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Compared to linear independent component analysis (ICA), non-linear ICA is more

suitable for the decomposition of mixed components. Existing studies of functional

magnetic resonance imaging (fMRI) data by using linear ICA assume that the brain’s

mixed signals, which are caused by the activity of brain, are formed through the

linear combination of source signals. But the application of the non-linear combination

of source signals is more suitable for the mixed signals of brain. For this reason,

we investigated statistical differences in resting state networks (RSNs) on 32 healthy

controls (HC) and 38 mild cognitive impairment (MCI) patients using post-nonlinear ICA.

Post-nonlinear ICA is one of the non-linear ICA methods. Firstly, the fMRI data of all

subjects was preprocessed. The second step was to extract independent components

(ICs) of fMRI data of all subjects. In the third step, we calculated the correlation coefficient

between ICs and RSN templates, and selected ICs of the largest spatial correlation

coefficient. The ICs represent the corresponding RSNs. After finding out the eight RSNs

of MCI group and HC group, one sample t-tests were performed. Finally, in order

to compare the differences of RSNs between MCI and HC groups, the two-sample

t-tests were carried out. We found that the functional connectivity (FC) of RSNs in MCI

patients was abnormal. Compared with HC, MCI patients showed the increased and

decreased FC in default mode network (DMN), central executive network (CEN), dorsal

attention network (DAN), somato-motor network (SMN), visual network(VN), MCI patients

displayed the specifically decreased FC in auditory network (AN), self-referential network

(SRN). The FC of core network (CN) did not reveal significant group difference. The results

indicate that the abnormal FC in RSNs is selective in MCI patients.

Keywords: resting state networks, mild cognitive impairment, functional magnetic resonance imaging, functional

connectivity, post-non-linear independent component analysis

INTRODUCTION

Independent component analysis (ICA) is a popular blind source separation technique
and a powerful data-driven method (Dipasquale et al., 2015). ICA is able to decompose
complex magnetic resonance signal patterns, and detect the resting state networks (RSNs)
from functional magnetic resonance imaging (fMRI) data of all subjects (Abou Elseoud
et al., 2011). The advantage of ICA is that it does not require prior information
when extracting brain maps and time courses from fMRI data (Svensén et al., 2002).
By contrast, other analysis methods of fMRI data require prior information, and the
prior information is generally artificial which may lead to the error of the result. For
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example, the selection of regions of interest (ROIs) in seed
correlation analysis method is artificially set (Koenig et al., 2009).
As ICA does not require prior information, this data-driven
method is widely used in the analysis of fMRI data (Robinson
and Schöpf, 2013).

In general, ICA is divided into temporal ICA and spatial
ICA (Mckeown et al., 1998). As ICA can separate independent
components (ICs) in any order, two strategies are ordinarily used
in studies to compare ICs of different subjects (Calhoun et al.,
2009). In the first strategy, ICA is respectively performed on each
subject’s data, and then the relationship between ICs of each
subject is established by the means of subjective identification
(Calhoun et al., 2001a), and clustering (De Martino et al., 2007).
In the second strategy, ICA is performed on the group data,
then a subject’s specific ICs are acquired from group ICs and the
relationship between ICs of different group is also established.
The second strategy is called group ICA (Calhoun et al., 2009).

At present, the fMRI studies using linear ICA could be divided
into two streams. One stream is the application of linear ICA
to fMRI based on the task state such as complex tasks (Kohler
et al., 2008) and multimodal stimuli (Malinen et al., 2007). For
example, van de Ven et al. (2008) analyzed the fMRI data of 9
subjects by employing the self-organizing group ICA (sogICA),
and the fMRI data of subjects was collected through a three-
stimulus visual oddball task (van de Ven et al., 2008). On the
other hand, Malinen et al. (2007) used ICA and general-linear-
model-based analysis (GLM) to analyze the fMRI data of 6
subjects, and the results showed that ICA was found to be a
sensitive tool for studying brain responses to complex natural
stimuli compared with GLM (Malinen et al., 2007).

