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Metabolic flux analysis (MFA) is widely used to estimate intracellular fluxes. Conventional MFA, however,
is limited to continuous cultures and the mid-exponential growth phase of batch cultures. Dynamic MFA
(DMFA) has emerged to characterize time-resolved metabolic fluxes for the entire culture period. Here,
the linear DMFA approach was extended using B-spline fitting (B-DMFA) to estimate mass balanced
fluxes. Smoother fits were achieved using reduced number of knots and parameters. Additionally,
computation time was greatly reduced using a new heuristic algorithm for knot placement. B-DMFA
revealed that Chinese hamster ovary cells shifted from 37 °C to 32 °C maintained a constant IgG volume-
specific productivity, whereas the productivity for the controls peaked during mid-exponential growth
phase and declined afterward. The observed 42% increase in product titer at 32 °C was explained by a
prolonged cell growth with high cell viability, a larger cell volume and a more stable volume-specific
productivity.
& 2015 The Authors. Published by Elsevier B.V. International Metabolic Engineering Society. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

For over 20 years, metabolic flux analysis (MFA) has proven a
powerful tool to quantitatively characterize cell metabolic phe-
notypes (Bonarius et al., 1996; Nielsen, 2003; Vallino and Ste-
phanopoulos, 1993). MFA estimates intracellular fluxes using ex-
perimental measurements and mass balances. The quantification
of metabolic fluxes has facilitated a better understanding of bio-
logical systems (Boghigian et al., 2010), including the identification
of bottlenecks in product formation (Burleigh et al., 2011; Nyberg
et al., 1999) and metabolic regulation (Fendt and Sauer, 2010). MFA
is routinely used in media design (Altamirano et al., 2006; Mar-
tínez et al., 2010; Xing et al., 2011) and metabolic engineering
(Becker et al., 2005) in order to improve metabolic phenotypes.

Conventional MFA assumes constant intracellular fluxes, a
condition only satisfied by continuous cultures at steady state and
during the mid-exponential phase of batch cultures. Most in-
dustrial cultures display dynamic metabolic changes (Matasci
et al., 2008; Meadows et al., 2010), such as a gradual decline in
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lication and should be con-
cell-specific growth rate during batch and fed batch (Antoniewicz
et al., 2007; Niklas et al., 2011) or diauxic growth (Mahadevan
et al., 2002). Frequently, the most relevant metabolic behaviour
occurs during transient conditions, where conventional MFA is no
longer applicable.

Monoclonal antibody production by CHO cells illustrates the
point. Conventional MFA has been used to study the Warburg ef-
fect observed during the initial growth phase, yet all cultures
display this phenotype during the initial exponential phase. What
distinguishes successful cultures is the transition from exponential
to stationary growth phase, whether the transition is invoked
naturally (Ahn and Antoniewicz, 2011; Martínez et al., 2013),
caused by medium design (Altamirano et al., 2006) or deliberate
manipulation of culture conditions, such as a temperature shift
(Bollati-Fogolin et al., 2005). A metabolic shift from lactate pro-
duction to lactate consumption during this transition aids long-
evity and productivity of the culture (Altamirano et al., 2006; Ma
et al., 2009; Martínez et al., 2013; Niklas et al., 2011; Young, 2013).

Several approaches have been used to estimate dynamic flux
distributions (Antoniewicz, 2013). While all approaches assume
pseudo-steady state for intracellular metabolism, i.e. the changes
in internal metabolite concentrations are trivial compared to the
fluxes (Varma and Palsson, 1994), they differ in terms of how dy-
namics in the data are captured. The simplest approach is to
manually divide the time series data into distinct metabolic phases
and estimate the flux profile of each phase by MFA (Ahn and
Antoniewicz, 2011; Altamirano et al., 2006; Martínez et al., 2013;
Niklas et al., 2011). This approach produces an average flux
ineering Society. This is an open access article under the CC BY-NC-ND license
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estimate for each phase but fails to capture the temporal evolution
of metabolic fluxes. It is also difficult to maintain a homogenous
precision among determined rates, which are dependent on the
consistency and frequency of data points contained in each phase.
Newer approaches overcome these limitations by first generating
smooth functions to fit the measured metabolite concentrations
and subsequently estimating instantaneous rates based on the
functions’ slope (Lequeux et al., 2010; Llaneras and Pico, 2007;
Niklas et al., 2011). Then MFA is applied to each time point to
generate a continuous flux distribution profile. The independent
smoothing of individual concentration profiles followed by dif-
ferentiation ignores mass conservation, potentially introducing
significant bias into the flux estimates. Dynamic MFA (DMFA)
overcomes this issue by using free fluxes as basis for the fitting
functions and a least-square approach to fit the full dataset si-
multaneously (Leighty and Antoniewicz, 2011).

The original DMFA implementation uses piecewise linear
functions to describe the time profile of free fluxes (Leighty and
Antoniewicz, 2011). While simple in form, the linear assumption
creates rates with unnatural, non-smooth breakpoints and strug-
gle to fit higher-order dynamics, which do commonly occur since
the time profile of absolute rates tend to trace a sigmoid curve
(e.g., Monod model). In this study, we have extended the linear
method by using B-spline functions when performing DMFA (B-
DMFA), bringing in capabilities for higher order fit and the use of
knot multiplicity. Knots are equivalent to the so-called DMFA time
points (Leighty and Antoniewicz, 2011).

