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The worldwide health crisis caused by the SARS-Cov-2 virus has resulted in>3 million deaths so far.
Improving early screening, diagnosis and prognosis of the disease are critical steps in assisting healthcare
professionals to save lives during this pandemic. Since WHO declared the COVID-19 outbreak as a pan-
demic, several studies have been conducted using Artificial Intelligence techniques to optimize these
steps on clinical settings in terms of quality, accuracy and most importantly time. The objective of this
study is to conduct a systematic literature review on published and preprint reports of Artificial
Intelligence models developed and validated for screening, diagnosis and prognosis of the coronavirus
disease 2019. We included 101 studies, published from January 1st, 2020 to December 30th, 2020, that
developed AI prediction models which can be applied in the clinical setting. We identified in total 14
models for screening, 38 diagnostic models for detecting COVID-19 and 50 prognostic models for predict-
ing ICU need, ventilator need, mortality risk, severity assessment or hospital length stay. Moreover, 43
studies were based on medical imaging and 58 studies on the use of clinical parameters, laboratory
results or demographic features. Several heterogeneous predictors derived from multimodal data were
identified. Analysis of these multimodal data, captured from various sources, in terms of prominence
for each category of the included studies, was performed. Finally, Risk of Bias (RoB) analysis was also con-
ducted to examine the applicability of the included studies in the clinical setting and assist healthcare
providers, guideline developers, and policymakers.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The World Health Organization (WHO) declared on March 11th,
2020 the COVID-19 outbreak, emerged in December 2019 in
Wuhan, China [1] resulting at the time of writing in more than 3
million deaths and 150 million cases worldwide. The most critical
steps in assisting healthcare professionals to save lives during this
pandemic are early screening, diagnosis and prognosis of the
disease. Several studies have been conducted using Artificial
Intelligence (AI) techniques to optimize these steps on clinical set-
tings in terms of quality, accuracy and time. AI techniques, employ-
ing Deep Learning (DL) methods, have demonstrated great success
in the medical imaging domain due to DL’s advanced capability for
feature extraction [2]. Apart from the medical imaging domain, AI
techniques are widely used to screen, diagnose and predict progno-
sis of COVID-19 based on clinical, laboratory and demographic
data.

Early clinical course of SARS-CoV2 infection can be difficult to
distinguish from other undifferentiated medical presentations to
hospital and SARS-CoV-2 PCR testing can take up to 48 h for oper-
ational reasons. Limitations of the gold-standard PCR test for
COVID-19 have challenged healthcare systems across the world
Fig. 1. AI-based clinical
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due to shortages of specialist equipment and operators, relatively
low test sensitivity and prolonged turnaround times [3]. Hence,
rapid identification of COVID-19 is important for delivering care,
aiding proper triage among patients admitting to hospitals, accel-
erating proper treatment and minimizing the risk of infection dur-
ing presentation and waiting hospital admission time. Several
studies have been conducted to face the need of early screening
by using AI methods [4,5].

Challenges on COVID-19 diagnosis are also present due to the
difficulties of differentiating Chest X-Ray radiographs (CXRs) with
COVID-19 pneumonia symptoms from those with common pneu-
monia and insufficient empirical understanding of the radiological
morphology in CT scans of this new type of pneumonia among
other. Moreover, CXR or CT-based diagnosis may need laboratory
confirmation. Therefore, there is an imperative demand for accu-
rate methods to assist clinical diagnosis of COVID-19. Multiple
studies using AI techniques have been conducted towards this
direction, to extract valuable features from CXRs or CTs [6,7], to
use clinical data and laboratory exams [89] or to even combine
both imaging quantitative features and clinical data to result in
accurate diagnosis [10,11]. Finally, prognosis is an essential step
towards assisting healthcare professionals to predict ICU need,
prediction models.
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mechanical ventilator need, hospitalization time, mortality risk or
severity assessment of the disease.

The objective of our study was to conduct a systematic
literature review on published and preprint reports of Artificial
Intelligence techniques developed and validated for screening,
diagnosis, and prognosis of the coronavirus disease 2019. Studies
that developed AI prediction models for screening, diagnosis or
prognosis that can be applied in the clinical setting were included
(see Fig. 1). Screening studies describe prediction models devel-
oped for early identification of COVID-19 infection, whereas diag-
nostic studies propose prediction models developed to establish
a diagnosis of the disease. In these studies, several predictors were
recognized, including clinical parameters (e.g., comorbidities,
symptoms) laboratory results (e.g., hematological, biochemical
tests), demographic features (e.g., age, sex, province, country, tra-
vel history) or imaging features extracted from CT scans or CXRs.
Identification of the most prominent predictors was also part of
our analysis. Furthermore, novel technologies incorporated in AI
techniques were investigated to determine the current state of
research in developing AI prediction models. Additionally, the
advantages of using imaging, clinical and laboratory data or the
combination of those were analyzed. To achieve this objective,
each study was analyzed in terms of COVID-19 positive patients
included in the primary datasets, AI methods employed, predictors
identified, validation methods applied, and performance metrics
used. Finally, a Risk of Bias (RoB) analysis was conducted to exam-
ine the applicability of the included studies in the clinical setting
and support decisions made by healthcare providers, guideline
developers, and policymakers.

The paper is organized as follows. In Section 2, we describe the
used methods in the approach and protocols including the descrip-
tion of the AI algorithms performance metrics, and the inclusion–
exclusion criteria of the reviewed studies. In Section 3, results
are presented on the primary datasets, AI algorithms, validation
methods, as well as prediction models developed for screening,
Fig. 2. PRISMA (preferred reporting items for syst
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diagnostic and prognostic purposes. In this section, we also provide
results on the most prominent predictors for each category of the
included prediction models. Moreover, the results of the RoB
assessment, are provided in Section 3. In Section 4, we discuss
the results and the limitations related to the applicability of the
developed prediction models and we identify possible future direc-
tions aiming at enhancing the adoption of AI-based prediction
models in clinical practice.
2. Methods

A. Review approach and protocols
In this systematic literature review, we followed the guidelines

of the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) protocol to ensure transparent and complete
reporting (see Fig. 2) [12]. This study focused on peer-reviewed
publications, as well as preprints published in English, that applied
AI techniques to develop prediction models for diagnosis or prog-
nosis of COVID-19. A systematic literature search was conducted
for collecting research articles available from January 2020 through
December 2020, using the online databases PubMed, Nature,
Science Direct, IEEE Xplore, Arxiv and medRxiv. By combining
appropriate keywords with Boolean operators, the following
expression was formed:

[(‘‘artificial intelligence” OR ‘‘AI”) OR (‘‘machine learning” OR
‘‘ML”) OR (‘‘deep learning” OR ‘‘DL”)] AND (‘‘hospital” OR ‘‘clinical”
OR ‘‘healthcare system”) AND (‘‘triage” OR ‘‘early screening” OR
‘‘diagnosis” OR ‘‘mortality prediction” OR ‘‘severity assessment”)
AND (‘‘covid-19” OR ‘‘sars-cov-2” OR ‘‘Coronavirus” OR ‘‘pan-
demic”) AND (‘‘prediction models”)

Title and abstract screening, full text review, data extraction
and Risk of Bias Analysis were conducted by two independent
reviewers using Covidence [13], a software for systematic review
management.
ematic reviews and meta-analyses) flowchart.
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Data were extracted with Covidence software using a cus-
tomized extraction form. The extraction form included the follow-
ing fields for each included study: Covidence Study ID, Lead
Author, Title, Database source, Country (the country of dataset ori-
gin), Hospital Name, No of hospitals, Start date, End date, Outcome,
No of days for mortality prediction, Type of AI model, AI Methods
used, Type of input data, Source of input data, Sample Size of input
data, Predictors, Study design, Number of participants for model
development (with outcomes), Total Number of COVID-19 positive
patients, Population description, Validation method, Number of
participants for model validation (with outcomes), Performance
(Area under the curve (AUC%), Accuracy (Acc%), Sensitivity (SEN
%), Specificity (SPE%), Positive Predictive Values/ Negative Predic-
tive Values (PPV/NPV) (%), (95% CI)), Code availability, Limitations,
Ethical Considerations, Risk of Bias for participants/ predictors/
outcome/ analysis/, overall risk of bias.

The performance of each AI model was reported in terms of
metrics defined using the number of True Positives (TP), True
Negatives (TN), False Positive (FP) and False Negatives (FN) [14],
as follows:

1) AUC is the area under the Receiver Operating Characteristic
(ROC) curve, which plots the true positive rate against the
false positive rate. This metric is a standard method for eval-
uating medical tests and risk models [15].

