study operate under a

gain-of-function mechanism. This dataset included three

PTPN11 mutations that have been seen in both individu-

als with Noonan syndrome and those with LEOPARD

syndrome.

The second dataset consisted of 36 credibly pathogenic

and 32 credibly benign variants in genes involved in

LGMD (Table S2). The proteins implicated in this family

of disorders comprise different components of the dystro-

phin–glycoprotein complex in muscle (SGCA, SGCB,

SGCG, SGCD), the dysferlin complex and its interacting

proteins in the sarcolemma (DYSF, CAPN3), or other

muscle-related functions (ANO5, FKRP). The presence of

two mutations (in trans) in these genes results in a lack

of functional protein, thereby disrupting the balance of
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muscle function. The LGMD mutations analyzed in this

study are inherited in an autosomal recessive manner and

operate under a loss-of-function mechanism.

Pathogenicity prediction program output was either

word-based (pathological, benign, etc.) or numerical (out-

put score). For word-based outputs (PolyPhen-2, SIFT,

PMut, FATHMM, MutationTaster, Condel, nsSNPAnalyz-

er, PhD-SNP, SNAP, and SNPs&GO), the exact output

was recorded as stated. For numerical outputs (SNPs3D,

PANTHER, PROVEAN, Mutation Assessor, and Mut-

Pred), the output was transformed as described in Data

S1. For consistency across programs, Probably Damaging

was considered to be synonymous with Damaging,

Pathological, Deleterious, Disease-Causing, Disease, or

Non-Neutral; Possibly Damaging was considered to be

synonymous with Possibly Deleterious; and Benign was

considered to be synonymous with Tolerated, Non-

Deleterious, Polymorphism, or Neutral. Output was listed

as N/A if no output was produced for a given variant.

Program performance

The lack of output due to the inability to predict patho-

genicity for a specific variant was a noticeable problem

with several of the programs. In particular, programs that

relied on premade Hidden Markov Models (PANTHER,

FATHMM-Weighted), published protein structures

(nsSNPAnalyzer), or the use of specific isoforms

(SNPs3D, Mutation Assessor, SNPs&GO) did not pro-

duce predictions for a number of variants. The program

most significantly affected in this manner was nsSNPAna-

lyzer, as it required a protein structure in the ASTRAL

database for the basis of its pathogenicity predictions;

only 61 (50.0%) of 122 variants yielded a prediction. For

the RASopathy genes, no protein structures were available

for RAF1, MAP2K2, or SHOC2 (9 total variants). For the

LGMD genes, no protein structures were available for

SGCA, SGCB, SGCD, SGCG, ANO5, FKRP, or DYSF (49

total variants).

Our goal was to query these programs with variants

demonstrating the strongest evidence for pathogenic or

benign impact. As such, for programs with reliability

score outputs, all outputs were recorded but only those

above a given reliability threshold (5 on a 0–9 scale) were

used in statistical analyses (see Data S1). Programs that

generated reliability scores included PMut, MutationTas-

ter, PhD-SNP, SNAP, and SNPs&GO. The weakest per-

formers were PMut and SNAP, with only 69 (56.6%) of

122 variants with data receiving reliable pathogenicity

predictions. The LGMD dataset was affected slightly more

than the RASopathy dataset in both cases. For PMut, only

36 (52.9%) of 68 LGMD variants had reliable calls, as

opposed to 33 (61.1%) of 54 RASopathy variants. Similar

results were seen for SNAP; only 50.0% of LGMD vari-

ants (34/68) and 64.8% of RASopathy variants (35/54)

had reliable calls.

Similarly, for programs with nondichotomous outputs

(i.e., including “possible” pathogenicity), all outputs were

recorded to differentiate these programs from those which

completely failed to produce a prediction; however, only

clearly damaging or clearly benign outputs were used in

statistical analyses. This was done for consistency between

dichotomous and nondichotomous outputs. Programs

affected by this analysis step included those which self-

assigned “possible” pathogenicity (PolyPhen-2, SIFT) and

those with numerical outputs which were assigned “possi-

ble” pathogenicity in this analysis (SNPs3D, PANTHER,

PROVEAN, Mutation Assessor, and MutPred). The big-

gest drop-off in analyzable data was seen for Mutation

Assessor; of 100 variants with predictions, only 66

(66.0%) were clearly pathogenic or clearly benign. As seen

with the reliability programs, the LGMD dataset was

affected more than the RASopathy dataset. Only 27

(58.7%) of 46 LGMD variants with predictions were

clearly called, as opposed to 39 (72.2%) of 54 RASopathy

variants.