B-splines, or basis splines, are often used in computer-aided
geometrical design and software packages to approximate data
due to their rich mathematical structure and the robust numerical
algorithms available (Prautzsch et al., 2002). B-splines and their
integrals can be formulated such that they are linear with respect
to the model parameters, and therefore all statistical and com-
putational advantages shown in the linear DMFA (L-DMFA) im-
plementation are retained (Leighty and Antoniewicz, 2011).
Moreover, by exploiting the local support property of B-splines, a
fast heuristic algorithm was developed for knot placement, which
is by far the most time consuming task when performing DMFA.
The performance of the B-DMFA algorithm was compared to the
current L-DMFA approach (Leighty and Antoniewicz, 2011) using a
simulated diauxic growth dataset of yeast fermentation (Sonn-
leitner and Kappeli, 1986). Demonstrating application to real data,
B-DMFA was used to determine flux profiles of CHO cultures in
order to investigate the effects of temperature shift on CHO cells
metabolism.
2. Materials and methods

2.1. Dynamic metabolic flux analysis (DMFA) using B-Spline fitting

Metabolic fluxes (v(t)) are calculated by performing mass bal-
ance around each metabolite in a metabolic network, which is
represented by a stoichiometric matrix (S) for the internal meta-
bolites (cint) and a matrix R for the external metabolites (cext)
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Eq. (1) can be divided in balanced (internal) and not balanced
(external) metabolites. It is assumed that internal metabolites are
at pseudo steady-state, i.e., the fluxes to and away from any in-
ternal metabolite are far greater than the net accumulation of the
metabolite itself (Varma and Palsson, 1994)
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In conventional MFA, metabolic fluxes are assumed to be con-
stant, and the internal metabolite balances are mathematically
formulated by Eq. (3) with constant v. In DMFA, metabolic fluxes
are allowed to change over time to reflect the dynamics of the
measured concentrations and rates.

The vector of fluxes (v(t)) can be expressed as a function of the
null space of the balanced stoichiometric matrix S and a set of free
fluxes (u(t)):

v t K u t K null S, where 4( ) = ⋅ ( ) = ( ) ( )

Leighty and Antoniewicz (2011) calculated internal fluxes using
a time-dependent u t( ) formulated as a linear spline function. A
smoother fit, however, can be achieved by formulating u t( ) using
higher order B-splines as shown in Eq. (5) (Curry and Schoenberg,
1947; Curry and Schoenberg, 1966).
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Under B-spline terminology, m is the number of time points
(called knots), k is the order of the polynomial segments of the
B-spline (order k means that the curve is made of polynomial
segments of degree k�1), Pi is the ith control point, and N ti,k( ) is
the ith normalized B-spline blending function of order k. The
control points and blending functions define the shape of the
B-spline (Prautzsch et al., 2002). The normalized blending func-
tions are estimated by the Cox–de Boor recurrence relation (Cox,
1972; de Boor, 1972):
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In this study, a quadratic B-spline (k¼3) was used to fit the free
flux vector, thus the metabolic fluxes can be expressed as:
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The time profiles of metabolite concentrations are described
using the integral of Eq. (2), thus the integral of Eq. (8) is required.
The indefinite integral of B-spline function of 3rd order is:
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The B-spline functions for metabolite concentrations, after the
rearrangement of ej, can subsequently be expressed in matrix form
as:
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For a pre-determined knot series, the control points (matrix P)
and the initial metabolite concentrations (vector c0) are linear with
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respect to the model. The complete time series of metabolic fluxes
can be estimated by solving a single optimization problem (An-
toniewicz, 2013). The optimization estimates free fluxes and initial
metabolite concentrations by minimizing the variance-weighted
sum of squared residuals (SSR) between estimated and measured
external metabolite concentrations (ci and ci m, ) and external rates
(r randj j m, ) if available (Leighty and Antoniewicz, 2011):
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Fig. 1. (A) Selecting knot placement time interval. The time interval that has the greatest
the selected time interval. The position of the knot i is determined by an iterative pro
interval, or the middle of the left or right half of the knot placement time interval ar
placement time interval gives the smallest SSR. Otherwise the knot placement time inter
knot position gives the smallest SSR. Then the process is repeated on the new reduced
r t R v tj
⇀( ) = ⋅ ( )

where Wi and Wrj are diagonal matrices containing the inverse of
measurement variances of metabolite i and external rates j for
every time point, respectively.

The optimization is linear with respect to P and
c problem parameters0 ( ), thus the solution to the problem can be
solved explicitly using the equation (Leighty and Antoniewicz,
2011)
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where H and J are the Hessian and Jacobian matrixes, respec-
tively. From this point onwards, the formulation is identical to the
L-DMFA approach (Leighty and Antoniewicz, 2011), namely the
contribution to the total SSR is selected for placing a knot. (B) Placing knot i within
cess. First, the SSRs of placing the knot in the middle of the knot placement time
e compared. The process is stopped if placing the knot in the middle of the knot
val is updated to the right or left half of the initial time interval, depending on which
knot placement time interval.
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method used to estimate standard deviations for the estimated
metabolic fluxes.

