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Abstract
Background: Prostate cancer (PCa) is one of the leading causes of cancer-related death. In the present research, we adopted a
comprehensive bioinformatics method to identify some biomarkers associated with the tumor progression and prognosis of PCa.

Methods: Differentially expressed genes (DEGs) analysis and weighted gene co-expression network analysis (WGCNA) were
applied for exploring gene modules correlative with tumor progression and prognosis of PCa. Clinically Significant Modules were
distinguished, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were used to Annotation,
Visualization and Integrated Discovery (DAVID). Protein–protein interaction (PPI) networks were used in selecting potential hub genes.
RNA-Seq data and clinical materials of prostate cancer from The Cancer Genome Atlas (TCGA) database were used for the
identification and validation of hub genes. The significance of these genes was confirmed via survival analysis and
immunohistochemistry.

Results: 2688 DEGs were filtered. Weighted gene co-expression network was constructed, and DEGs were divided into 6
modules. Two modules were selected as hub modules which were highly associated with the tumor grades. Functional enrichment
analysis was performed on genes in hub modules. Thirteen hub genes in these hub modules were identified through PPT networks.
Based on TCGA data, 4 of them (CCNB1, TTK, CNN1, and ACTG2) were correlated with prognosis. The protein levels of CCNB1,
TTK, and ACTG2 had a degree of differences between tumor tissues and normal tissues.

Conclusion: Four hub genes were identified as candidate biomarkers and potential therapeutic targets for further studies of
exploring molecular mechanisms and individual therapy on PCa.

Abbreviations: BCR = biochemical recurrence, BP= biological process, CC= cellular component, CNG = copy number gains,
DAVID= Annotation, Visualization and Integrated Discovery, DEGs= differentially expressed genes, EFS= event-free survival, FDR=
false discovery rate, GEO = gene expression omnibus, GO = gene ontology, GS = coefficient of gene trait significance, HR = hazard
ratio, IHC = immunohistochemistry, KEGG = Kyoto Encyclopedia of Genes and Genomes, LFC = Log2-fold change, MCODE =
Molecular Complex Detection, MEs =module eigengenes, MF =molecular function, MM = coefficient of module membership, MS =
module significance, PCa = prostate cancer, PPI = protein–protein interaction, PSA = prostate-specific antigen, RMA = Robust
Multi-array Average TCGA = The Cancer Genome Atlas, TOM = topological overlap measure, WGCNA = weighted gene co-
expression network analysis.
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1. Introduction

Prostate cancer (PCa) is the foremost regularly non-cutaneous
malignancy among males and the second primary cause of
cancer-related deaths in theWestern world, the occurrence rate of
which keeps increasing.[1,2] Although plenty of PCas are
characterized as slow-growing and indolent, some PCa patients
are at high risk of developing local recurrence and/or distant
metastases and die of their disease. The universal diagnosis
approaches of PCa contain digital examination of the rectum,
prostate-specific antigen (PSA) test, and subsequential biopsies
for histopathological staging.[3] It is of great benefit but also huge
challenges to make the stratification of high-risk PCa patients
after diagnosing. At present, management modes of PCa are
principally guided by risk degrees on the strength of Gleason
grade, clinical stage, as well as serum PSA level. A better
understanding of the potential mechanisms and molecular
pathways contributing to tumorigenesis and tumor progression
is quite essential to enhance our current diagnostic, prognostic,
and therapeutic abilities.
Benefited from the development of high-throughput technolo-

gy, such as whole genome[4] and whole exome sequencing,[5]

researchers could explore and discover the full molecular
landscapes of tumors at a variety of levels including DNA
structural changes in the PCa genome. In recent years, gene
expression profiles, noncoding RNA profiles and DNA methyl-
ation profiles are promising not only for serving as prognosis
biomarkers but also therapy targets. For example, cell cycle genes
are proved as potential markers that could predict the risk of
clinicopathological outcomes such as biochemical recurrence
(BCR) rate after radical prostatectomy.[6] More recently, new
research figured out that up-regulated KIF20A expression level
was significantly associated with higher BCR, serum PSA value,
Gleason score, pathological T stage, and lymph node metastasis
in PCa.[7] Besides, the down-regulation of miR-24 was reported
to promote cell cycle, proliferation, migration, and clonogenicity
potential of PCa cells through regulating the expression of p16
and p27, which supported that it may act as a tumor suppressor
in PCa.[8] Particularly, in human prostate adenocarcinomas, 128
CpG sites were found to have high accuracy and sensitivity in
differentiating samples, which could help us identify lymphatic
metastases at DNA methylation level and also may inspire novel
therapeutic methods.[9] Thus, there is a significant clinical need
for finding and identifying united novel biomarkers related to
clinicopathological parameters, guiding the surveillance of
tumorous progression, assessment of prognosis and improve-
ment of personalized treatment programs, especially at gene
expression status.
Nevertheless, many researches to date just focused on the

screening of differentially expressed genes, and the high degree of
interconnection among genes has been largely neglected, where
genes with semblable expression patterns might be functionally
correlated. Weighted gene co-expression network analysis
(WGCNA), a capable approach widely applied for constructing
free-scale gene co-expression networks and exploring the
connections between different gene sets or between gene sets
and interesting phenotypic traits.[10] WGCNA has been used
successfully in various biological processes, which vastly
favorable for the identification of candidate biomarkers or
potential treatment targets.[11] Moreover, it is of great success to
identify biomarkers for castration-resistant prostate cancer by
using WGCNA.[12] Thus, in the current research, we attempt to
2

construct a free-scale gene co-expression network of correlation
patterns among genes through a comprehensive bioinformatics
method in the light of WGCNA and identified network-centric
genes relative to clinical traits of PCa.
2. Materials and methods