The other stream is the application of linear ICA to fMRI
based on the resting state (Li S et al., 2016). Esposito et al. (2008)
used linear ICA to study the relationship between age and the
default mode (DM) regions activity. They studied the effects of
aging on DM components by employing resting state fMRI data
from 20 healthy subjects. By combining the results of individual
ICA and group ICA, they found that the DM connectivity was
negatively correlated with age (Esposito et al., 2008).

Existing studies of fMRI data based on task state or resting
state by using ICA assume that the brain’s mixed signals, which
are caused by the activity of brain, are formed through the linear
combination of source signals (Du et al., 2011). In fact, the brain
is made up of about 1011 nerve cellsand and connected by the
1015 nerve synapses, which is one of the most complex systems
in the universe (Poldrack and Farah, 2015). Because the brain
is so complex, most brain function activities are featured with
nonlinearity. Therefore, linear ICA is not the best way to explore
the mechanism of the abnormal functional connectivity (FC) of
brain in patients. Non-linear ICA can be divided intomany types,
but not all of them are suitable for studying the abnormal FC of
brain in patients. In this study, we adopt the post-nonlinear ICA
(Szabo et al., 2007) with the motivation of combining the linear
part of brain activity and the non-linear part of brain activity. The
linear and non-linear brain activities help us study the abnormal
FC in the scenario which is more in line with actual situation.
In the post-nonlinear ICA, the signal firstly goes through a linear
channel, and then is introduced by non-linear characteristics, and

finally the mixed signal is formed (Wei et al., 2018).We apply this
method to explore the RSNs of MCI and healthy controls (HC),
and abnormal RSNs of MCI patients are found out by comparing
the RSNs of HC and MCI patients. This method provides a novel
way for diagnosis of MCI.

MATERIALS AND METHODS

Subjects
The experimental data of this study comes from the open
database Alzheimer’s Disease Neuroimaging Initiative (ADNI)
(http://adni.loni.ucla.edu/). This database was established by
a number of non-profit organizations in 2003, and provides
comprehensive data including structural MRI data, functional
MRI data and positron emission tomography data of Alzheimer’s
disease (AD), MCI and some healthy elderly. The patients’
detailed basic information and clinical information are also
provided in the database. This study used the functionalMRI data
of MCI patients and healthy elderly in this database. 71 subjects
including 38MCI patients and 33HCwere obtained. The subjects
were excluded if the translation exceeded ±2.5 mm and rotation
exceeded ±2.5. Finally, the remaining 70 subjects were involved
in this study, including 38 MCI patients (age: 72.99 ± 7.79; 23
m/15 f) and 32 HC (age: 76.25 ± 6.51; 13 m/19 f).

There was no difference (P = 0.097) in gender between the
two groups by chi-square test. We conducted two-sample t-tests
on the age of MCI patients and HC, and found no difference
(P = 0.64). Clinical diagnosis of MCI was confirmed with the
minimental state examination (MMSE) and the clinical dementia
rating scale (CDR). The demographic information forMCI group
and HC group is listed in Table 1.

Image Acquisition
Functional MRI data of MCI patients and HC was collected on
the 3.0 T-MRI scans of Philips medical system. All subjects were
ordered to remain quiet, lie flat in the scanner, and try to stay still
and not think about any problem. The detailed description of the
sequence parameters related with functional images of all subjects
is as follows: TR= 3,000ms, TE= 30ms, flip angle= 80, matrix
= 64 × 64, Pixel Spacing= 3.3 × 3.3, 3mm thickness, without
gap, number of volumes= 130, 48 slices.

TABLE 1 | Demographic information table of all subjects.