The B-DMFA algorithm was scripted in MATLAB, and is avail-
able from the corresponding author upon request.

2.2. Heuristic algorithm to determine the placement and number of
knots

Finding the least-square solution of B-splines is a simple linear
problem once the knots sequence has been specified, otherwise
the problem is non-linear and difficult to solve. There are various
parameterization approaches to specify the knot sequence, such as
uniformly spaced or chord length (Prautzsch et al., 2002), how-
ever, these approaches are mainly designed to fit one curve at a
time. Since we are simultaneously fitting a large number of curves
using a single knot sequence, we developed a heuristic algorithm
that uses the SSR within knot spans to guide the placement of
knots (see Supplementary materials for details). The algorithmwas
conceived based on the fact that the shape of B-splines can be
controlled locally, i.e., adjusting positions of proximal knots have
limited distal effects. Generally there are more time series data
points than there are piecewise polynomials required to fit the
experimental data. As such, the algorithm starts from no internal
knots and progressively adds knots until the SSR is reduced to an
acceptable threshold. A region of data with greater dynamic be-
haviour will correspondingly have higher density of knots. This
avoids issues related to over-fitting and oscillation.

Briefly, the algorithm places a knot into the time span that has
the largest contribution to the overall SSR (Fig. 1A). The position of
each added knot is determined by a greedy trial-and-error ap-
proach, guided by SSR trial calculations. The SSR of placing a knot
in either the middle of the time span or the middle of the half right
or left of the defined time interval is compared (Fig. 1B). If the
smallest SSR is given by placing the knot in the middle position,
then it is kept as part of the final knot sequence. Otherwise, the
focus is shifted to the right or left half of the current time span,
chosen based on the knot position that gives the smallest SSR. The
previous smallest SSR is compared again with the options of pla-
cing the new knot in the middle of the right or left half of the new
time span (half of the previous time interval), and the knot posi-
tion that generates the smallest SSR is selected. The process is
repeated, with the time span segment becoming narrower, until
the best knot position is found to be placed at the middle of the
last defined time span. The algorithm starts again for the next
knot. After the placement of the second and subsequent knots, the
position of all knots are adjusted again to minimize SSR in order to
account for the effects of other knots, whereby a better position for
the ith knot is checked between the time interval defined by i-1th
knot and iþ1th knot. The whole process terminates when the
minimum SSR is below the chi-square threshold.

2.3. Metabolic model

The metabolic model was derived from the Mus musculus GeM
(Quek and Nielsen, 2008) as previously described (Quek et al.,
2010). The metabolic model contains the TCA cycle, pentose
phosphate pathway (PPP) and pathways for the synthesis of es-
sential biomass precursors (e.g., fatty acids, steroids, glycogen, and
nucleotides). Under the current DMFA implementation, a fully
determined model is required. The original model is undetermined
by one degree of freedom, due to the possible localization of malic
enzymes in both mitochondria and cytoplasm. Here, we assumed
the mitochondrial enzyme to be inactive. Further modifications
were made to the model to reflect differences in substrate con-
sumption and by-product formation: (1) the uptake of hypox-
anthine, choline, myo-inositol and ethanolamine were removed;
(2) proline degradation pathway was replaced by its biosynthetic
pathway; and (3) an IgG1 antibody production reaction was added
(IgG1 composition shown in Table S1). L-alanyl-L-glutamine di-
peptide was treated as free glutamine and alanine, and the de-
composition of glutamine was assumed to be negligible since its
extracellular accumulation is low. A biomass equation was used,
with the precursor compositions obtained from a previous CHO
cell culture study (Martínez et al., 2013). The average dry weight
for the control cells at exponential growth phase was measured to
be 350 [pg/cell]. The model in SBML format is provided in Sup-
plementary materials.

2.4. Cell culture

The CHO cell line XL99-Ab2, producing an IgG1 antibody (Ab2),
is a derivative of CHO-K1 (ATCC 61-CCL) adapted from adherent
growth in serum containing medium to suspension growth in EX-
CELL302 serum free medium at the University of New South
Wales. The XL99-Ab2 cell line was further adapted to EX-CELL CD
CHO Fusion (Sigma-Aldrich, Castle Hill, Australia) medium sup-
plemented with 8 mM GlutaMAX (L-alanyl-L-glutamine; Life
Technologies Australia, Mulgrave, Australia), 400 μg/ml Geneticin
(Life Technologies Australia, Mulgrave, Australia) and 0.2% v/v
Anti-Clumping Agent (Life Technologies Australia, Mulgrave, Aus-
tralia). XL99-Ab2 cells were cultivated in four 1L shake flasks with
a working volume of 200 ml in humidified Infors shaking in-
cubators set at 37°C, 7.5% CO2 and 130 rpm. After 72.5 h, two shake
flasks were transferred to a humidified incubator set at 32 °C with
otherwise identical settings. Samples for viable cell density and
cell diameter measurements as well as antibody and metabolite
concentration analysis were taken twice a day. Cell number, via-
bility and cell diameter were determined using a CedeX cell
counter (Innovatis, Bielefeld, Germany). Ammonia concentrations
were measured using a Nova Bioprofiler FLEX (Nova Biomedical,
Waltham, USA). For extracellular metabolites and antibody ana-
lysis, 500 μl of cell suspension was removed from the cell cultures,
centrifuged at 200g for 5 min and supernatants were frozen on dry
ice and stored at �80 °C until further processing.