2) Accuracy is the percentage of cases correctly identified cal-
culated by:

Acc ¼ TP þ TN
TP þ FN þ FP þ TN

3) Sensitivity is the rate of true positives. It measures the pro-
portion of true positives that the model predicts accurately
as positive [16], expressed by:

SEN ¼ TP
TP þ FN

4) Specificity is the rate of true negatives. It measures the pro-
portion of true negatives that the model accurately predicts
as negative [16], calculated by:

SPE ¼ TN
FP þ TN

5) The positive predictive value (PPV), can be expressed as the
ratio of the true positives to the sum of the true positives
and false positives and NPV is defined as the ratio of the true
negatives to the predicted negatives [17].

In this systematic review, we used PROBAST (Prediction model
Risk Of Bias ASsessment Tool) [18], to assess the risk of bias and
applicability of the included studies with a focused and transpar-
ent approach. PROBAST protocol is organized into the following
four domains: participants, predictors, outcome, and analysis.
These domains contain a total of 20 signaling questions to facilitate
structured judgment of ROB, which was defined to occur when
shortcomings in study design, conduct, or analysis led to systemat-
ically distorted estimates of model predictive performance.

B. Inclusion - Exclusion criteria

Studies that reported the use of AI techniques, including but not
limited to techniques from the AI subfield of Machine Learning
(ML) and techniques from the ML subfield of DL for developing pre-
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diction models for Triage, Diagnosis and Prognosis (such as disease
progression, mortality prediction, severity assessment) were
included in this systematic review. Cohorts, retrospective cohorts,
randomized controlled trials, diagnostic test accuracy, single-
centered or multicentered retrospective studies were selected for
further analysis.

Restrictions were applied concerning the setting of the studies.
If the outcome of the studies could not be applied on a clinical set-
ting, these studies were excluded. Concerning the type of partici-
pants, studies that did not include COVID-19 patient data, were
excluded. Additionally, studies affecting mental health were
excluded. Finally, studies that did not use exclusively AI, ML, or
DL to develop these type of prediction models were also excluded.
3. Results

In this review, 879 titles were screened and 101 studies pre-
senting 101 AI-based models for screening, diagnosis and progno-
sis of COVID-19, were included for full-text review. A significant
increase in the number of studies published in the 3rd and 4th
quarter of the year was observed (see Fig. 3). We identified in total
14 models for screening (5 based on medical imaging), 38 diagnos-
tic models for detecting COVID-19 (31 based on medical imaging)
and 50 prognostic models (7 based on medical imaging) for pre-
dicting ICU need, ventilator need, mortality risk, severity assess-
ment or hospital length stay (see Fig. 4). The results are
presented in Tables 1-8, including Lead Author of each included
study, Country (in case datasets from specific hospitals were used),
outcome of the study, number of COVID-19 Positive Patients (CPP)
included in the development of the model, AI methods, validation
methods and performance of developed prediction models. Miss-
ing values of CPP were mainly found in imaging studies that did
not specify the number of CT scans or CXR images corresponding
to each COVID-19 positive patient. There are in total 11 studies
[9,15,19,20,21,22,23,24,25,26,27] with unclear reporting of the
number of CPP included.

A. Primary multimodal datasets

Several datasets were identified consisting of multimodal data
(e.g., demographic, clinical, imaging) among the included studies.
In total 70 studies used COVID-19 positive patient data derived
from hospitals from various countries (41 in China, 12 in United
States, 6 in Italy, 4 in Brazil, 3 in South Korea, 3 in UK and one study
for each of the following countries: France, Spain, Germany, Singa-
pore, Greece, Denmark, Mexico and Israel).

Apart from patient datasets derived from hospitals in the above
countries, various publicly available online databases of COVID-19
and pneumonia CXRs ad CT scans were used in the included stud-
ies such as:

1) Italian Society of Medical and Interventional Radiology
(SIRM) COVID-19 database [28]:

SIRM COVID-19 database reports 384 COVID-19 positive radio-
graphic images (CXR and CT) with varying resolution. Out of 384



Fig. 4. Included AI based prediction models.

E.S. Adamidi, K. Mitsis and K.S. Nikita Computational and Structural Biotechnology Journal 19 (2021) 2833–2851
radiographic images, 94 images are chest X-ray images and 290
images are lung CT images. This database is updated in a random
manner and until 9th December 2020, 115 confirmed COVID-19
cases were reported in this database. This dataset was used by
three included studies [29,30,31].

2) Novel Corona Virus 2019 Dataset [32]:

This is a public database in GitHub by collecting 319 radio-
graphic images of COVID-19, Middle East respiratory syndrome
(MERS), Severe acute respiratory syndrome (SARS) and ARDS from
the published articles and online resources. In this database, they
have collected 250 COVID-19 positive chest X-ray images and 25
COVID-19 positive lung CT images with varying image resolutions.
This dataset was used by twelve studies
[5,30,33,19,20,34,35,36,37,21,22,23].

3) J. Kaggle chest X-ray database [38]:

This is a very popular database, which has 5,863 images chest
X-ray images of normal, viral and bacterial pneumonia with reso-
lution varying from 400p to 2000p. Two included studies [30,22]
used this dataset.

4) K. COVID-19 Radiography Database [39]:

This database was created for three different types of images
classified as chest x-ray images belonging to patients infected with
COVID-19, chest x-ray images of cases with viral pneumonia and
Chest x-ray images of healthy persons. There are currently 1200
COVID-19 positive images, 1341 normal images, and 1345 viral
pneumonia images. This database was used by [40] and [24].

5) L. COVID-19 cases open database [41]:

This database contains temporal acquisitions for 42 patients
with up to 5 X-ray images per patient, with ground truth annota-
tion as a therapeutic issue for each patient: death or survival.
The ground truth annotation can aid in developing prognostic
2837
models like the one presented by Fakhfakh et al. [42] to classify
multi-temporal chest X-ray images and predict the evolution of
the observed lung pathology based on the combination of convolu-
tional and recurrent neural networks.

Moreover, regarding the type of input data employed in the
developed models, several studies used demographic, clinical and
imaging data or even a combination of those multimodal data
types. Fang et al. [43] study, reported to be among the first
attempts to fuse clinical data and sequential CT scans to improve
the performance of predicting COVID-19 malignant progression
in an end to end manner. Liu et al. [44] also used a combination
of quantitative CT features of pneumonia lesions with traditional
clinical biomarkers to predict the progression to severe illness in
the early stages of COVID-19. Additionally, Chassagnon et al. [45]
reported an AI solution for performing automatic screening and
prognosis based on imaging, clinical, comorbidities and biological
data.

B. AI algorithms

The most frequently used AI algorithms for classification pur-
poses in all studies were Random Forests (RF), Linear Regression
(LR), Support Vector Machines (SVM), Convolutional Neural Net-
works (CNN), Decision Trees (DT) and XGBoost (XGB) which are
in general six widely used classification methods. Random Forest
is a tree-based learning algorithm that utilizes decision trees rising
from the training subset which are selected randomly to solve a
classification problem [16]. A logistic regression model predicts
the probability of a categorical dependent variable occurring
[16]. The SVM model seeks to find the hyperplane that has a max-
imal distance between two classes [16]. CNN is one of the most
widely used deep neural networks with multiple layers, including
convolutional layer, non-linearity layer, pooling layer, and fully
connected layer. CNN has an excellent performance in machine
learning problems, especially in imaging studies [46]. DTs are
one of the most popular approaches for representing classifiers,
expressed as a recursive partition of the instance space [47]. XGB
generates a series of decision trees in sequential order; each deci-
sion tree is fitted to the residual between the prediction of the pre-



Table 1
Results for screening models.

Study, Country, Outcome No.
of
CPP*

AI methods Predictors Val.
methods

Performance (AUC, Accuracy (Acc%), Sensitivity
(SEN%), Specificity (SPE%), PPV/NPV (%), (95% CI))

Risk of Bias**:
Participants/
Predictors/
Outcome/Analysis/
Overall

Yang et al. [4], USA, Early
and rapid identification
of high-risk SARS-CoV-2
infected patients

1,898 LR, DT, RF, GBDT age, gender, race and 27 routine laboratory tests 5-FCV AUC 0.854 (95% CI: 0.829–0.878) L U H H H

Li et al. [63], China, Screen-
ing based on ocular sur-
face features

104 DL Imaging features 5-FCV AUC 0.999 (95%CI, 1670.997–1.000, SEN 98.2, SPE
97.8

U U U H H

AS Soltan et al. [3], UK, Early
detection, Screening

437 multivariate LR, RF,
XGBoost

Presentation laboratory tests and vital signs TTS,
10-FCV

ED model: AUC 0.939, SEN 77.4, SPE
95.7Admissions model: AUC 0.940, SEN 77.4, SPE
94.8Both models achieve high NPP (>99)

H H H H H

Nan et al. [57], China, Early
screening

293 DL, LR, SVM, DT, RF 4 epidemiological features, 6 clinical manifestations (muscle
soreness, dyspnea, fatigue, lymphocyte count, WBC, imaging
features)

TTS AUC 0.971, Acc 90, SPE 0.95 (LR optimal screening
model)

H U H H H

Soares et al. [58], Brazil,
Screening of suspect
COVID-19 patients

81 ML, SVM, SMOTE
Boost, ensembling, k-
NN

Hemogram: (Red blood cells, MCV, MCHC, MCH, RDW, Leukocytes,
Basophils, Monocytes, Lymphocytes, Platelets, Mean platelet volume,
Creatinine, Potassium, Sodium, CRP, Age

unspecified AUC 86.78 (95%CI: 85.65–87.90), SEN 70.25 (95%
CI: 66.57–73.12), SPE 85.98 (95%CI: 84.94–86.84),
NPV 94.92 (95%CI: 94.37–95.37), PPV 44.96 (95%
CI: 43.15–46.87)

L U H H H

Feng et al. [59], China, Early
identification of sus-
pected COVID-19 pneu-
monia on admission

32 ML, LR (LASSO), DT,
Adaboost

lymphopenia, elevated CRP and elevated IL-6 on admission 10-FCV AUC 0.841, SPE 72.7 H H H H H

Wu et al. [60], China, Early
detection

27 RF 11 key blood indices: TP, GLU, Ca, CK-MB, Mg, BA, TBIL, CREA, LDH, K,
PDW

10-FVC,
Ext. Val.