The ability of individual programs to correctly predict

the pathogenicity of a variant ran the gamut from highly

accurate to very poor performance. The percentage of

correct predictions for both credibly pathogenic (true

positive) and credibly benign (true negative) variants in

the RASopathy/gain-of-function dataset is shown in Fig-

ure 2A. Interestingly, the prediction capabilities of certain

programs varied between the two types of variants. Muta-

tionTaster was able to correctly predict 100.0% of credibly

pathogenic mutations but only 15.8% of the credibly

benign variants; these values amounted to the strongest

and weakest performance, respectively. Other standout

programs were PROVEAN, with the best performance

with credibly benign variants (94.7% correctly predicted),

and Mutation Assessor, with the weakest performance

with credibly pathogenic mutations (20.0% correctly

predicted). Representative outputs for a selection of

credibly pathogenic RASopathy variants can be seen in

Table S3A.

A similar range of performance capabilities was

observed for the LGMD/loss-of-function variants

(Fig. 2B). FATHMM (weighted option) was able to cor-

rectly predict 87.5% of the credibly pathogenic mutations,

while Mutation Assessor could only predict 13.3% of the

same mutations. With the credibly benign variants, the

best performance was observed with MutPred (78.1% cor-

rectly predicted). The weakest was seen with Mutation-

Taster and SNAP, with only 28.1% of credibly benign

variants correctly predicted. In general, overall perfor-

mance was less than the RASopathy dataset, perhaps due
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Figure 2. Percentage of correct predictions. The ability of the prediction programs to correctly assign either pathogenic (black) or benign (white)

status to variants in the RASopathy dataset (A) and the LGMD dataset (B) is shown. The program used and the number of variants with

prediction outputs (pathogenic, benign) are listed below the graph. Percentages were generated by dividing the number of variants predicted

correctly by the number of variants with prediction outputs for each class (pathogenic or benign). The RASopathy dataset contained 35 credibly

pathogenic variants and 19 credibly benign variants. The LGMD dataset contained 36 credibly pathogenic variants and 32 credibly benign

variants.
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to the inherent uncertainty when assessing a single loss-

of-function variant without the recessive partner seen in

the disease state. Representative outputs for a selection of

credibly pathogenic LGMD variants can be seen in Table

S3B.

Very few variants in our dataset received correct pre-

dictions from all programs tested in this analysis. If non-

reliable outputs (those with reliability scores below the

cutoff discussed in the Data S1 section) were disregarded,

six credibly pathogenic variants and six credibly benign

variants were correctly predicted by all programs (Table

S4). Therefore, only 12 (9.8%) of 122 variants were reli-

ably classified as benign or pathogenic by all programs.

The distribution of correct calls was split relatively evenly

between the two datasets. Five RASopathy variants (two

credibly pathogenic and three credibly benign) were com-

pletely correct (5/54 = 9.3%), as opposed to seven (four

credibly pathogenic and three credibly benign) LGMD

variants (7/68 = 10.3%).

Analysis of program performance measures

Several statistical measures were used to assess the perfor-

mance of each individual pathogenicity prediction pro-

grams. These included positive predictive value (PPV),

negative predictive value (NPV), specificity, sensitivity,

accuracy, performance weight, and weighted accuracy.

Performance weight, the proportion of variants with use-

able predictions, was used to normalize the accuracy val-

ues between those programs with low amounts of useable

data and those with high amounts. All measures were cal-

culated for the individual datasets and the combined

dataset.

Statistical measures for the RASopathy/gain-of-function

dataset can be seen in Table 1, with accuracy values

shown in Figure 3A. The best overall performer in this

dataset was MutPred, with a weighted accuracy of 83.0%.

This value also represented the unweighted accuracy of

this program, as MutPred was able to produce usable data

for all variants with predictions. Perfect specificity and

PPV scores were achieved with several programs, high-

lighting the ability of these programs to correctly assign

pathogenic status to dominant, gain-of-function muta-

tions. However, only two programs, MutationTaster and

MutPred, had perfect sensitivity and NPV scores. The

weakest overall performer with this dataset was PMut,

with a weighted accuracy of 40.7%. MutationTaster had

both the lowest specificity (20.0%) and the lowest PPV

(73.9%). Mutation Assessor had the lowest sensitivity

(30.4%), while FATHMM-Unweighted had the lowest

NPV (45.9%).