2.5. Extracellular metabolites and antibody concentration analysis

Glucose, lactate, L-alanyl-L-glutamine and amino acid con-
centrations were measured using HPLC as described previously
(Dietmair et al., 2010). Antibody concentrations were determined
using surface plasmon resonance with a Biacore T-100 system (GE
Healthcare, Mansfield, Australia) and the human antibody capture
kit (GE Healthcare, Mansfield, Australia) was used for the im-
mobilization of an Ab2 binding α-Hu IgG FC-specific antibody onto
the CM5 sensor chips. Samples were diluted 5–10 times in a 96
well plate and protein-A purified Ab2 was used to obtain a stan-
dard curve for quantification.
3. Results and discussion

3.1. Comparing B-DMFA against L-DMFA

The implementation of L-DMFA is formally identical to B-DMFA
with order (k) 2, except that L-DMFA uses an optimization algo-
rithm to specify knot sequence (Leighty and Antoniewicz, 2011). A
diauxic growth model of yeast on glucose (Nielsen and Villadsen,
2003; Sonnleitner and Kappeli, 1986) was used to compare their
performances (Fig. 2). In the simulated batch culture, S. cerevisiae
initially metabolize glucose by an oxidoreductive metabolism.
While the uptake rate of glucose is described by Monod kinetics,
the oxidation of glucose is additionally limited by the respiratory



Fig. 2. Simulated data of yeast diauxic growth in batch culture. Initially, cells me-
tabolize glucose and produce ethanol and CO2. Ethanol is consumed when glucose
is depleted. Transients in the oxygen consumption rate and CO2 production rate
around the depletion of glucose and ethanol are shown.

Table 1
Comparison of B-DMFA, L-DMFA and L-DMFA using the heuristic knot placement
algorithm. For each sampling frequency ten datasets with noise (5% standard de-
viation) were simulated, for sampling every 15, 30 and 60 min. The datasets were
analyzed with B-DMFA, L-DMFA and L-DMFA using the heuristic algorithm for
knots placement. The SSR with respect to a dataset without noise (SSRo), the
computation time (in an Intel

s

Core™ i5 CPU with 8 GB RAM), the number of in-
ternal knots required for fitting and the number of parameters were determined.
The goodness-of-fit was similar between the three approaches, however, B-DMFA
required less parameters. B-DMFA is also a much faster approach than L-DMFA,
mainly due to the knots placement heuristic algorithm.

B-DMFA L-DMFA L-DMFAþheuristic
algorithm

15 min 94.8724.2 125.9732.8 97.1722.5
SSRo 30 min 65.1714.3 75.7718.0 65.5715.9

1 h 49.0712.6a 51.1711.5a 50.2712.2b

15 min 23.2713.2 3,54373,119 36.3712.3

Time (s) 30 min 9.572.9 826.27413.4 22.5713.5
1 h 5.673.0a 140.5740.1a 10.178.0b

15 min 772 15715 971

N° Internal knots 30 min 671 1177 973
1 h 671a 874a 974b

15 min 4076 69761 4576

N° Parameters 30 min 3774 51727 46712
1 h 3675a 40714a 46717b

a One out of ten datasets did not converge with a 95% CI, thus the dataset was
omitted from the analysis.

b Two out of ten datasets did not converge with a 95% CI, thus the datasets
were omitted from the analysis.
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capacity. Excess pyruvate therefore overflows to ethanol. As glu-
cose is consumed, its consumption rate decreases to a point where
spare respiratory capacity allows the reconsumption of ethanol.
The uptake rate of ethanol is described by Monod kinetics that
includes glucose inhibition. The complex dynamics of the oxygen
consumption rate is shown in Fig. 2.

The goodness-of-fit by L-DMFA (Leighty and Antoniewicz,
2011) and by B-DMFA were compared using the described simu-
lated dataset. The dataset consisted of concentrations of glucose,
ethanol, biomass, and rates of oxygen and carbon dioxide at
30 min intervals from 0 to 15 h. Initial glucose and biomass con-
centrations were set to 2 g/L and 0.1 g/L. Measurement errors were
assumed to be 5% (assuming a minimum error of 0.01) (Fig. 3).

The two approaches were comparable in terms of the ability to
fit concentration datasets (Fig. 3 A–C). B-DMFA, however, gave a
smoother fit for the oxygen and CO2 rates, particularly at time
points when glucose and ethanol approached depletion (Fig. 3 D
and E). Unlike L-DMFA, B-DMFA was able to trace the spike in the
Fig. 3. Fitting of simulated dataset of yeast diauxic growth by L-DMFA and B-DMFA, and
by ◊, and the fitting of L-DMFA and B-DFMA are represented by black and red lines, respe
DMFA and B-DMFA with increasing number of sampling points is shown. (For interpreta
version of this article.)
rates by allowing insertion of multiple knots at the same time
point. Therefore, B-DMFA generates a better fitting for dynamic
experimental rates that contain drastic changes in a short period
of time.