2.1. Microarray data

Figure S1, http://links.lww.com/MD/D991 showed the workflow
of our research. We downloaded the gene expression profiles of
GSE69223[13] (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE69223) from the Gene Expression Omnibus (GEO)
database. Data set GSE69223, performed on Affymetrix Human
Genome U133 Plus 2.0 Array, contained malignant and matched
normal adjacent tissue samples of 15 prostate cancer patients
with prostatectomy. It included microarray data of these patients
and detailed clinical variables, such as patients age, tumor stage,
and grade, which could be used for constructing co-expression
networks, identifying clinical features related modules, and
screening hub genes. Ethical approval is not necessary because the
data of this study is derived from gene database.
2.2. Data preprocessing and screening of DEGs

The gene expression profile data were preprocessed through
Robust Multi-array Average (RMA) algorithm in affy package
within Bioconductor (http://www.bioconductor.org) in R, and
quantile normalization was used to normalize their processed
signals. Affymetrix annotation files were applied for annotating
the probes. If different probes linked to the same gene, the median
value was chosen as the gene expression value. DEGs between
prostate cancer and matched normal adjacent tissue were
analyzed by the “limma” R package in R. jLog2-fold change
(LFC)j>0.5 and Pfalsediscoveryrate(FDR)< 0.05 and were considered
as the thresholds for DEGs screening.
2.3. Construction of co-expression network

Firstly, DEGs were used to construct scale-free co-expression
networks. Secondly, the correlation matrix between 2 genes was
performed using Pearson correlation matrices and the major
connecting rod. Next, the correlation matrix was transformed
into a weighted adjacency matrix through a power function
axy=jcxyjb (amn=adjacency between gene x and gene y;
cmn=Pearson correlation between gene x and gene y). b was
the most appropriate soft-thresholding parameter which could
raise the co-expression similarity and achieve consistent scale-free
topology inmultiple datasets. Here, we chose the power of b= 10
(scale-free R2=0.85) to ensure a scale-free network (Fig. S2,
http://links.lww.com/MD/D992). After that, with the chosen
power value, we performed automatic network construction and
module detection with the following major parameters: max-
BlockSize of 4000, minModuleSize of 100, deepSplit of 2, and
mergeCutHeight of 0.5. This procedure comprised the calcula-
tion of network adjacencies and topological overlap dissim-
ilarities, followed by scaling of topological overlap matrices
(TOM) and calculation of consensus topological overlap. And
then, we established an average linkage hierarchical clustering
dendrogram of gene expression data for the dataset to cluster
genes that have similar expression profiles into 1 gene module
and performed adaptive branch cutting to identify shared
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functional modules. The Above steps were implemented by using
the “WGCNA” package in R.
2.4. Identification of clinically significant modules

Module eigengenes (MEs) were characterized as the first principal
component of each co-expression module and the expression of
MEs was regarded as a representative of entire genes in a given
module. Additionally, we recognize the clinically significant
module (hubmodule) by calculating the correlation betweenMEs
and clinical data.
2.5. Gene ontology and KEGG enrichment analysis

For further understanding the function of DEGs in the hub
module, all genes in the hub module were subjected to GO and
KEGG pathway analysis through the Database for DAVID
database (version 6.8) (http://david.abcc.ncifcrf.gov/). The on-
tology includes 3 categories: biological process (BP), cellular
component (CC), and molecular function (MF). P value< .05
was regarded as the cut-off criterion for identifying the enriched
GO terms and KEGG pathways.
2.6. Hub gene analysis and construction of PPI network

In this study, after the hubmodule was confirmed, we selected the
candidate hub genes by module connectivity (cor.geneModule-
Membership (MM) > 0.6 or >0.8) and clinical feature
relationship (cor.geneTraitSignificance (GS) > 0.2), both mea-
sured by absolute value of the Pearson correlation. After that, we
uploaded these genes to the STRING database (https://string-db.
org/) for constructing protein–protein interaction (PPI) networks
and screening out hub nodes. Next, Cytoscape software (version
3.7.1) (http://www.cytoscape.org) was used to visualize the
interaction relationships between genes in these hub nodes.
Finally, a subnetwork was extracted from the PPI network using
the Molecular Complex Detection (MCODE) application,[14] a
Cytoscape plugin that detected densely connected regions in
networks that may represent molecular complexes. The param-
eters were set as follows. Degree cutoff: 2, node score cutoff: 0.2,
cut style: haircut, k-core: 2, and max. Depth: 100. Genes in the
PPI subnetwork were considered as hub genes for further
analysis.
2.7. Hub gene identification and validation using TCGA
data