Acc 95.95, SEN 95.12, SPE 96.97 L L L H H

Banerjee et al. [61], Brazil,
Initial screening

81 RF, ANN platelets, leukocytes, eosinophils, basophils, lymphocytes,
monocytes.

10-FCV AUC 0.95 H H H H H

Peng et al. [62], China, Quick
and accurate diagnosis

32 SRLSR, non-
dominated radial
slots-based
algorithm, ARMED,
GFS, RFE

18 diagnostic factors: WBC, eosinophil count, eosinophil ratio, 2019
new Coronavirus RNA (2019n-CoV), Amyloid-A, Neutrophil ratio,
basophil ratio, platelet, thrombocytocrit, monocyte count,
procalcitonin, neutrophil count, lymphocyte ratio, lymphocyte count,
monocyte ratio, MCHC, Urine SG

not
performed

not performed L L U H H

*CPP = COVID-19 Positive Patients, Abbreviations of medical terms included in this Table are provided in the Appendix.
**L: Low, H: High, U: Unclear
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Table 2
Results for screening imaging models.

Study, Country,
Outcome

No.
of
CPP*

AI methods Predictors Val.
methods

Performance (AUC, Accuracy (Acc%), Sensitivity (SEN
%), Specificity (SPE%), PPV/NPV (%), (95% CI))

Risk of Bias**:
Participants/
Predictors/
Outcome/Analysis/
Overall

Abdani et al. [30], Fast
screening

219 DL, CNN Imaging
features

5-FCV Acc 94 H U H H H

Ahammed et al. [5],
Early detection

285 ML, DL, CNN, SVM, RF, k-NN,
LR, GNB, BNB, DT, XGB, MLP,
NC, perceptron.

Imaging
features

10-FCV AUC 95.52, Acc 94.03, SEN 94.03, SPE 97.01 H H H H H

Barstugan et al. [31],
Early detection

53 ML, SVM Imaging
features

10-FCV Acc 99.68, SEN 93, SPE 100 U U U H H

Wu et al. [55], China,
Fast and accurately
identification

368 DL Imaging
features

TTS AUC 0.905, Acc 83.3, SEN 82.3 L U U H H

Wang et al. [56], China,
Triage

1647 DL Imaging
features

Ext. val. AUC 0.953 (95% CI 0.949–0.959), SEN 92.3 (95% CI
91.4–93.2), SPE 85.1 (84.2–86.0), PPV 79 (77.7–80.3),
NPV 94.8 (94.1–95.4)

L U U H H

*CPP = COVID-19 Positive Patients, Abbreviations of medical terms included in this Table are provided in the Appendix.
**L: Low, H: High, U: Unclear

Table 3
Results for diagnostic models.

Study, Country, Outcome No.
of
CPP*

AI methods Predictors Val.
methods

Performance (AUC, Accuracy (Acc%),
Sensitivity (SEN%), Specificity (SPE%),
PPV/NPV (%), (95% CI))

Risk of Bias**:
Participants/
Predictors/
Outcome/Analysis/
Overall

Diagnostic

Cabitza et al. [64], Italy, Fast
identification

845 ML LDH, AST, CRP, calcium, WBC, age Int.-ext.
val.

AUC 0.83–0.90 L H L L H

Batista et al. [8], Brazil,
Diagnosis

102 ML, NN, RF,
GB trees,
LR, SVM

lymphocytes, leukocytes,
eosinophils

10-FVC AUC 0.85, SEN 68, SPE 85, PPV 78, NPV
77

H L H H H

Cai et al. [10], China, predict
RT-PCR negativity during
clinical treatment

81 DL 9 CT quantitative features and
radiomic features

TTS AUC 0.811–0.812, SEN 76.5, SPE 62.5 H H H H H

Mei et al. [65], China, Diag-
nosis

419 DCNN Imaging features, age, exposure to
SARS-CoV-2, fever, cough, cough
with sputum, WBC

TTS AUC 0.92, SEN 84.3 H H H L H

Ren et al. [11], China, Diag-
nosis

58 AI unclear unspecified AUC 0.740, SEN 91.2, SPE 58.8 L U U H H

*CPP = COVID-19 Positive Patients, Abbreviations of medical terms included in this Table are provided in the Appendix.
**L: Low, H: High, U: Unclear

E.S. Adamidi, K. Mitsis and K.S. Nikita Computational and Structural Biotechnology Journal 19 (2021) 2833–2851
vious decision tree and the target value, and this is repeated until a
predetermined number of trees or a convergence criterion is
reached [48]. AI techniques based on the above algorithms or other
algorithmic approaches for classification purposes that were iden-
tified among the reviewed studies included GDCNN (Genetic Deep
Learning Convolutional Neural Network) [74], CRT (Classification
and Regression Decision Tree) [116], ET (Extra Trees) [15], GBDT
(Gradient Boost Decision Tree) [4,71], GBM light (Gradient Boost-
ing Machine light) [100,115], Adaboost (Adaptive Boosting) [27],
Boost Ensembling [58,45,59], k-NN (K-Nearest Neighbor)
[5,9,58,70,88,106,112], NB (Naïve Bayes) [9], BNB (Bernoulli Naïve
Bayes) [5], GNB (Gaussian Naïve Bayes) [5,27], Inception Resnet
(Inception Residual Neural Network) [117], LDA (linear discrimi-
nant analysis) [43], RBF (Radial Basis Function) [45], LSTM (Long-
Short Term Memory) [43].

Moreover, the use of AI techniques for data preprocessing
purposes was reported in the reviewed studies. In particular, AI
techniques, including ARMED (Attribute Reduction with Multi-
objective Decomposition Ensemble optimizer) [62], GFS (Gradient
boosted feature selection) [62], MRMR (Maximum Relevance Min-
imum Redundancy) [84], and RFE (Recursive Feature Elimination)
2839
[62] were used for feature selection. Regression models, including
L1LR (L1 Regularized Logistic Regression) [17], LASSO (Least Abso-
lute Shrinkage and Selection Operator) [50,59,84,89,112], CoxPH
(Cox Proportional Hazards) [100], and SRLSR (Sparse Rescaled Lin-
ear Square Regression) [62] were also employed for feature selec-
tion. The use of Nadam optimizer (NesterovAccelerated Adaptive
Moment optimizer) for model optimization was reported in two
studies [33,117], while application of SMOTE (Synthetic Minority
Oversampling TEchnique) for data augmentation was reported in
one study [58]. Finally, NLP (Natural Language Processing) was
employed in three studies [7,48,86], for data mining purposes.

Regarding novel technologies used in the included studies,
explainable AI (XAI) methods, and Federated Learning (FL) were
investigated. XAI refers to the ability to explain to a domain expert
the reasoning that enables the algorithm to produce its results and
is deemed increasingly important in health AI applications [49]. FL,
used in [24] and [50], is a nascent field for data-private multi-
institutional collaborations, where model-learning leverages all
available data without sharing data between hospitals, by dis-
tributing the model-training to the data-owners and aggregating
their results [51].



Table 4
Results for diagnostic imaging models – part 1.