A quantitative comparison of the fitting between both ap-
proaches was carried out (Table 1). Particularly, we examined how
simulations computation time. In (A)–(E) the simulated data points are represented
ctively. In (F) the computation time (in an Intel

s

Core™ i5 CPU with 8 GB RAM) by L-
tion of the references to color in this figure legend, the reader is referred to the web
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sampling frequency would affect performance. B-DMFA and L-
DMFA were performed on ten datasets for each sampling fre-
quency (15, 30 and 60 min sampling intervals). Each dataset was
generated by corrupting the simulated concentrations and rates
with normally distributed random noise (5% standard deviation).
Since the upper limit of SSR in DMFA vary depending on the
number of knots, a proxy for goodness-of-fit (SSRo) was used,
which measures the discrepancy between the fitted and the noise-
free models. This allows us to compare the goodness-of-fit for the
various fitted models using the simulated noise-free dataset as a
common basis. SSRo was found to be similar for both B-DMFA and
L-DMFA. However, B-DMFA achieved this with a smaller number
of internal knots (time points) and parameters than L-DMFA (Ta-
ble 1), demonstrating the higher fitting power achieved using
B-spline fitting.

B-DMFA was found to be significantly faster than L-DMFA
(Table 1). We attributed this to the heuristic algorithm for knots
placement. L-DMFA uses an optimization approach, which begins
with a maximum potential DMFA time points (e.g., 29 in the
15 min case) and removes one by one until the fit is still within the
95% confidence intervals (CI) (Leighty and Antoniewicz, 2011),
while the B-DMFA heuristic algorithm adds knots starting from
zero. This was verified when the knot placement heuristic
Fig. 4. Viable cell density, antibody concentration, cell size and specific productivity. (A)
shifted at 72.5 h (32 °C-1 and 32 °C-2) and the other two were maintained at 37 °C thro
temperature shift the growth rate decreased and peak viable cell density was lower in tem
in temperature-shifted cells by about 42%. (C) An increase in cell diameter was observe
(D) Cell specific productivity (Qp) based on cell number increased for cells cultivated at
temperature-shifted cells. Qp after 72.5 h was estimated until cells entered stationary p
algorithm was implemented in the original L-DMFA approach, and
as a consequence, the computation times were significantly im-
proved. Interestingly the B-DMFA approach remains the fastest
(Table 1). The SSRo indicates that the resulting fits were similar to
the original L-DFMA implementation. Nonetheless, B-DMFA re-
mained the faster approach compared to the original L-DMFA with
or without the heuristic algorithm, especially for datasets pre-
senting higher sampling frequency (Table 1).

Fig. 3F shows that the B-DMFA approach is significantly less
sensitive to the number of sampling time points than L-DMFA. At
16 time points, B-DMFA algorithm took 7 s to generate a statisti-
cally acceptable flux distribution, while L-DMFA took 115 s; at 91
sampling points, B-DMFA was two orders of magnitude faster
(Fig. 3F). The longest computation time using L-DMFA was ap-
proximately 1 h. This computation time can be considered rea-
sonable, however, when dealing with large models that describes
the full cell metabolism (more than 100 reactions), and more ex-
perimental measurement (the full set of amino acids concentra-
tions for a ten days cell culture) the computation time could be in
the order of days.

The heuristic algorithm for knot placement was validated to be
sound by a Monte Carlo approach. By randomly sampling 10,000
sets of knot sequences with a fixed number of knots, the best SSR
XL99-Ab2 cells were cultivated in four shake flasks, two cultures were temperature-
ughout the whole experiment (37 °C-1 and 37 °C-2). Approximately 24 h after the
perature-shifted cells compared to cells at 37 °C. (B) Final antibody titer was higher
d for cells at 32 °C on day 5, approximately two days after the temperature shift.
32 °C while cell volume normalized Qp did not show an increased productivity for
hase.



Fig. 5. Fitted concentrations from CHO cell cultures by B-DMFA. The experimental data are presented by points and the B-spline fit by lines. Data for cell cultures at constant
37 °C are shown in pink (37°C‐1) and red (37°C‐2), and for temperature-shifted cultures in cyan (32°C‐1) and blue (32°C‐2). Measurements before 24 h were omitted from
the analysis due to their high uncertainty. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

V.S. Martínez et al. / Metabolic Engineering Communications 2 (2015) 46–5752
was still 37% greater despite the Monte Carlo approach requiring
8.5 min to complete compared to the 12 s required by the heuristic
algorithm. When sample size was increased to 100,000, the best
SSR was 25% less than the heuristic algorithm, but only four in-
stances returned SSR better than the algorithm (Figure S1). The
sets of statistically acceptable knot sequences randomly generated
were not very different compared to the knot sequence de-
termined by the algorithm. The largest difference was 6% of the
full time span when compared to the best set. However, the Monte
Carlo approach took 1.4 h to completion.