Project MCI (n = 38) HC (n = 32) P value

Gender (Male/Female) 23/15 13/19 0.097a

Age 72.99 ± 7.79 76.25 ± 6.51 0.064b

MMSE 27.11 ± 2.44 29.13 ± 1.31 0.000b

CDR 0.54 ± 0.14 0.00 ± 0.00 –

aThe p-value is obtained through the chi-square test.
bThe p-value is obtained by the two-sample t-tests, and the data in the table is

represented by the mean ± standard deviation.
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Data Preprocessing
DPARSF software has helped us complete the data preprocessing
(http://d.rnet.co/DPABI/DPABI_V2.3_170105.zip). The
description of data preprocessing is as follows:

The original data collected from the database was in DICOM
format which could not be recognized by the preprocessing
software DPARSF. Thus, the original data was firstly converted
to the NIFTI format. Secondly, as the scanner needs a certain
amount of time to achieve a stable state, the first ten volumes were
discarded to make the scanner stable. Thirdly, the remaining
120 volumes of each subject were corrected for the temporal
difference in order to ensure that the data was collected at the
same time. The head motion correction excluded one of the
33 HC, because the subject’s translation exceeded ±2.5 mm
and rotation exceeded ±2.5. Then the spatial normalization
was performed by using EPI templates to eliminate differences
in individual brains. Subsequently, the data was smoothed by
Gaussian kernel (FWHM = 6 mm). In existing studies, the final
step of data preprocessing for ICA is Gaussian smoothing (Liao
et al., 2010a). As the subsequent calculation of the FC based on
voxels was required (Wei et al., 2017b), the data preprocessing in
our paper also included the linear drift and filter (0.01 ∼0.08HZ).

Determination of RSNs
This paper used the post-nonlinear ICA method1 to extract
ICs of MCI patients and ICs of HC by using GIFT software
(http://icatb.sourceforge.net/) (Liao et al., 2010a). We firstly used
the “Minimum description length” criterion (Jafri et al., 2008)
provided by the GIFT software to estimate the number of
ICs of the two groups. The estimated number of ICs in MCI
patients and HC was 30 and 29, respectively. Then principal
component analysis was performed in order to reduce the
temporal dimension of fMRI data for all subjects. Finally, ICs
were estimated by fast ICA algorithm based on post-nonlinear
ICA. The post-nonlinear ICA was carried out separately in MCI
group and HC group. Subsequently, the 30 ICs in MCI group
and the 29 ICs in HC group were obtained. These ICs include
time-course and spatial maps.

The time-courses of ICs reflect the waveform of brain activity,
and spatial maps of ICs reflect brain activity intensity of voxel. To
show the voxel which makes the largest contribution to a specific
IC, we converted the intensity values of spatial map to Z-values
(Calhoun et al., 2001b; Mantini et al., 2007). Z-value is generally
considered to be the most effective way to measure the FC of
intrinsic network (Bartels and Zeki, 2005; Damoiseaux et al.,
2006). After obtaining ICs of two groups, we used Gift software to
calculate the spatial correlation coefficients between eight RSNs
templates and ICs, and selected the IC of the largest spatial
correlation coefficient (Greicius et al., 2007; Wu et al., 2017a).
The selected IC represents its corresponding RSN, and is retained
for subsequent studies. The eight RSNs templates are provided by
DanteMantini from LeuvenMedical School (Mantini et al., 2007,
2009). The eight RSNs templates are respectively DMN, DMN,
CEN, VN,AN, SRN, SMN, DAN,CN.

1Detials of this method are introduced in the Appendix.

Two Analysis Methods for RSNs
After finding out the eight RSNs of MCI group and HC group
according to the largest spatial correlation principle (Greicius
et al., 2007), the spatial maps corresponding to each RSNs of
the two groups were collected to perform one-sample t-tests.
The results of one-sample t-tests were presented at the given
threshold of T > 2. One-sample t-tests help to find out the
activated brain regions, but they could not be used to test the
significance of differences in RSNs. We further used two-sample
t-tests to compare the differences in the FC of eight RSNs. The
null hypothesis of two-sample t-tests is that there are differences
of the FC of RSNs in MCI group and HC group. Before
performing two-sample t-tests, a union of the results of one-
sample t-tests of MCI group and HC group was firstly formed.
Then the FC based on the voxels of 70 subjects was calculated
by regarding the union as the regions of interest (ROIs). Thirdly,
Z-transform of the FC was performed. Finally, the two-sample t-
tests were carried out, and the results were displayed at the given
threshold of P < 0.05 (AlphaSim correction).