Statistical measures for the LGMD dataset can be seen

in Table 2, with accuracy values shown in Figure 3B. Per-

formance remained high for a few programs but greatly

decreased in the majority of programs tested, demonstrat-

ing the reduced ability of prediction programs to cor-

rectly assign pathogenicity to recessive, loss-of-function

mutations. The best overall performer in this dataset was

again MutPred, with a weighted accuracy of 82.4%; this

program also had the highest uncorrected accuracy

(91.8%). Perfect specificity and PPV values were only

achieved with one program (Mutation Assessor); however,

Table 1. Statistical measures for program performance in the RASopathy dataset.

Program PPV1 NPV1 Specificity1 Sensitivity1 Accuracy1 PWeight1 WAccuracy1

PolyPhen2-HumDiv 0.955 0.682 0.938 0.750 0.818 0.815 0.667

PolyPhen2-HumVar 1.000 0.680 1.000 0.692 0.814 0.796 0.648

SIFT 0.931 0.889 0.889 0.931 0.915 0.870 0.796

PMut 0.800 0.556 0.769 0.600 0.667 0.611 0.407

SNPs3D 0.913 0.818 0.818 0.913 0.882 0.680 0.600

PANTHER 1.000 0.800 1.000 0.889 0.923 0.765 0.706

FATHMM-Weighted 0.900 0.696 0.842 0.795 0.811 1.000 0.811

FATHMM-Unweighted 0.857 0.459 0.895 0.375 0.569 1.000 0.569

MutationTaster 0.739 1.000 0.200 1.000 0.755 0.925 0.698

Condel 0.926 0.708 0.895 0.781 0.824 1.000 0.824

PROVEAN 1.000 0.900 1.000 0.917 0.952 0.778 0.741

Mutation assessor 1.000 0.500 1.000 0.304 0.590 0.422 0.426

MutPred 1.000 1.000 1.000 1.000 1.000 0.830 0.830

nsSNPAnalyzer 0.913 0.526 0.833 0.700 0.738 1.000 0.738

PhD-SNP 1.000 0.938 1.000 0.938 0.968 0.574 0.556

SNAP 0.955 0.846 0.917 0.913 0.914 0.648 0.593

SNPs&GO 1.000 0.708 1.000 0.563 0.788 0.660 0.520

PPV, positive predictive value; NPV, negative predictive value; PWeight, performance weight; WAccuracy, weighted accuracy.
1See Materials and Methods section for calculations.
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Figure 3. Accuracy of prediction programs in the RASopathy and LGMD datasets. Both accuracy (white) and weighted accuracy (black) are

shown for the prediction programs analyzed. The number of variants with usable prediction calls are listed for each individual program. (A) Gain-

of-function RASopathy variants (n = 54); (B) Loss-of-function LGMD variants (n = 68).
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this program also had the lowest sensitivity score

(25.0%). MutationTaster had the only perfect sensitivity

and NPV scores. The weakest overall performer with this

dataset was PMut, with a weighted accuracy of 30.9%.

FATHMM-Unweighted again had the lowest PPV score

(59.3%). The lowest NPV (33.3%) was seen with nsSNP-

Analyzer, while MutationTaster had the lowest specificity

(45.0%).

Top pathogenicity prediction programs

Regardless of the dataset used, a core group of pathoge-

nicity prediction programs consistently performed near

the top of the rankings. This group included MutPred,

Condel, FATHMM-Weighted, SIFT, and nsSNPAnalyzer.

As Condel includes the SIFT score as part of its algo-

rithm, SIFT alone was removed from the core group.

nsSNPAnalyzer was also removed, due to the large num-

ber of variants that could not be called. The performance

of Condel, FATHMM-Weighted, and MutPred was reana-

lyzed, with an eye toward combined prediction power

using multiple programs.

Variants were separated into the following categories:

those with correct predictions from all three programs;

those with incorrect predictions from all three pro-

grams; those with 2 correct predictions without a three-

Table 2. Statistical measures for program performance in the LGMD dataset.