3.2. Effects of temperature shift on CHO cells size and productivity

Growth profile, antibody concentration, mean cell diameter
and cell specific productivity for the two control cultures (37 °C)
and two temperature-shifted cultures (32 °C) are shown in Fig. 4.
The log plot of cell number (Fig. 4A) showed that cell-specific
growth rates for all four cultures were constant at about 0.025 to
0.029 h �1 during early exponential phase, but began to decline
after 96 h. This is expected for shake flask cultures, as pH is not
controlled. At 100 h, the cell-specific growth rates for the tem-
perature-shifted and control cultures were between 0.012–
0.016h�1 and 0.020–0.023 h�1, respectively, suggesting a reduced
growth rate and slower metabolism for the temperature-shifted
cultures. A lower peak cell density was also observed for the
temperature-shifted cultures. Both observations are consistent
with the literature (Kumar et al., 2007; Moore et al., 1997). Cul-
tures reached peak cell density at 168 h and 192 h for the control
and temperature-shifted cultures, respectively. Cell viabilities for
all four cultures were above 90% for the remaining culture dura-
tion up to 240 h. Cell viability was slightly higher for the tem-
perature-shifted cultures than the control cultures. The reduction
of culture temperature from 37 °C to 32 °C appears to have re-
duced the cell growth rate and overall metabolism.

The final antibody titer was on average 42% higher in the
temperature-shifted cultures compared to the controls. As a con-
sequence of a smaller integral viable cell density and a higher
antibody titer, the average cell-specific productivity (Qp) appeared
to be larger for the temperature-shifted cultures (Fig. 4D). Cells in
the temperature-shifted cultures, however, showed a significant
increase in cell diameter compared to the controls despite all
cultures showing similar cell sizes before the temperature shift
(Fig. 4C). Metabolic fluxes and antibody yields were therefore
normalized to cell volume instead of cell number due to the ob-
served differences in cell sizes. Since cell volume is proportional to
cell mass (Frame and Hu, 1990), it is more accurate to express
metabolic fluxes and antibody yields in terms of cell volume in-
stead of cell number when cell size varies (Nielsen et al., 1997). The



Fig. 6. Absolute intracellular fluxes over time for control and temperature-shifted cultures. Fluxes in [mM/h], time scale in hours. For reversible fluxes positive flux is taken
from left to right or downward. The figure shows the estimated dynamic fluxes from 40 to 200 h (for full culture duration see Figure S4). Fluxes for the control cultures are
shown in pink (37°C‐1) and red (37°C‐2), and for the temperature-shifted cultures in cyan (32°C‐1) and blue (32°C‐2). Fluxes calculated by B-DMFA are shown with solid
lines and the 95% CIs are shown with dashed lines. Clear flux differences were observed between the control and temperature-shifted cultures. Specially for the biomass
precursor reactions, control cultures showed higher fluxes than temperature-shifted cultures between 80 and 180 h. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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difference in average Qp was eliminated once Qp was normalized
against cell volume (Fig. 4D).

Several studies of CHO cell cultures have reported an enhanced
Qp when temperature was reduced from 37 °C to mild hy-
pothermia (Al-Fageeh et al., 2006; Bollati-Fogolin et al., 2005; Fox
et al., 2004; Furukawa and Ohsuye, 1998; Kumar et al., 2007; Yoon
et al., 2003), but none of these studies accounted for the role of cell
size. Temperature-shifted CHO cells typically accumulate in the G1
phase (Kumar et al., 2007; Moore et al., 1997), and might therefore
be expected to be smaller in size than cells in S or G2 phases.
However, an increase in size has been observed for cells arrested in
G1 phase by means other than temperature shift (Al-Rubeai et al.,
1992; Bi et al., 2004; Carvalhal et al., 2003; Lloyd et al., 2000). It
has previously been found that cell-specific productivity correlates
with cell size (Bi et al., 2004; Lloyd et al., 2000) and our data si-
milarly showed that volumetric productivity was largely constant
even with an almost 40% increase in observed cell volume.

3.3. B-DMFA captures dynamic metabolic changes caused by tem-
perature shift

Dynamic flux analysis of CHO cell cultures was performed using
the B-DMFA framework. The experimentally measured metabolite
concentrations (amino acids, glucose, lactate and ammonia), anti-
body concentration and cell volume were used as input. Cell number
was not used due to differences in cell diameter observed between
the control and the temperature-shifted cultures (Fig. 4C). The sec-
ond control culture (37 °C‐2) ) had a smaller inoculum concentration
than the first (37 °C‐2), ), thus the 37 °C-2dataset was shifted back by
Fig. 7. Concentration, absolute fluxes and volume specific fluxes for glucose, lactate and
in [mmol/gDW/cell] and time scale in hours. The data for the control cultures are show
(32°C‐1) and blue (32°C‐2).The glucose and glutamine consumption fluxes were highe
perature-shifted cultures. Similarly, the lactate flux was higher for the control cultures u
between the control and temperature-shifted cultures were reduced when fluxes were ex
legend, the reader is referred to the web version of this article.)
8.5 h. A total of 408 measurements (24 concentrations�17 time
points) per culture were fitted (Fig. 5). Since oxygen uptake was not
measured, the measurement set has only one degree of redundancy
with respect to the model inputs and outputs (Quek et al., 2010). The
calculated residual error therefore reflects the consistency of nitrogen
balance among the measurements.