RESULTS

Spatial Pattern of RSNs in Each Group
The results of one-sample t-tests (T > 2) showed that RSNs of
subjects in two groups have typical spatial distribution patterns.
The spatial distribution patterns of DMN, CEN, SMN, VN, AN,
DAN, CN, and SRN in HC group and MCI group are shown in
Figures 1–3.

Abnormal RSNs in MCI Patients
According to the two-sample t-tests results. we found out
abnormal RSNs and brain regions in MCI patients compared
to HC as shown in Figures 4, 5. The RSNs with the decreased
FC (P < 0.05, AlphaSim corrected) in MCI patients included
AN and SRN. The RSNs with the increased and decreased FC
(P < 0.05, AlphaSim corrected) in MCI patients included DMN,
CEN, DAN, SMN, VN. The CN did not reveal significant group
difference.

Specifically, Table 2 shows the clusters with significant
differences of the FC in RSNs of MCI patients. Compared with
HC, the abnormal FC is the increased or decreased FC in
MCI patients. The abnormal brain regions of the FC in DMN
include right middle temporal gyrus (MTG), left orbital part of
inferior frontal gyrus (ORBinf), bilateral calcarine fissure and
surrounding cortex (CAL), left lingual gyrus (LING).

The abnormal brain regions of the FC in AN include right
LING. The abnormal brain regions of the FC in SRN include left
triangular part of inferior frontal gyrus (IFGtriang).

The abnormal brain regions of the FC in CEN include left
middle frontal gyrus (MFG), left dorsolateral of superior frontal
gyrus (SFGdor), right superior temporal gyrus (STG), rightMTG.

The abnormal brain regions of the FC in DAN include
left medial of superior frontal gyrus (SFGmed), right inferior
temporal gyrus (ITG).

The abnormal brain regions of the FC in SMN include
left SFGmed, right MTG. The abnormal brain regions of the
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FIGURE 1 | The spatial distribution of DMN, CEN, SMN in MCI group and HC group.

FC in VN include left SFGdor, left SFGmed, left MFG, left
parahippocampal gyrus (PHG).

DISCUSSION

In this paper, we studied fMRI data of MCI and HC groups
using post-nonlinear ICA. We discussed the difference of eight
RSNs between MCI and HC groups. Non-linear ICA is a
complementary method to linear ICA (Wei et al., 2017a). The
decomposition of mixed components by using post-nonlinear
ICA is more consistent with the decomposition of actual brain
activity, and this method could provide more correct guidance
for clinical treatment. Our results showed that some RSNs inMCI

patients had abnormality compared to HC. Specifically, the RSNs
with the decreased FC in MCI patients included AN and SRN,
and the increased and decreased FC in MCI patients included
DMN, CEN, DAN, SMN, VN. The CN did not reveal significant
group difference.

DMN is considered to be closely related to human episodic
memory and self-projection (Liao et al., 2010a). In this study,
the abnormal FC of DMN in MCI patients is reflected not only
in the increased FC in left ORBinf and left LING, bilateral CAL,
but also in the decreased FC in right MTG. Vandenbulcke et al.
(2007) studied the activation of brain regions when MCI patients
performed the task of reading and image naming, and found that
the activation of brain regions in MTG was abnormal, which
is the cause of the impairment of word recognition function in
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FIGURE 2 | The spatial distribution of VN, AN, DAN in MCI group and HC group.
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FIGURE 3 | The spatial distribution of CN, SRN in MCI group and HC group.
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FIGURE 4 | Abnormal brain regions in the DMN, AN, SMN.