Program PPV1 NPV1 Specificity1 Sensitivity1 Accuracy1 PWeight1 WAccuracy1

PolyPhen2-HumDiv 0.698 0.714 0.536 0.833 0.703 0.941 0.662

PolyPhen2-HumVar 0.700 0.704 0.679 0.724 0.702 0.838 0.588

SIFT 0.677 0.595 0.688 0.583 0.632 1.000 0.632

PMut 0.611 0.556 0.588 0.579 0.583 0.529 0.309

SNPs3D 0.947 0.500 0.875 0.720 0.758 0.805 0.610

PANTHER 0.778 0.609 0.778 0.609 0.683 0.719 0.491

FATHMM-Weighted 0.636 0.800 0.500 0.875 0.688 1.000 0.688

FATHMM-Unweighted 0.593 0.512 0.656 0.444 0.544 1.000 0.544

MutationTaster 0.738 1.000 0.450 1.000 0.784 0.750 0.588

Condel 0.722 0.688 0.688 0.722 0.706 1.000 0.706

PROVEAN 0.647 0.531 0.739 0.423 0.571 0.721 0.412

Mutation assessor 1.000 0.478 1.000 0.250 0.556 0.587 0.326

MutPred 0.912 0.926 0.893 0.939 0.918 0.897 0.824

nsSNPAnalyzer 0.923 0.333 0.667 0.750 0.737 1.000 0.737

PhD-SNP 0.762 0.700 0.737 0.727 0.732 0.574 0.420

SNAP 0.833 0.900 0.692 0.952 0.853 0.500 0.426

SNPs&GO 0.846 0.600 0.818 0.647 0.714 0.609 0.435

PPV, positive predictive value; NPV, negative predictive value; PWeight, performance weight; WAccuracy, weighted accuracy.
1See Materials and Methods section for calculations.
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way agreement; and those with 2 incorrect predictions

without a three-way agreement. The vast majority of vari-

ants (113 out of 121) could be placed into one of these

categories (one variant was removed due to multiple

missing outputs); the remaining number of variants either

had three different predictions (Damaging, Possibly Dam-

aging, and Benign) or two different predictions and one

missing value.

In the RASopathy dataset, the highest degree of con-

cordance between top programs was seen between

FATHMM-Weighted and Condel and between

FATHMM-Weighted and MutPred. These combinations

of programs had concordant predictions for 36 (67.7%)

of 54 variants. The combined performance of

FATHMM-Weighted, Condel, and MutPred was assessed

on 53 variants (Fig. 4); one variant was removed due to

missing data for two of the three programs in question.

All three programs correctly predicted the pathogenicity

of 29 variants (18 credibly pathogenic and 11 credibly

benign). An additional 17 variants (11 credibly patho-

genic and 6 credibly benign) were correctly predicted by

two of the three programs. No variants had three incor-

rect predictions, and only two variants had two incorrect

predictions; both were credibly pathogenic mutations

with two neutral calls. This amounted to 46 of 53 vari-

ants with trustworthy correct predictions, or 86.8% of

the RASopathy variants.

In the LGMD dataset, all two-way combinations of

programs produced the same results; concordant predic-

tions were seen for 45 (66.2%) of 68 variants. When

assessing the combined performance of FATHMM-

Weighted, Condel, and MutPred (Fig. 4), 32 variants were

correctly predicted by all three programs (21 credibly

pathogenic and 11 credibly benign). Two of the three

programs correctly predicted the pathogenicity of 22

other variants (11 credibly pathogenic and 11 credibly

benign). Unfortunately, three variants (two credibly path-

ogenic and one credibly benign) received incorrect predic-

tions from all three programs, and an additional eight

variants had two incorrect predictions (all credibly

benign). In total, 54 of 68 variants received trustworthy

correct predictions, or 79.4% of the LGMD variants. This

was again a reflection of the decreased ability of predic-

tion programs to accurately assess the pathogenicity of

loss-of-function, recessive mutations.

When the results for the two separate datasets were

combined, the accuracy of pathogenicity predictions was

unchanged from the performance of the single best pre-

diction program (Fig. 4). Sixty-one variants, 39 credibly

pathogenic and 22 credibly benign, were correctly pre-

dicted by all three programs. An additional 39 variants

(22 credibly pathogenic and 17 credibly benign) were cor-

rectly predicted by two of the three programs. This

amounted to 100 of 121 variants with correct predictions,

or a prediction value of 82.6%.