The B-splines were generally able to accurately trace all of the
measured concentrations for both control and temperature-shifted
cultures (Fig. 5). The number of internal knots used and para-
meters fitted ranged from 0 to 2 and 93 to 141, respectively, for the
four cultures; computation times were less than seven seconds.
The fitting (Figure S2), and the number of knots and parameters
used by L-DMFA were comparable with B-DMFA. However, the
computation time increased by 3 orders of magnitude and the
estimated fluxes are C0 continuous (Figure S3). The knot selection
by B-DMFA was validated by a Monte Carlo approach using
100,000 random samples of knot sequence; SSR was improved by
only 3% at most.

Compared to the temperature-shifted cultures, the control
cultures displayed faster depletion of glucose, glutamine and ser-
ine, and accumulation of lactate, ammonia and glycine (Fig. 5). The
time-resolved absolute fluxes estimated by B-DMFA were con-
sistent with these general observations (Fig. 6). The biomass pre-
cursor (glycogen, steroids, fatty acids and nucleotides) reactions
presented the biggest difference in flux between control and
temperature-shifted cultures, particularly between 80 and 180 h a
higher flux was observed for the cells at 37 °C. The fluxes for serine
aldolase (glycine production from serine) and glutaminase (glu-
tamate production from glutamine) were also higher in a similar
glutamine. Concentration in [mM], absolute fluxes in [mM/h], volume specific fluxes
n in pink (37°C‐1) and red (37°C‐2), and the temperature-shifted cultures in cyan
r for the control cultures, whereas they were more stable over time for the tem-
ntil 168 h. At stationary phase cells began to consume lactate. Differences in fluxes
pressed as specific fluxes. (For interpretation of the references to color in this figure
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fashion to the biomass precursor reactions, but glycolytic fluxes
were only marginally higher. Lactate dehydrogenase flux was
higher for the control cultures; in agreement with the lactate
concentration profile (Figs. 5 and 7). TCA cycle flux was similar
under both culture conditions. The absolute fluxes clearly showed
the transient changes in metabolism as the cultures progress
(Fig. 6). Particularly in the control cultures, the glutamine con-
sumption flux was elevated when cell-specific growth rate was
beginning to decline at 100 h, which coincided with the switch
from lactate production to consumption (Fig. 7).

The differences in absolute fluxes between the two conditions
can partially be attributed to differences in cell density, as cultures
at 37 °C grew faster than temperature-shifted cells and con-
comitantly accumulated more biomass. Volume-specific fluxes
were therefore estimated to check if normalized fluxes were still
different. While fluxes still showed transient behaviors, flux dif-
ferences between the two culture conditions were diminished in
general (Figure S5). Glutaminase and lactate dehydrogenase fluxes
for the control cultures were still significantly higher compared to
the temperature-shifted cultures (Fig. 7), but glycolytic fluxes were
only marginally higher. The disparity between glycolytic and lac-
tate fluxes suggests that, for the control cultures, a larger fraction
of pyruvate was derived from other carbon sources in addition to
glucose compared to temperature-shifted cultures. Biomass pre-
cursor reactions were kept at higher fluxes between 95 and 168 h
for the control cultures, which is proportional to the higher cell-
specific growth rate of the control cultures during that period of
time. Cells entered stationary phase at 168 h, showing a reduction
in their biomass precursor requirements and concomitantly most
intracellular fluxes. An interesting exception are the TCA cycle
fluxes, which appeared to be similar and constant throughout the
whole culture for both conditions. Yoon et al. (2003) showed no
change in cell-specific glucose, glutamine and lactate fluxes when
temperature of CHO cell culture was reduced from 37 °C to 33 °C,
Fig. 8. Volume specific productivity (Qp) over time for control and temperature-
shifted cultures. The figure shows the estimated volume specific Qp from 40 to
200 h. The data for the control cultures are shown in pink (37 °C-1) and red (37 °C-
2), and the temperature-shifted cultures in cyan (32 °C-1) and blue (32 °C-2). The
cell number was normalized by cell volume. The temperature-shifted cultures have
an almost constant volumetric Qp over the full culture. On the other hand, cells at
constant temperature have a peak in volumetric Qp around 90 h and then a decline.
However, on average volumetric Qp is comparable in both conditions from 72.5 h to
168 h. Note that the 95% CIs of the Qp estimated by B-DMFA were large before the
temperature shift due to the low cell number. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)
but a significant increase in all three fluxes when temperature was
reduced to 30 °C (Yoon et al., 2003).

Although the average volumetric Qp was the same for the two
conditions (Fig. 4D) during exponential phase, the time-resolved
volumetric Qp profile revealed by B-DMFA was very different
(Fig. 8). The volumetric Qp for the temperature-shifted cultures
was largely constant at about 6–7 pg cell�1day�1 for the entire
culture duration, despite the decline in cell-specific growth rate. In
contrast, volumetric Qp for the control cultures peaked between
8–10 pg cell�1day�1 at 90 h, before gradually declining to 0. The
higher titer achieved in the temperature-shifted cultures could be
attributed to a more stable volumetric Qp (Fig. 8).