MCI patients (Vandenbulcke et al., 2007). Our findings revealed
the decreased FC in MTG, which was linked to the impairment
of word recognition function in MCI patients. Our research is
consistent with previous studies. Other abnormal brain regions
of the FC in DMN include ORBinf, LING and CAL. First of all,
existing theoretical studies found that ORBinf and orbital part
of middle frontal gyrus (ORBmid) of AD patients were severely
damaged, which could be observed directly by the anatomy of
brain (Van Hoesen et al., 2000; Kumar et al., 2015; Tycko, 2016).
Researches have shown that human olfaction is closely related
to orbital frontal gyrus, and the decreased olfactory function is
one of the clinical manifestations of AD (Wesson et al., 2010;
Zou et al., 2016). ORBinf belongs to orbital frontal gyrus. Our
results also showed the decreased FC of ORBinf in MCI patients.
It is further demonstrated that orbital frontal gyrus is very useful
in the process of detecting the transformation from normal
aging populations to MCI or AD. In addition, LING is mainly
responsible for visual processing (Yang et al., 2015). Li Y et al.
(2016) found that the abnormality of LING function was related
to the impairment of working memory in MCI patients by using
seed correlation analysis method (Li Y et al., 2016). The results
of our study also indicated that the FC of LING was abnormal in
MCI patients. The last abnormal brain region in DMN is CAL.
However, the relationship between CAL and the symptoms of
MCI patients is unclear and needs further study.

CEN is related to human cognitive control (Liao et al., 2010a).
According to our results, the abnormal FC of CEN in MCI
patients is reflected not only in the decreased FC in left MFG
and left SFGdor, but also in the increased FC in right STG
and right MTG. Döhnel et al. (2008) allowed MCI patients to
watch pictures with neutral, positive and negative content, and
the process was recorded by fMRI. It was found that the MCI

group had a better memory of negative pictures (Döhnel et al.,
2008), which indicated that the episodic memory inMCI patients
was abnormal. Furthermore, previous studies found that frontal
lobe was associated with the episodic memory in human (Pochon
et al., 2001). SFGdor belongs to frontal lobe, and our studies
found out the decreased FC of SFGdor in MCI patients, which
provides a possible explanation for the memory impairment in
MCI patients. Another two abnormal brain regions in CEN are
right STG and MTG. The temporal lobe is divided into STG,
MTG and inferior temporal gyrus (ITG). Specifically, the medial
temporal lobe is useful for storing the recent memory in human,
and other cortical regions are useful for storing the long-term
memory (Gordon and Devinsky, 2003; Lavasani et al., 2016).
In our paper, we found that the FC of right STG and MTG
was abnormal, which was associated with impaired memory
in MCI patients. The last abnormal brain region is left MFG.
Wee et al. (2012) found that MFG was primarily responsible
for coordinating different information by using seed correlation
analysis method (Wee et al., 2012). We found out the decreased
FC of left MFG, and this was related to abnormal cognitive
control in MCI patients.

DAN is considered as primarily responsible for mediating
goal-directed top-down processing (Liao et al., 2010a). According
to our results, the abnormal brain regions of the FC in DAN
include SFGmed and ITG. The first abnormal brain region of
DAN is ITG. Johnson et al. (2006) found that the activation
of right ITG was abnormal in MCI patients compared with
HC (Johnson et al., 2006). Risacher et al. (2009) also found
that the cortex thickness in ITG of the MCI patients decreased
in the study of brain structure (Risacher et al., 2009). In our
study, we found that the FC of right ITG in MCI patients was
abnormal, which is in line with previous studies. Therefore, it
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FIGURE 5 | Abnormal brain regions in VN.
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TABLE 2 | Clusters with significant differences of the functional connectivity in

RSNs of MCI.

Cluster Abnormal brain

regions

The number

of voxel

Peak coordinates

DMN

Cluster1 ORBinf.L 78 [−21 24 −12]

Cluster2 MTG.L 36 [51 −48 0]

Cluster3 CAL.L CAL.R

LING.L

43 [−3 −81 0]

AN

Cluster1 LING.R 52 [27 −90 −21]

CEN

Cluster1 STG.R 43 [48 −15 −6]

Cluster2 MTG.RSTG.R 250 [60–543]

Cluster3 MFG.L SFGdor.L 101 [−33 606]

DAN

Cluster1 ITG.R 39 [51 −42 −21]

Cluster2 SFGmed. 44 [−663 12]

SMN

Cluster1 MTG.R 67 [60 −54 3]

Cluster2 SFGmed.L 44 [−3 69 6]

SRN

Cluster1 IFGtriang.L 32 [−5127 24]

VN

Cluster1 PHG.L 36 [12 −90 −15]

Cluster2 SFGdor.L

SFGmed.L

MFG.L

48 [27630]

is concluded that ITG has a structural and functional change in
MCI patients, which can be used as an effective indicator of the
clinical diagnosis to predict and monitor the disease. Another
abnormal brain region of DAN is SFGmed. The abnormal FC
of SFGmed was associated with cognitive impairment in MCI
patients.