Eight of the variants without correct predictions had

inconsistent predictions using these three programs. Three

variants had two different predictions in addition to a

missing value (no prediction generated); all three of these

variants were credibly pathogenic. Five variants (two cred-

ibly pathogenic and three credibly benign) had three dif-

ferent predictions. If we remove these variants from

consideration, the correct prediction percentage increased

to 88.5% (100 of 113). Thus, the use of a three-program

system improved the accuracy of pathogenicity prediction

over the use of any single program only when variants

with relatively consistent predictions were analyzed. If all

variants are included in the analysis, the combined

approach was no better at predicting pathogenicity than

the use of MutPred alone.

Discussion

In this study, we compared the performance of multiple

pathogenicity prediction programs on datasets that com-

prised variants selected for substantial evidence support-

ing their association with a particular disorder or their

benign character. Previous comparative studies have uti-

lized variant databases related to hereditary cancer

syndromes, large all-encompassing datasets (HGMD,

Swiss-Prot, etc.) or, rarely, congenital disease variants

pulled from locus-specific databases (Capriotti et al. 2006;

Bromberg and Rost 2007; Chan et al. 2007; Calabrese

et al. 2009; Schwarz et al. 2010; Hicks et al. 2011; Thus-

berg et al. 2011; Choi et al. 2012; Shihab et al. 2013). To

the best of our knowledge, this is the first analysis that

specifically studied the performance of these programs on

variants in Mendelian disorders unrelated to hereditary

cancer with an emphasis on mode of inheritance and

mechanism of disease.

The ability of prediction programs to differentiate

between pathogenic and benign variants is based in part

on the set of variants used in program training. The

majority of programs were trained using large datasets of

variants annotated in UniProt/SwissProt, HGMD, and/or

dbSNP (Thomas et al. 2003; Ferrer-Costa et al. 2004; Bao

et al. 2005; Capriotti et al. 2006; Yue et al. 2006; Brom-

berg and Rost 2007; Calabrese et al. 2009; Li et al. 2009;

Adzhubei et al. 2010; Schwarz et al. 2010; Gonzalez-Perez

and Lopez-Bigas 2011; Reva et al. 2011; Choi et al. 2012).

However, these databases are not error-free, as previous

studies have documented incorrect annotations in these

resources (Tavtigian et al. 2008). Using incorrectly classi-

fied variants in training may increase the possibility of

inaccurate calls from these programs. Other program gen-

erators have opted to use carefully curated databases of
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single gene or gene family variants in program training

(Li et al. 2009; Gonzalez-Perez and Lopez-Bigas 2011;

Reva et al. 2011; Choi et al. 2012). However, these are

mainly variants associated with hereditary cancer syn-

dromes. As these syndromes normally require multiple

somatic mutation events after the initial germline muta-

tion, these could constitute a very different mechanism of

disease than that seen for variants involved in non-

neoplastic constitutional disorders. Still others have uti-

lized non-human variants, going as far phylogenetically as

bacteriophages and viruses (Ferrer-Costa et al. 2004;

Kumar et al. 2009; Choi et al. 2012). The differences in

evolutionary influences on these diverse species could

impact the prediction abilities of the programs that uti-

lized these variant sets.

Given the wide range of training sets used to generate

the predictive algorithms, one would expect that a pro-

gram with greater overlap between training and testing

sets would have better performance. However, we did not

find any substantial correlation between the number of

variants found both in our dataset and the original train-

ing set and overall accuracy of predictions. SNAP had the

smallest amount of overlap in datasets; only two variants

(both pathogenic RASopathy variants) from our total

dataset were found in their training set. While SNAP was

not among the top performers in this analysis, it was also

not the weakest. In fact, SNAP had unweighted accuracy

values of 85–91%; the main downfall of this program was

the large number of variant predictions with low reliabil-

ity scores.

On the opposite end of the spectrum, the program

with the largest amount of overlap between training and

testing datasets was FATHMM. Thirty-six (66.7%) of our

RASopathy variants and 34 (50%) of our LGMD variants

were also found in the training set for both the weighted

and unweighted derivations of this program. FATHMM-

Weighted was consistently one of the best programs when

predicting the effect of our dataset variants. Interestingly,

the vast majority of the overlapping variants were patho-

genic in nature. While this fact is demonstrative when

comparing specificity to sensitivity in the LGMD dataset

(50.0% vs. 87.5%, respectively), these two values are very

similar in the RASopathy dataset (84.2% and 79.4%).

This again indicates the stronger predictive power of these

algorithms with dominant, gain-of-function mutations.