Overall, B-DFMA was able to quantify changes in cell metabo-
lism for the whole cell culture duration. While we expect the
temperature shift to induce transient metabolic behaviors in the
cell cultures, B-DFMA was able to account for the gradual decline
in cell-specific growth rate and dynamic consumption and pro-
duction profiles. The changes observed in the latter were not ex-
pected for the control cultures. None of the metabolic fluxes were
constant over time for any of the culture conditions (Figs. 6, 7, S4
and S5). The gradual decline in cell-specific growth rate may be
pH-related, and possibly due to the accumulation of lactate and
ammonia. While B-DMFA was designed for resolving transient
metabolic behaviors, it was crucial in showing that volume-spe-
cific productivity of IgG1 was significantly more stable in the
temperature-shifted cultures compared to the controls. These
observations would have been missed if average fluxes were used,
highlighting the benefit of B-DMFA compared to conventional
MFA.

As other MFA techniques, the B-DMFA approach is unable to
resolve fluxes of parallel and cyclic pathways. This challenge can
be solved with isotopic tracer experiments (Ahn and Antoniewicz,
2011; Quek et al., 2010). In the analysis of CHO cell culture we
were unable to resolve cytosolic versus mitochondrial malic en-
zyme flux and had to assume that all flux was cytosolic. Moreover,
the volume specific fatty acids production was estimated to de-
crease during the cell culture (Figure S3) in agreement with the
reduction of volume specific cell growth rate. However, fatty acids
production significantly in excess of growth requirements was
recently reported for CHO cells in stationary phase based on a 13C
isotopic tracer study (Ahn and Antoniewicz, 2013). The fate of the
lipids–lipid accumulation or futile turnover through beta-oxida-
tion—has not yet been resolved and this phenomenon was there-
fore not considered in the current model. B-DMFA framework can
be enhanced with isotopic tracer experiments to resolve parallel
and cyclic pathways, and to estimate production fluxes of meta-
bolites that are not uniquely part of a biomass equation. The full
resolution of mammalian cells metabolic fluxes over-time still
remains a challenge.

Since the current paper was submitted, another paper on dy-
namic metabolic flux analysis (Vercammen et al., 2014) was pub-
lished describing the use of B-spline functions to fit the time
profile of free fluxes. The approach of Vercammen et al. differs
significantly from B-DMFA including the optimization approach
and the approach to knot placement. Vercammen et al. directly
estimate specific fluxes through a non-linear optimization ap-
proach, which includes irreversibility constraints, while B-DMFA
(like the original L-DMFA approach) estimates absolute fluxes by
an optimization problem that is linear with respect to the para-
meters and can be solved analytically. Whereas, B-DMFA employs
a heuristic method to determine number and position on B-splines
knots; Vercammen et al.’s approach uses Akaike’s model dis-
crimination criterion for knots addition, adding one knot in one
B-spline at a time. Therefore, the resulting B-spline functions to fit
the free fluxes can have different number of internal knots. The
final location of the knots is estimated by the non-linear
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optimization. Vercammen et al’s approach additionally includes in
the non-linear optimisation the choice of optimal basis for the null
space. Since Vercammen et al optimise all fitting parameters, it is
expected that the fit is more efficient, i.e., a fit within the observed
measurement errors is achieved with fewer fitted parameters than
with B-DMFA. The price is the requirement to solve a non-trivial,
non-linear optimization problem, which is computationally de-
manding even for the moderate size problem presented in their
paper and may not be viable for dynamic flux analysis for large-
scale networks. In contrast, B-DMFA with a heuristic knot-place-
ment algorithm was shown to be capable of resolving dynamic
fluxes in a large CHO model including 408 experimental measured
data in less than seven seconds.
4. Conclusions

We have demonstrated the usefulness of applying conventional
B-spline notation and formulation to calculate dynamic fluxes
without being restricted to any specific order of fitting. B-DMFA is
capable of generating smooth fit for complete time series experi-
mental data, as well as incorporating statistical estimation of dy-
namic metabolic fluxes in one step using redundant datasets.
Using a higher-order fit, B-DMFA was shown to perform better in
fitting dynamic external rates compared to L-DMFA. The heuristic
algorithm developed to determine the knots sequence was vali-
dated to be accurate and was demonstrated to be much faster than
the optimization method used in the L-DMFA approach (Leighty
and Antoniewicz, 2011). By resolving the dynamic changes in
metabolic fluxes in temperature-shifted XL99-Ab2 culture, we
showed that the reduction of growth and overall metabolic rates
by inducing mild hypothermia may have benefited the CHO cell
culture in terms of enhancing the stability of recombinant protein
production, leading to an observed increase in final antibody titer
by 42%. This leaves room to speculate whether the slower cell
metabolism and the reduced accumulation of lactate and ammo-
nia have a positive effect on the stability of recombinant protein
productivity.
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