According to our results, the abnormal FC of VN in MCI
patients is reflected not only in the decreased FC in left
SFGdor, left SFGmed, left MFG, but also in the increased FC
in left PHG. The frontal lobe locates in the front of human
brain. It covers about one-third of cerebral hemisphere and
includes most of all dopamine sensitive neurons. Dopamine is
an important neurotransmitter in the brain, which is closely
related to reward mechanism, attention, short-term memory,
planning and dopamine systems (Beleza and Pinho, 2011). The
executive functions of the frontal lobe include cognitive activity,
emotional activity, the ability to predict future results from
current behavior, the ability to choose good or bad behavior,
the ability to determine the similarities and differences between
objects or events (Watanabe et al., 2015). Meanwhile, the frontal
lobe has also played an important role in maintaining the long-
term memory of human beings in resting-state (Neulinger et al.,
2015). SFGdor, SFGmed, MFG belong to frontal lobe. In this
study, we found that left SFGdor, left SFGmed and left MFG
were abnormal inMCI patients, and these abnormal regions were
associated with the memory impairment and attention deficit in
MCI patients. Another abnormal brain region in VN is PHG.

Celone et al. (2006) used linear ICA found that the hippocampus
played a pivotal role not only in the cognitive processing but also
in the process of memory retrieval (Celone et al., 2006). Our
results showed that the FC of PHG was abnormal, which was
related to the decrease of memory and attention disorder in MCI
patients.

According to our results, the abnormal FC of AN in MCI
patients is reflected in the decreased FC in right LING, and no
FC of the brain regions increases. In general, LING is mainly
responsible for visual processing. Some researches showed that
the abnormality of LING function inMCI patients was associated
with impaired working memory in MCI patients (Migo et al.,
2014; Kirova et al., 2015). The results of our study also showed
that the FC of LING was abnormal, which is in line with previous
researches.

According to our results, the abnormal FC of SMN in MCI
patients is reflected not only in the decreased FC in left SFGmed,
but also in the increased FC in right MTG. As mentioned above,
the abnormality of SFGmed in MCI patients was related to the
memory impairment and attention deficit, and the abnormal
MTG in MCI patients was associated with memory impairment.

According to our results, the abnormal FC of SRN in MCI
patients is reflected in the decreased FC in left IFGtriang, and no
FC of the brain regions increases. As the FC of IFGtriang in MCI
patient was abnormal, it is suggested that the patient’s ability to
maintain a long-term memory is impaired (Miotto et al., 2014;
Lin et al., 2016).

In the process of detecting the abnormal FC and lesions in
MCI patients, the results of our approach are not only consistent
with the results obtained by the traditional methods, such as
seed correlation analysis method, linear ICA, global functional
connectivitymethod, but also some new abnormal FC and lesions
in MCI patients are obtained by our method. The abnormalities
of the FC in PHG, MFG, and LING were found out by our
method which is in accordance with the traditional methods.
We have also found the abnormal FC in SFGdor, SFGmed, CAL,
which is not found out by traditional methods. The abnormal
FC in these brain regions are in agreement with the clinical
symptoms ofMCI patients. These findings further provide strong
evidence for the correctness of our results.

Our study contributes to introducing the post-nonlinear ICA
method to analyze fMRI data, but it also has some limitations.
First of all, our non-linear ICA method does not provide the
information of the FC of limbic system, which needs to be
explored in future research. Secondly, although a large number
of studies consistently demonstrated that spontaneous brain
activity could be organized into RSNs (Liao et al., 2010b), a
complete description of the brain functional architecture has not
yet been provided by the RSNs documents at present and the
neurophysiological meaning of RSNs is still unclear. In addition,
we have not studied the correlation between fMRI data and
clinical scoring in MCI patients, which is needed to be explored
in future studies.
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