Study, Country, Outcome No. of
CPP*

AI methods Predictors Val.
methods

Performance (AUC, Accuracy
(Acc%), Sensitivity (SEN%),
Specificity (SPE%), PPV/NPV (%),
(95% CI))

Risk of Bias**:
Participants/
Predictors/
Outcome/Analysis/
Overall

Chen et al. [92], China, Diagnosis 51 DL Imaging features TTS Acc 95.24, SEN 100, SPE 93.55,
PPV 84.62, NPV 100

H U L H H

Rahimzadeh et al. [33], Diagnosis 118 DNN, Nadam
optimizer

Imaging features TTS Acc 99.50 L U L H H

Roy et al. [72], Italy, Diagnosis 17 DL Imaging biomarkers 5-FCV F1-score 65.9 H U Η Η Η
Zhou et al. [73], China, Diagnosis 35 DL Imaging features Ext. val. AUC > 0.93 H U U H H
Ter-Sarkisov et al. [93], China,

Diagnosis
150 DL, CNN Imaging features TTS Acc 91.66, SEN 90.80 H U U H H

Qjidaa et al. [19], Early detection unclear DL, CNN Imaging features Int.- ext.
val.

Acc 92.5, SEN 92 U U U H H

Babukarthik et al. [74], Early
diagnosis

102 GDCNN Imaging features unclear Acc 98.84, SEN 100, SPE 97.0 H H H H H

Minaee et al. [20], Diagnosis unclear CNN Raw images without feature
extraction

TTS SEN 98, SPE 92 U U U H H

Yan et al. [94], China, Diagnosis 206 CNN Imaging features TTS SEN 99.5 (95%CI: 99.3–99.7), SPE
95.6 (95%CI: 94.9–96.2)

L H H H H

Lokwani et al. [95], India, Diag-
nosis

55 NN Imaging features TTS SEN 96.4 (95% CI: 88–100), SPE
88.4 (95% CI: 82–94)

U U H H H

Jin et al. [96], China, Screening
(early detection)

751 DL, DNN Imaging features TTS AUC 0.97, SEN 90.19, SPE 95.76 H U U H H

Ko et al. [29], South Korea,
Diagnosis

20 2D DL Imaging features TTS,
ext.val.

Acc 99.87, SEN 99.58, SPE 100.00 U U U H H

Ezzat et al. [34], Diagnostic
imaging

99 Hybrid CNN Not applicable TTS Acc 98 H U H L H

Ouchicha et al. [40], Diagnosis 43 DCNN Imaging features 5-FCV Acc 97.20 U U L H H
Xiong et al. [75], China, Diagno-

sis
521 DL, CNN Imaging features TTS, ext.

val.
AUC 0.95, Acc 96 (95% CI: 90–
98), SEN 95 (95% CI: 83–100),
SPE 96 (95% CI: 88–99)

H U H H H

Li et al. [2], China, Diagnosis 468 DL, CNN Imaging features TTS AUC 0.96, SEN 90 (95% CI: 83–
94), SPE 96 (95% CI: 93–98)

L U H H H

Mahmud et al. [25], China,
Diagnosis

unclear DCNN Imaging features 5- FCV Acc 97.4 U U U H H

Li et al. [97], China, Diagnosis 305 NN Imaging features TTS Precision 93% U U L H H
Sun et al. [98], China, Diagnosis 1495 LR, SVM, RF, NN 30 Imaging features: Volume

features,
Infected lesion number,
Histogram
distribution, Surface area,
Radiomics
features

5-FCV ACC 91.79, SEN 93.05, SPE 89.95 L U H H H

Results for diagnostic imaging models – part 2
Study,
Country,
Outcome

No. of CPP* AI methods Predictors Val.
methods

Performance (AUC,
Accuracy (Acc%),
Sensitivity (SEN%),
Specificity (SPE%),
PPV/NPV (%), (95%
CI))

Risk of Bias**:
Participants/
Predictors/
Outcome/
Analysis/
Overall

Ozturk et al.
[35], Diag-
nosis (au-
tomatic
COVID-19
detection)

125 DNN Imaging features (1. Ground-glass
opacities (GGO) (bilateral, multifocal,
subpleural, peripheral, posterior,
medial and basal) 2. A crazy paving
appearance (GGOs and inter-/intra-
lobular septal thickening) 3. Air space
consolidation. 4. Broncho vascular
thickening (in the lesion). 5. Traction
bronchiectasis

5- FCV Acc 98.08, SEN 95.13,
SPE 95.03, F1-score
96.51

H U H H H

Zhang et al.
[7], United
States,
Diagnosis

2060 DNN (CV19-
Net), NLP

Imaging features TTS AUC 0.92 (95% CI:
0.91–0.93), SEN 88%
(95% CI: 87–89), SPE
79% (95% CI: 77–80)

H U H H H

Borkowski
et al. [37],
Diagnosis

103 Automated
ML platform
Microsoft
CustomVision

Imaging features Ext. val.
with US
Dep. of Vet.
Affairs (VA)
PACS

Acc 97, SEN 100, SPE
95, PPV 91, NPV 100

H H H H H

Xu et al. [6],
China,
Diagnosis

432 DL, CNN, FL Imaging features 5-FCV SEN 77.2, SPE 91.9 L U U H H
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Table 4 (continued)

Results for diagnostic imaging models – part 2
Study,
Country,
Outcome

No. of CPP* AI methods Predictors Val.
methods

Performance (AUC,
Accuracy (Acc%),
Sensitivity (SEN%),
Specificity (SPE%),
PPV/NPV (%), (95%
CI))

Risk of Bias**:
Participants/
Predictors/
Outcome/
Analysis/
Overall

Wang et al
[99], Diag-
nosis

266 DCNN Imaging features Int. val. Acc 93.3, SEN 91.0,
PPV 98.9

L U U H H

Elaziz et al.
[21], Diag-
nosis

unclear CNN Imaging features Ext. val. Acc 98.09 H U U L H

Gozes et al.
[26], Uni-
ted States,
China,
Diagnostic
imaging

unclear DCNN Imaging features TTS AUC 0.996, (95%CI:
0.989–1.00), SEN
98.2, SPE 92.2

U U H H H

Salman et al.
[22], Diag-
nosis

unclear DL, CNN Imaging features TTS Acc 100, SEN 100, SPE
100, PPV 100, NPV
100

U U U H H

Liu et al. [24],
Diagnosis

unclear FL (Federated
Learning)

Imaging features Comparison
with and
without FL

ResNet18 (highest
accuracy): Acc 91,26,
SEN 96.15, SPE 91.26

U U L L H

Castiglioni
et al. [76],
Italy,
Diagnosis

250 CNN unclear 10-

FCV AUC 0.89 (95%CI
0.86–0.91), SEN
78 (95% CI 74–
81), SPE 82 (95%
CI: 78–85)

H U H H H

Padma et al.
[23], Diag-
nosis

unclear ML, CNN Imaging features TTS Acc 99 U U U H H

Zhang et al.
[100], Chi-
na, Diag-
nosis

752 Light GBM,
CoxPH

Imaging features 5-FCV AUC 0.9797 (95% CI:
0.966–0.9904), Acc
92.49, SEN 94.93, SPE
91.13

U U U H H

Wang et al.
[77], Chi-
na, Diag-
nosis

79 DL, CNN Imaging features Int. – ext.

val. Acc 89.5, SEN 87,
SPE 88

H U U H H

*CPP = COVID-19 Positive Patients, Abbreviations of medical terms included in this Table are provided in the Appendix.
**L: Low, H: High, U: Unclear
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C. Validation methods

The most frequent validation methods used in the included
studies were training test split (TTS) (34 studies), 5-fold cross-
validation (FCV) (23 studies) and 10-fold cross-validation (19 stud-
ies). Other studies performed internal and external validation
methods. Internal validation techniques, are advocated when no
other data than the study sample are being used, to estimate the
potential of overfitting in the performance of the developed model
[52]. External validation is used to adjust or update the model in
other data than the study sample [52]. TTS validation method splits
the data into training and testing datasets based on a predefined
threshold. FCV is the traditional method for estimating the future
error rate of a prediction rule constructed from a training set of
data [53]. To estimate the potential for overfitting and optimism
in a prediction’s model performance, internal validation tech-
niques are advocated, meaning that no other data than the study
sample are being used [52]. External validation uses new partici-
pant level data, external to those used for model development, to
examine whether the model’s predictions are reliable and ade-
2841
quately accurate, in individuals from potential population for clin-
ical use [54]. All validation methods used in the included studies,
are reported in Tables 1-7.

D. Models developed for screening purposes

We identified 14 models for screening COVID-19 (see Tables 1
and 2). Five screening models were based in medical imaging
[5,30,31,55,56] using CXRs and CT scans from public databases or
hospitals in China. Wang et al. [56] were the first to develop and
validate a deep learning algorithm on the basis of chest CT scans
of 1647 COVID-19 positive patients acquired from fever clinics of
five hospitals in Wuhan, China, for rapid triaging, achieving AUC
0.953 (95% CI 0.949–0.959), SEN 0.923 (95% CI 0.914–0.932), SPE
0.851 (0.842–0.860), PPV 0.790 (0.777–0.803) and NPV 0.948
(0.941–0.954). The rest of the screening studies
[4,3,57,58,59,60,61,62] used as input data -among other- demo-
graphic data, comorbidities, epidemiological history of exposure
to COVID-19, vital signs, blood test values, clinical symptoms,
infection-related biomarkers, and days from illness onset to first



Table 5
Results for prognostic models – part 1.