The most accurate prediction program within the con-

fines of our dataset was MutPred, with a weighted accu-

racy of 82.6% in the total dataset. Of note, the training

set using for this algorithm fell within the middle of the

pack in terms of amount of overlap with our dataset.

Twenty-six (48.1%) RASopathy variants and 23 (33.8%)

LGMD variants were found in both training and testing

sets, for a combined overlap of 40.2%. This is the same

amount of overlap seen with SIFT and SNPs&GO; how-

ever, the results are highly divergent. Therefore, the mere

fact that identical variants can be found in both the train-

ing and testing set for a given predictive algorithm does

not have significant bearing on its overall performance

capabilities.

Several factors were concerning when analyzing the

performance of these prediction programs using this

highly curated dataset. First, five programs provided a

reliability score with their pathogenicity prediction. While

the addition of a reliability index would be helpful when

analyzing novel variants, the sheer number of variants in

our dataset with unreliable calls made these programs less

useful. In this dataset of variants with an overwhelming

preponderance of evidence toward a pathogenic or benign

prediction, the presence of low-reliability predictions is

unsettling. Second, half of the programs studied in this

work produced predictions with “possible” pathogenicity.

Again, when working with novel variants, a more quanti-

tative approach to the relative pathogenicity of a change

would be useful; however, when working with the credible

variants in our dataset, it lent uncertainty to predictions

that should be clear-cut.

Overall, we found that the majority of programs per-

formed below their published accuracy levels using our

defined dataset. While some drop in performance is to be

expected, the decrease in accuracy was significant for a

handful of programs. In particular, PMut originally stated

a PPV of 83–87% (Ferrer-Costa et al. 2004); using our

dataset, this program was the weakest performer, with a

weighted accuracy of 35%. Similar results were seen for

MutationAssessor; this program’s stated accuracy was

79% (Reva et al. 2011), but it only achieved a weighted

accuracy of 38% using our dataset of variants. For other

programs, similar accuracies were seen as have been doc-

umented in other comparative studies (Capriotti et al.

2006; Bromberg and Rost 2007; Calabrese et al. 2009;

Schwarz et al. 2010; Choi et al. 2012; Shihab et al. 2013).

The exception to this rule was MutPred, the best per-

former in our dataset. The original publication describing

this program stated the accuracy to be 62–80%, depend-

ing on the dataset used (Li et al. 2009). However, we

achieved 83% accuracy, and similar results were seen in

another comparative study (Shihab et al. 2013). The con-

tinued high performance of this pathogenicity prediction

program across distinct variant datasets serves as confir-

mation that this program can be used reliably, regardless

of the type of variant.

While some reports have debated the efficacy of includ-

ing protein-based data along with multiple sequence

alignments (Jordan et al. 2010), our results agree with

the current consensus that consideration of protein fea-

tures increases the performance of prediction programs
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(Tavtigian et al. 2008; Thusberg and Vihinen 2009). Our

top three performers, MutPred, Condel, and nsSNP-

Analyzer, all include protein features in their prediction

algorithms. However, these results are tempered by the lack

of protein data for a significant proportion of genes in our

dataset. In particular, predictions could only be made for

half of our dataset using nsSNPAnalyzer, given the lack of

protein structures in the ASTRAL database. It should also

be noted that, while we did not see any correlation between

predictive accuracy and variant location within the protein

structure, it is possible that this could play a key role in

the prediction capability of some algorithms. As next-

generation sequencing uncovers variants in poorly studied

genes, this problem will only grow in effect.

In conclusion, the performance of pathogenicity predic-

tion programs when analyzed using a dataset of clinically

validated variants is mixed. Improvements in the quality

of such predictions will be necessary to truly reduce the

need for confirmatory functional testing, which remains

outside the realm of clinical diagnostic laboratories. While

these predictions should not be the final word in patho-

genicity, they provide a useful way to filter the numerous

variants that will be identified through clinical next-gen-

eration sequencing platforms.
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Supporting Information

Additional Supporting Information may be found in the

online version of this article:

Data S1. Program Details

Table S1. RASopathy dataset variants: list of all variants

in the RASopathy dataset.

Table S2. LGMD dataset variants: list of all variants in

the LGMD dataset.

Table S3. Predictions for a selection of credibly patho-

genic variants: predictions from selected credibly patho-

genic variants from both the RASopathy dataset and the

LGMD dataset.

Table S4. Variants with completely correct predictions:

variants that were correctly predicted to be pathogenic or

benign by all programs tested.
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