Study, Country, Outcome No. of
CPP*

AI methods Predictors Val.
methods

Performance (AUC,
Accuracy (Acc%), Sensitivity
(SEN%), Specificity (SPE%),
PPV/NPV (%), (95% CI))

Risk of Bias**:
Participants/
Predictors/
Outcome/Analysis/
Overall

Muhammad et al. [9],
South Korea, Recovery
prediction, disease pro-
gression

unclear DT, SVM, NB, LR,
RF, K-NN

unclear 5-FCV Acc 99.85 (Decision Tree) H U U U H

Cheng et al. [78], United
States, Severity Assess-
ment, (risk prioritiza-
tion tool that predicts
ICU transfer within
24 h)

1987 RF respiratory failure, shock,
inflammation, renal failure

TTS, 10-
FCV

AUC 79.9 (95% CI: 75.2–
84.6), Acc 76.2 (95% CI:
74.6–77.7), SEN 72.8 (95%
CI: 63.2–81.1), SPE 76.3%
(95% CI: 74.7–77.9)

H H H H H

Kim et al. [79], South Kor-
ea, ICU need prediction

4787 55 ML models
developed,
(XGBoost model
revealed the
highest
discrimination
perf.)

age, sex, smoking history, body
temperature, underlying
comorbidities, activities of daily living
(ADL), symptoms

TTS AUC 0.897, (95% CI 0.877–
0.917)

H U H U H

Yadaw et al. [101], United
States, Mortality pre-
diction

4802 ML, RF, LR, SVM,
XGBoost

age, minimum oxygen saturation over
the course of their medical encounter,
type of patient encounter (inpatient vs
outpatient and telehealth visits)

TTS AUC 91 L H H H H

Klann et al. [102], USA,
France, Italy, Germany,
Singapore, Severity
assessment

4227 ML PaCO2, PaO2, ARDS, sedatives, d-
dimer, immature granulocytes,
albumin, chlorhexidine,
glycopyrrolate, palliative care
encounter

5-FCV,
TTS

AUC 0.956 (95% CI: 0.952,
0.959)

U U U H H

Navlakha et al. [103], Uni-
ted States, Severity
assessment in cancer
patients (predicting
severity occurring after
3 days)

354 ML, RF, DT 40 out of 267 clinical variables (3 most
important individual lab variables:
platelets, ferritin, and AST (aspartate
aminotransferase)

10-FCV AUC 70–85 L H H H H

Shashikumar et al. [104],
United States, Mechani-
cal ventilation need
prediction (24 h in ad-
vance)

777 DL vital signs, laboratory values,
sequential-organ failure assessment
(SOFA) scores, Charlson comorbidity
index scores (CCI) index,
demographics, length of stay,
outcomes

Ext. val.,
10-FCV

AUC 0.918 L H H L H

Bertsimas et al. [80],
Greece, Italy, Spain,
United States, Mortality
risk

3,927 XGBoost Increased age, decreased oxygen
saturation (<93%), elevated levels of
CRP (>130 mg/L), blood urea nitrogen,
blood creatinine

Cross-
validation

AUC 0.90 (95% CI: 0.87–
0.94)

H H U L H

Results for prognostic models – part 2

Study, Country, Outcome No.
of
CPP*

AI
methods

Predictors Val.
methods

Performance (AUC,
Accuracy (Acc%), Sensitivity
(SEN%), Specificity (SPE%),
PPV/NPV (%), (95% CI))

Risk of Bias**:
Participants/
Predictors/
Outcome/Analysis/
Overall

Youssef et al. [105], UK, Severity
assessment (ventilation, ICU
need prediction), early warning
system

472 GBT, LR,
RF

Vital signs: Heart Rate, Oxygen
Saturation, Respiratory Rate, Systolic
Blood Pressure Temperature,
AVPUVenous blood tests: Albumin, ALK.
Phosphatase, ALT, APTT, Basophils,
Bilirubin Creatinine, CRP, Eosinophils,
Haemocrit, Haemoglobin, INR
Lymphocytes, Mean Cell Vol., Monocytes,
Neutrophils Platelets, Potassium,
Prothrombin Time, Sodium, Urea, WCs,
eGFR

5-FCV AUC 0.94 (best
performance, GBT)

U U H H H

Vaid et al. [50], United States,
Mortality Prediction

4029 FL, LR,
federated
LASSO,
federated
MLP

gender, age, ethnicity, race, past medical
history (such as asthma), lab tests (white
blood cell counts)

10-FCV AUC 0.693–0.805 L L H H H

Karthikeyan et al. [106], China,
Mortality prediction

370 ML,
XGBoost,
k-NN, LR,
RF, DT

neutrophils, lymphocytes, LDH, hs-CRP,
age

5-FCV Acc 96 (16 days in advance) H U U U H
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Results for prognostic models – part 2

Jimenez-Solem et al. [81], Den-
mark, UK, Severity assessment
(ICU need, mechanical ventila-
tion need), disease progression,
mortality prediction

3944 ML, RF age, gender, BMI, hypertension, diabetes Ext. val.
(UK
biobank),
5-FCV

AUC 0.678–0.818 (hospital
admission), AUC 0.587–
0.736 (ICU admission), AUC
0.625–0.674 (mortality
prediction)

H H H U H

Casiraghi et al. [107], Italy, Risk
prediction

301 ML, RF saturation values, lab-oratory values
(lymphocyte counts, CRP, WBC counts,
Haemoglobin), variables related to
comorbidities (number of comorbidities,
presence of cardiovascular pathologies
and/or arterial hypertension), radiological
values computed through CovidNet, and
presence of symptoms (vomiting/nausea
or dyspnea or respiratory failure).

10-FCV AUC 0.81–0.76, Acc 74–68,
SEN 72–66, SPE 76–71, F1
score 62–55

L U U H H

Burdick et al. [82], United States,
Ventilation need prediction
within 24 h and triage

197 ML,
XGBoost

diastolic blood pressure (DBP), systolic
blood pressure (SBP), heart rate (HR),
temperature, respiratory rate (RR),
oxygen saturation (SpO2), white blood
cell (WBC), platelet count, lactate, blood
urea nitrogen (BUN), creatinine, and
bilirubin

Ext. val. AUC 0.866, SEN 90, SPE 58.3 H U H H H

Results for prognostic models – part 3

Study, Country, Outcome No. of
CPP*

AI
methods

Predictors Val.
methods

Performance (AUC,
Accuracy (Acc%),
Sensitivity (SEN%),
Specificity (SPE%),
PPV/NPV (%), (95%
CI))

Risk of Bias**:
Participants/
Predictors/
Outcome/Analysis/
Overall

Cai et al. [83], China, Severity assessment,
ICU need and length of stay prediction,
O2 inhalation duration prediction, spu-
tum NAT-positive prediction and pa-
tient prognosis

99 ML, RF CT quantification 10-FCV AUC 0.945 (ICU
treatment), AUC
0.960 (prognosis/
partial recovery vs
pro-longed recovery)

H U U H H

Wu et al. [84], China, Mortality prediction 58 ML, LR,
mRMR,
LASSO LR

7 continuous laboratory variables:
blood routine test, serum
biochemical (including glucose, renal
and liver function, creatine kinase,
lactate dehydrogenase, and
electrolytes), coagulation profile,
cytokine test, markers of myocardial
injury, infection-related makers,
other enzymes

5-FCV SEN 98 (95% CI: 93–
100), SPE 91 (95% CI:
84–99)

H L L H H

Iwendi et al. [27], Severity and outcome
prediction

unclear ML, DT,
SVM,
GNB,
Boosted
RF,
AdaBoost

COVID-19 patient’s geographical,
travel, health, and demographic data

unspecified Acc 94 H U H H H

Gerevini et al. [15], Italy, Mortality pre-
diction

unclear DT, RF, ET
(extra
trees)

Age, sex, C-Reactive Protein (PCR),
Lactate dehydrogenase (LDH),
Ferritin (Male)Ferritin (Female),
Troponin-T, White blood cell (WBC),
D-dimer, Fibrinogen, Lymphocyte
(over 18 years old patients),
Neutrophils/Lymphocytes, Chest
XRay-Score (RX)

Cross
validation

AUC 90.2 for the 10th
day

H U U L H

Yan et al. [108], China, Severity assess-
ment

404 ML,
XGBoost

3 biomarkers that predict the survival
of individual patients: LDH,
lymphocyte, high-sensitivity C-
reactive protein (hs-CRP).

cross-
validation

Acc 90 L L U H H

Gao et al. [71], China, Mortality prediction 2160 LR, SVM,
GBDT, NN

8 features had a positive association
with mortality (high risk:
consciousness, male sex, sputum,
blood urea nitrogen [BUN],
respiratory rate [RR], D- dimer,
number of comorbidities, and age)
and 6 features were negatively
correlated with mortality (low risk:
platelet count[PLT], fever, albumin
[ALB], SpO2, lymphocyte, and chronic
kidney disease [CKD]).

Int. val.
cohort

AUC 0.9621 (95% CI:
0.9464–0.9778)

H H L L H

(continued on next page)
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Ma et al. [85], China, Mortality prediction 305 ML, RF,
XG Boost

LDH, CRP, age 4-FCV AUC 0.951 H L U H H

Results for prognostic models – part 4

Study, Country, Outcome No. of
CPP*

AI
methods

Predictors Val.
methods

Performance (AUC, Accuracy (Acc%),
Sensitivity (SEN%), Specificity (SPE%),
PPV/NPV (%), (95% CI))

Risk of Bias**:
Participants/
Predictors/
Outcome/Analysis/
Overall

Schwab et al. [109], Brazil,
Prognosis for Hospitaliza-
tion need, ICU need

558 LR, NN, RF,
SVM,
XGBoost

Predicting SARS-CoV-2 test results
(first 3): presence of arterial lactic
acid measurement, age, urine-
leukocyte countPredicting
Hospitalization: lactic
dehydrogenase, gamma-glutamyl
transferase, INR presencePredicting
ICU need: pCO2, potassium presence,
ionized calcium presence

TTS AUC 0.92, (95% CI 0.81–0.98),
sensitivity 75 (95% CI 67–81),
specificity 49 (95% CI 46–51) for
COVID-19 positive patients that
require hospitalizationAUC 0.98 (95%
CI 0.95–1.00) for COVID-19 positive
patients that require critical care

L H H H H

Izquierdo et al. [86], Spain,
ICU need prediction

10,504 ML, NLP age, fever, tachypnea TTS AUC 0.76, Acc 0.68 H U U U H

Hao et al. [48], United States,
Early prediction of level-
of-care requirements
(hospitalization/ ICU/
mechanical ventilation
need prediction,

2566 NLP, RF,
XGBoost,
SVM, LR

Vital signs, age, BMI, dyspnea,
comorbidities (Most important for
hospitalization), Opacities on chest
imaging, age, admission vital signs
and symptoms, male gender,
admission laboratory results,
diabetes (most important risk factors
for ICU admission and mechanical
ventilation)

TTS Acc 88 (hospitalization need), Acc 87
(ICU care), Acc 86 (mechanical
ventilation need)

U L L L U

Wu et al. [87], China, Severity
assessment, triage

299 LR 1) Clinical features: age, hospital
employment, body temperature and
the time of onset to admission 2)
Laboratory features: Lymphocyte
(proportion), neutrophil,
(proportion), CRP, lactate
dehydrogenase (LDH), creatine
kinase, urea and calcium3) CT
semantic features: lesion-Most
prominent predictors: age,
lymphocyte (proportion), CRP, LDH,
creatine kinase, urea and calcium

5-FCV AUC 0.84–0.93, Acc 74.4–87.5, SEN
75.0–96.9, SPE 55.0–88.0

H H H H H

Li et al. [16], Fatality predic-
tion

30,406 DL, LR, RF,
SVM

symptoms and comorbidities TTS Acc> 90, SPE> 90, SEN< 40 H H H H H

Nemati et al. [110], Predict
patient length of stay in
the hospital

1182 SVM, GB,
DT

age, gender Acc 71.47 U H U U H

Zhu et al. [111], China, Mor-
tality prediction

181 DL, DNN top predictors: D-dimer, O2 Index,
neutrophil: lymphocyte ratio, C-
reactive protein, lactate
dehydrogenase

5-FCV AUC 0.968 (95%CI: 0.87–1.0) L H U L H

Vaid et al. [112], United
States, Mortality and criti-
cal events prediction

4098 XGBoost,
(LR,
LASSO, k-
NN for
validation)

Within 7 days of admission most
prominent predictors are:1) For
critical event prediction: presence of
acute kidney injury, high and low
levels of LDH, respiratory rate,
glucose2) For mortality prediction:
age, anion gap, C-reactive protein,
LDH

10-FCV,
Ext. val.

1) Critical event prediction: AUC 0.80
(3 days), 0.79 (5 days), 0.80 (7 days),
0.81 (10 days)2) Mortality
prediction: AUC 0.88 (3 days), 0.86 (5
days), 0.86 (7 days), 0.84 (10 days)

L H H H H

Results for prognostic models – part 5

Study, Country, Outcome No. of
CPP*

AI
methods

Predictors Val. methods Performance (AUC, Accuracy
(Acc%), Sensitivity (SEN%),
Specificity (SPE%), PPV/NPV (%),
(95% CI))

Risk of Bias**:
Participants/
Predictors/
Outcome/Analysis/
Overall

Wollenstein-Betech et al. [113],
Mexico, predict :(1) hospi-
talization, (2) mortality (3)
ICU need (4) ventilator need

20,737 SVM, LR,
RF,
XGBoost

age, gender, diabetes, COPD,
asthma, immunosuppression,
hypertension, obesity,
pregnancy (hospitalization need
prediction), chronic renal failure,
tobacco use, other disease, SARS-
CoV-2 test results

10-FCV AUC 0.63, Acc 79 (mortality
prediction performance), AUC
0.74 (hospitalization prediction
performance), AUC 0.55, Acc 89
(ICU need prediction
performance), AUC 0.58, Acc 90
(ventilator need prediction
performance)

L H H H H

Wang et al. [17], China, Mor-
tality prediction of hospital-
ized COVID-19 patients

375 L1LR,
L1SVM

LDH, lymphocytes percentage,
hs-CRP, Albumin

TTS Acc> 94, F1-score 97 H L U H H
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Results for prognostic models – part 5

Jiang et al. [88], China, Severity
assessment, Outcome Pre-
diction

53 ML, LR, k-
NN, DT,
RF, SVM

Most predictive features:
alanine aminotransferase (ALT),
myalgias, hemoglobin (red blood
cells) Less predictive features:
lymphocyte count, white blood
count, temperature, cycle
threshold, creatinine, gender,
CRP, age, fever, CK, LDH, Glu,
AST, K+, N+

10-FCV Acc 70–80 H U H H H

Sun et al. [114], China, Severity
assessment

336 SVM 36 clinical indicators (mainly
thyroxine, immune related cells
and products including CD3,
CD4, CD19, CRP, high-sensitive
CRP, leukomonocytes and
neutrophils), age, GSH, total
protein

TTS AUC 0.999, SEN 77.5, SPE 78.4 L H L H H

Razavian e al. [115], United
States, Outcome prediction

3,317 LR, RF,
Light
GBM

significant oxygen support
(including nasal cannula at flow
rates>6 L/min, face mask or
high-flow device, or ventilator),
ICU admission, death (or
discharge to hospice), return to
the hospital after discharge
within 96h of prediction

TTS AUC 90.8, (95% CI: 90.7–91.0) L U H L H

Liang et al. [89], China, Early
triage of critically ill (Critical
illness was defined as a
composite event of admis-
sion to an ICU or requiring
invasive ventilation, or
death.)

1590 DL,
LASSO
algorithm

10 clinical features: X-ray
abnormalities, age, dyspnea,
COPD (chronic obstructive
pulmonary disease), number of
comorbidities, cancer history,
neutrophil/lymphocytes ratio,
lactate dehydrogenase, direct
bilirubin, creatine kinase

Three int. ext.
val.:1) Hospital
in Wuhan2)
Centers in
Hubei3)
Hospital in
Guangdong

AUC 0.911 (95% CI, 0.875–0.945) H H U L H

Gong et al. [90], China, Early
identification of cases at high
risk of progression to severe
COVID-19

72 LR, DT,
RF, SVM

Age, DBIL, RDW, BUN, CRP, LDH,
and ALB

Ext. val. AUC 0.912, (95% CI: 0.846–
0.978), SEN 85.7, SPE 87.6

H H H H H

Results for prognostic models – part 6

Study, Country,
Outcome

No. of
CPP*

AI methods Predictors Val.
methods

Performance (AUC, Accuracy (Acc
%), Sensitivity (SEN%), Specificity
(SPE%), PPV/NPV (%), (95% CI))

Risk of Bias**:
Participants/
Predictors/
Outcome/Analysis/
Overall

Pourhomayoun et al.
[70], 76 countries,
Mortality prediction

117,000 SVM, ANN, RF DT,
LR, k-NN

demographic features (age, sex,
province, country, age, travel
history), comorbidities(diabetes,
cardiovascular disease), patient
symptoms (chest pain, chills,
colds, conjunctivitis, cough,
diarrhea, discomfort, dizziness,
dry cough, dyspnea, emesis,
expectoration, eye irritation,
fatigue, gasp, headache, lesions on
chest radiographs, little sputum,
malaise, muscle pain, myalgia,
obnubilation, pneumonia,
myelofibrosis, respiratory
symptoms, rhinorrhea,
somnolence, sputum, transient
fatigue, weakness)

10-FCV Acc 93.75, SEN 90, SPE 97 U L U H H

Abdulaal et al. [91], UK,
Mortality risk
(point-of-admission
scoring system)

398 ANN demographics, comorbidities,
smoking history, presenting
symptoms

Cross
validation

AUC 90.12, Acc 86.25, SEN 87.50
(95% CI: 61.65–98.45), SPE 85.94
(95% CI: 74.98–93.36), PPV 60.87
(95% CI: 45.23–74.56), NPV 96.49
(95% CI: 88.23–99.02)

H L H H H

Assaf et al. [116], Israel,
Severity assessment
risk prediction
model

162 ML, NN, RF, CRT clinical, hematological and
biochemical parameters at
admission

10-FCV Acc 92.0, SEN 88.0, SPE 92.7 L H H H H

Fang et al. [43], China,
Early warning to
predict malignant
progression

104 linear discriminant
analysis (LDA),
SVM, multilayer
perceptron (MLP),
LSTM

Troponin, Brain natriuretic
peptide, White cell count,
Aspartate aminotransferase,
Creatinine, and Hypersensitive C-
reactive protein.

5-FCV AUC 0.920, (95% CI: 0.861, 0.979) H H H H H

(continued on next page)
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Trivedi et al. [117],
Mortality prediction

739 DL,
InceptionResnetV2
model, Nadam
optimizer

Imaging features TTS Acc 95.3, AUC 96.0, SEN 94.0, SPE,
94.0, F1-score 93.3

L U U H H

Ryan et al. [118], Uni-
ted States, Mortality
prediction for COV-
ID-19 pneumonia,
and mechanically
ventilated patients

114 ML, XGBoost Age, Heart Rate, Respiratory Rate,
Peripheral Oxygen Saturation
(SpO2), Temperature, Systolic
Blood Pressure, Diastolic Blood
Pressure, WBCs, Platelets, Lactate,
Creatinine, and Bilirubin, over an
interval of 3h and their
corresponding differentials in that
interval

5-FCV 1) For mortality prediction on
mechanically ventilated patients:
AUC 0.82 (12h), 0.81 (24h), 0.77
(48h), 0.75 (72h)2) For mortality
prediction on pneumonia
patientsAUC 0.87 (12h), 0.78
(24h), 0.77 (48h), 0.73 (72h)

L H H H H

*CPP = COVID-19 Positive Patients, Abbreviations of medical terms included in this Table are provided in the Appendix.
**L: Low, H: High, U: Unclear

Table 6
Results for Prognostic Imaging models.

Study, Country, Outcome No.
of
CPP*

AI
methods

Predictors Val.
methods

Performance (AUC, Accuracy (Acc
%), Sensitivity (SEN%), Specificity
(SPE%), PPV/NPV (%), (95% CI))

Risk of Bias**:
Participants/
Predictors/
Outcome/Analysis/
Overall

Fakhfakh et al. [42], Prognosis 42 RNN, CNN Unclear unspecified Acc 92 H U U L H
Zhu et al. [66], China, Disease progression prediction 408 SVM, LR Imaging features 5-FCV Acc 85.91 L U U H H
Qi et al. [67], China, Hospital stay prediction (Short-

term (<10 days), long-term (>10 days))
31 LR, RF Imaging features

(CT radiomics)
5-FCV AUC 0.97, SEN 100, SPE 89, (95%CI

0.83–1.0)
U L L H H

Xiao et al. [68], China, Severity assessment, disease
progression

408 DL, CNN,
ResNet34
(RNN)

Imaging features 5-FCV AUC 0.987 (95% CI: 0.968–1.00),
Acc 97.4

L U U H H

Cohen et al. [36], Severity assessment for COVID19
Pneumonia

80 NN CXR features not
performed

U U U H H

Salvatore et al. [69], Italy, Prognosis prediction
(discharging at home, hospitalization in stable
conditions, hospitalization in critical conditions,
death)

98 LR Imaging features not
performed

Acc 81, SEN 88, SPE 78 H U U H H

Liu et al. [44], China, Severity assessment 134 CNN Imaging features
(APACHE-II, NLR,
d-dimer level)

Ext. val. AUC 0.93, (95% CI: 0.87–0.99) L U U U U

*CPP = COVID-19 Positive Patients, Abbreviations of medical terms included in this Table are provided in the Appendix.
**L: Low, H: High, U: Unclear

Table 7
Results for diagnostic and prognostic Imaging models.

Study, Country,
Outcome

No.
of
CPP*

AI methods Predictors Val.
methods

Performance (AUC, Accuracy
(Acc%), Sensitivity (SEN%),
Specificity (SPE%), PPV/NPV (%),
(95% CI))

Risk of Bias**:
Participants/
Predictors/
Outcome/
Analysis/Overall

Chassagnon et al. [45],
France, Quantifica-
tion, Staging and
Prognosis of COVID-
19 Pneumonia

693 DL, 2D-3D CNN,
RBF SVM, Linear
SVM, AdaBoost,
RF, DT, XGBoost

15 radiomics features: imaging from the
disease regions (5features), lung regions
(5features) and heart features (5features),
biological and clinical data (6features: age,
sex, high blood pressure (HBP), diabetes,
lymphocyte count, CRP level), image indexes
(2features: disease extent and fat ratio).

TTS Acc 70, SEN 64, SPE 77 (Holistic
Multi-Omics Profiling &
Staging), Acc 71, SEN 74, SPE 82
(AI prognosis model
performance)

L U L L U

*CPP = COVID-19 Positive Patients, Abbreviations of medical terms included in this Table are provided in the Appendix.
**L: Low, H: High, U: Unclear
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admission. One study only [63], used ocular surface photographs
(eye-region images) as input data demonstrating that asymp-
tomatic and mild COVID-19 patients have distinguished ocular fea-
tures from others.

In screening studies, the most prominent predictors were age,
platelets, leukocytes, monocytes, eosinophils, lymphocytes, CRP,
2846
WBC from routine blood tests and imaging features from CXR
and CT images. Only one study [57] reported as predictors 4 epi-
demiological features (relationship with a cluster outbreak, travel
or residence history over the past 14 days in Wuhan, exposure to
patients with fever or respiratory symptoms over the past 14 days
who had a travel or residence history in Wuhan, exposure to
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patients with fever or respiratory symptoms over the past 14 days
who had a travel or residence history in other areas with persistent
local transmission, or community with definite cases) and 6 clini-
cal manifestations (muscle soreness, dyspnea, fatigue, lymphocyte
count, white blood cell count, imaging changes of Chest X-ray or
CT).

E. Diagnostic prediction models

Thirty-eight diagnostic prediction models for detecting COVID-
19 were identified out of which 32 were based on medical imaging
using CXRs or CT scans as input data. Results are presented in
Tables 3 and 4. The rest of the diagnostic studies
[64,8,9,10,65,11,45] used as input, among other data, age, gender,
demographics, symptoms, routine blood exam results, and clinical
characteristics. The largest dataset of COVID-19 positive patients
(CPP) used in the included diagnostic imaging studies was 2060
patients (5806 CXRs; mean age 62 ± 16, 1059 men) [7]. In this ret-
rospective study, a deep neural network, CV19-Net, was trained,
validated, and tested on CXRs, to differentiate COVID-19 related
pneumonia from other types of pneumonia, achieving AUC 0.92
(95% confidence interval [CI]: 0.91, 0.93), SEN 88% (95% CI: 87%,
89%) and SPE 79% (95% CI: 77%, 80%). In the non-imaging diagnostic
studies, the largest number of CPPs was 845 patients admitted at
an Italian hospital from February to May 2020 [64]. Routine blood
tests of 1,624 patients were exploited in this study to develop
Machine Learning models to diagnose COVID-19 patients, achiev-
ing an AUC ranged from 0.83 to 0.90. The most prominent predic-
tors were age, WBC, LDH, AST, CRP and calcium [64].

Most frequently reported predictors in the included studies for
identification or diagnosis of COVID-19 cases were age, lympho-
cytes, WBC and quantitative and radiomic features derived from
CXR and CT images.

F. Prognostic prediction models

We identified 50 prognostic models (7 based on medical imag-
ing) [36,42,66,67,68,69,44] for predicting hospitalization need (8
studies), ICU need (10 studies), ventilator need (8 studies), mortal-
ity risk (17 studies), severity assessment (16 studies), recovery pre-
diction or disease progression (9 studies) or hospital length stay (3
studies). The results are presented in Table 5 and Table 6. Table 7
presents the results for one diagnostic and prognostic model. The
first study to jointly predict the disease progression and the con-
version time, which could help clinicians to deal with the potential
severe cases in time or even save the patients’ lives, used Support
Vector Machines (SVM) and Linear Regression (LR) methods on 408
chest CT scans from COVID-19 positive patients [66]. The largest
dataset of COVID-19 positive patients included in the prognostic
studies was 117,000 patients worldwide. In this study, Support
Vector Machine, Artificial Neural Network, Random Forest, Deci-
sion Tree, Logistic Regression, and K-Nearest Neighbor were used
to predict the mortality rate based on the patients physiological
conditions, symptoms, and demographic information [70].

Most of the prognostic prediction models did not report how
many days in advance they can produce predictions. Only fourteen
studies reported predictions with a time range varying from 12 h
to 20 days before the outcome. Highest time frame prediction prior
to the outcome was reported by Gao et al. [71] who presented a
mortality risk prediction model for COVID-19 (MRPMC) that uses
patients clinical data on admission to stratify them by mortality
risk, which enables prediction of physiological deterioration and
death up to 20 days in advance.

Most frequently reported predictors for prognosis of COVID-19
cases were age, CRP, lymphocyte, LDH and imaging features
derived from CXR and CT images.
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G. Risk of Bias assessment

The results of the RoB analysis (H: High, L: Low, U: Unclear) are
provided for each included study in Tables 1-8. In total 98 predic-
tion models were at high overall risk of bias and three studies
[44,45,48] were at unclear risk of bias, indicating that further
research needs to be conducted to fully apply them in the clinical
practice. In the participants domain, 30 studies had high risk of
bias and 21 unclear. Sources of bias in the participants domain var-
ied from small or incomplete datasets to exclusion criteria indicat-
ing the need of further data collection to test the generalizability of
the developed AI models to other patient populations
[2,7,15,16,17,35,37,43,48,57,59,65,69,71–91]. Thirty studies had
high RoB in the ‘‘predictors” domain related to different ways of
definitions and assessment for all participants or predictors
availability.

Finally, RoB analysis was high for 99 studies and unclear for two
studies [44,48]. Most frequent reasons for assessing high analysis
using the PROBAST protocol were number of participants, missing
data on predictors and outcomes and exclusion criteria for partic-
ipants reported as limitations in the included studies.
4. Discussion

In the present systematic review, we included 101 studies that
developed or validated screening, diagnostic and prognostic pre-
diction models that can be applied in clinical practice and were
published from January 1st, 2020 to December 30th, 2020. Even
though most of the studies reported high performance algorithms,
results of the RoB analysis conducted in the present review indi-
cate that application in clinical practice may be problematic. Lim-
itations related to the applicability of the developed prediction
models were reported by several studies. The most prominent lim-
itation reported was the use of a single data source (one hospital
from one geographical area) for the algorithm’s training
[4,10,11,15,17,30,56,58,59,62,63,64,69,44,76,83,84,91, 92,78,103,1
07,106,108,109,112,114,115,116,118]. Generalizability of the
trained models can be enhanced by adding multiple data sources
in future studies.

Concerning the results of the present review, a clear distinction
between prediction models that relied on imaging features and
models that relied on clinical or laboratory data, proved to be evi-
dent amongst the included studies. In particular, medical imaging
studies were most prominent for diagnostic purposes (31 out of
37) and least prominent for prognostic purposes (7 out of 50).
Models developed for screening purposes were rather few (14)
compared to the other two categories and distinction between
the use of medical images and clinical or laboratory data was not
clear (5 and 9 respectively). Analysis regarding the handling of
unbalanced data and application of appropriate performance met-
rics across the developed models was not feasible due to the fact
that different validation methods were applied. Student’s t-test
was deployed to investigate differences in dataset sizes among
included studies, in terms of total number of participants and
COVID-19 Positive Patients. Such comparison between datasets
employed in screening, diagnostic and prognostic models did not
display statistically significant differences (p > 0.05). Average num-
ber of total participants included in datasets of non-imaging med-
ical studies proved to be significantly higher than in datasets of
medical imaging studies (11,033.45 versus 1,528.27, p = 0.04). This
was not identified for the number of COVID-19 Positive Patients
between these two categories (p > 0.05). Regarding the application
of performance criteria for evaluation purposes in the included
studies, some dissimilarities were observed between models
developed for different purposes. In particular, AUC score was
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the most prevalent metric in models developed for prognostic
(69.38%) and screening (71.14%) purposes, but not for diagnostic
(35.12%) purposes. The most widely used metric in models for
diagnostic purposes was SEN (70.27%), followed by SPE (59.45%)
and Acc (54.05%). Dissimilarities among performance criteria were
also evident between models in medical imaging studies, with Acc
(63.63%) and SEN (63.63%) being the most prevalent, and models in
non-imaging medical studies, with AUC score (76.78%) being the
most common. Comparison between different types of prediction
models that employ heterogeneous predictors is exceedingly diffi-
cult, taking into consideration that performance criteria applied
were not similar. Additionally, since most prediction models were
trained on a specific localized dataset, the evaluation of AI tech-
niques used and the importance of predictors cannot be discerned
through meta-analysis of the results presented in each study. This
heavily underlines the need for global collaboration and data shar-
ing, to enable the development of validated benchmarks for the
evaluation of newly introduced AI techniques. This would expedite
the application of new prediction models in clinical practice, espe-
cially in times of extreme urgency such as the COVID-19 pandemic.

Concerning the type of multimodal input data used in the
developed models, three studies [43,45,44] demonstrated the
advantages of using the combination of clinical features and image
features (CT scans, CXR images), indicating that both CT scans and
clinical data are of paramount importance to the diagnosis and
prognosis of COVID-19. Moreover, developing AI diagnostic and
prognostic models in an end-to-end manner enables the use of
raw data without the need for manual design of feature patterns
or interference of clinicians. Therefore, future AI studies can
explore more methods of fusing clinical and image features as well
as developing end-to-end models for use in the clinical practice.

Regarding novel technologies, we investigated the use of
explainable AI and Federated Learning in the developed prediction
models. Evaluation of the AI methods presented in this review
study in terms of explainability proved to be difficult, due to the
lack of uniform adoption of interpretability assessment criteria
across the research community [119]. A multidisciplinary
approach of combining medical expertise and data science engi-
neering in future studies might be necessary to overcome this dif-
ficulty [119]. The integration of explainability modalities in the
developed models can enhance human understanding on the rea-
soning process, maximize transparency and embellish trust
towards the models’ use in clinical practice [120]. Therefore, XAI
techniques could prove to be critical in tackling volatile crises like
the COVID-19 pandemic and as such, it is of paramount importance
that XAI should be taken into consideration in future works. More-
over, clinical adoption of FL is expected to lead to models trained
on datasets of unprecedented size, thus having a catalytic impact
towards precision and personalized medicine [51]. FL shows pro-
mise in handling the new coronavirus electronic health record data
to develop robust predictive models without compromising
patient privacy [50] and can inspire more research on future
COVID-19 applications, while boosting global data sharing.

One of the limitations of the present review is the rapid increase
of new COVID-19 related AI models in the literature, challenging
the completion of a full list of available studies. Another limitation
is the fact that there were 31 included pre-prints which may differ
from the final versions once accepted for official publication. A
follow-up of the included studies at the time of writing indicated
that 7 of the included pre-prints had already been peer-reviewed
[34,59,45,70,76,81,102].

Based on the results of the Risk of Bias analysis, further research
needs to be conducted to decrease the sources of bias in the
included studies. Future studies can investigate the role of the
most prominent predictors such as age, platelets, leukocytes,
monocytes, eosinophils, lymphocytes, CRP, LDH, WBC from routine
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blood tests, imaging features from CXR and CT images. Most
prominent AI methods (RF, LR, SVM, CNN, DT and XGBoost) along
with the aforementioned predictors can be used as a leading
approach in developing and validating future screening, diagnostic
and prognostic prediction models that can be applied in clinical
practice.

5. Conclusion

Artificial Intelligence methods are critical tools for utilizing the
rapidly growing body of COVID-19 positive patient datasets, with a
vast contribution in the fight against this pandemic. These multi-
modal datasets may include collected vitals, laboratory tests,
comorbidities, CT scans or CXRs. In the present systematic review,
we discussed the applicability and provided an overview of the AI-
based prediction models developed by the rapidly growing litera-
ture, which can be used for screening, diagnosis, or prognosis of
COVID-19 in the clinical setting. Limitations and considerations
regarding the design and development of said prediction models
were identified and future directions were proposed. Moreover,
novel technologies such as explainable AI and Federated Learning
could prove to be critical in tackling volatile crises like the
COVID-19 pandemic. Increased collaboration in the development
of the AI prediction models can enhance their applicability in the
clinical practice and assist healthcare providers and developers in
the fight against this pandemic and other public health crises.
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