The RNA-seq data and clinical information of PCa were
downloaded from The Cancer Genome Atlas Project database
(TCGA, https://cancergenome.nih.gov/). A total of 551 samples
were included. The samples in the data were divided into different
groups according to the clinical features of hub modules which
we were interested in. Spearman correlation analysis was used to
estimate the filtered gene expression in differential clinical traits.
Then, event-free survival (EFS) estimate and statistical signifi-
cance were performed using the Kaplan–Meier method, two-
sided log-rank test, and univariate Cox regression analysis. A
hazard ratio (HR) P value of <.05 was considered significant
statistically. The Human Protein Atlas (http://www.proteinatlas.
org) was applied for validating the immunohistochemistry (IHC)
of latent hub genes.
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3. Results

3.1. DEGs screening and WGCNA analysis

Totally 2688 DEGs (1539 up-regulated and 1149 down-
regulated) were identified between PCa and matched normal
adjacent tissue (Fig. 1A). The WGCNA analysis was performed
on these DEGs. The tumor samples of GSE69223 were clustered
using Pearson correlation method and the average linkage
method (Fig. 1B). Meanwhile, a scale-free network was ensured
with the power of b=10. Totally 6 modules were identified via
the average linkage hierarchical clustering (Fig. 1C). Both brown
module (r=0.58, P value= .02) and turquoise module (r=�0.61,
P value= .02) were found to have the most conspicuous
association with tumor grade (Fig. 1D). The expression levels
of genes in the brown module were positively associated with
tumor grade of PCa, while those of the turquoise module had the
contrary relationship. These 2 modules were selected as hub
modules for subsequent analysis.

3.2. Gene ontology and pathway enrichment analysis

With the similarly prominent connection of tumor grade, we
combined the genes in these 2 modules for enrichment analysis.
The genes were categorized into 3 functional groups (BP, CC, and
MF). The results showed that DEGs in the BP group was mainly
involved in oxidation–reduction process, cell adhesion, extracel-
lular matrix organization, Wnt signaling pathway, and cytoskel-
eton organization; DEGs in the CC group were enriched
primarily on cytoplasm, extracellular space, extracellular
exosome, membrane especially plasma membrane; DEGs in
the MF group were significantly improved in protein homo-
dimerization activity, GTP binding, structural molecule activity,
GTPase activity, and transferase activity. According to KEGG
enrichment analysis, our findings indicated that DEGs mainly
took part in focal adhesion, proteoglycans in cancer, vascular
smooth muscle contraction, cGMP�PKG signaling pathway and
ECM�receptor interaction (Fig. S3, http://links.lww.com/MD/
D993).
3.3. Hub gene analysis and construction of PPI network

Based the cut-off criteria (showed in Fig. S4, http://links.lww.com/
MD/D994. Brown module:jMMj > 0.6 and jGSj > 0.2;Turquoise
module: jMMj>0.8and jGSj>0.2), totally570genes (286genes in
the brownmodule and 284genes in the turquoisemodule)with high
connectivity were identified as candidate hub genes. The number of
highly correlated genes between the 2moduleswould be so far apart
that it might affect the eventual screening of hub genes if we used
jMMj>0.8as cut-off criteria forbrownmodule.Therefore,weused
a lower cutoff for it. Figure 2 showed the 2 PPI networks created by
importing these candidate hub genes of 2 hub modules into the
STRING database, respectively. The 13 highest-scoring nodes were
screenedout byMCODEapplication:CCNB1,TTK,DBF4,WEE1,
MCM3, MCM6, ACTG2, CNN1, TAGLN, MYL9, ACTA2,
LMOD1,andFLNA(6genes in thebrownmoduleand7genes in the
turquoise module). These 13 genes were considered as hub genes.

3.4. Hub gene identification and validation using TCGA
data

Based on the samples in TCGA data which were divided into 5
groups according to the tumor grades, Spearman correlation

http://david.abcc.ncifcrf.gov/
https://string-db.org/
https://string-db.org/
http://www.cytoscape.org/
https://cancergenome.nih.gov/
http://www.proteinatlas.org/
http://www.proteinatlas.org/
http://links.lww.com/MD/D993
http://links.lww.com/MD/D993
http://links.lww.com/MD/D994
http://links.lww.com/MD/D994
http://www.md-journal.com


Figure 1. DEGs screening and WGCNA analysis. (A) The volcano picture for DEGs. Green dots represented the downregulated genes. Black dots represented
genes that were not differentially expressed, and the red dots represented the upregulated genes. (B) Clustering dendrogram of 15 tumor samples as well as the
clinical features. The color intensity was proportional to higher tumor grade, higher tumor stage, and older age. (C) Dendrogram of all DEGs clustered based on a
dissimilarity measure (1-TOM). (D) Heatmap of the correlation values betweenMEs and different clinical features of PCa (tumor stage, tumor grade, and age). Red for
positive correlation and Blue for the negative correlation. P values were printed below the correlations. DEGs, differentially expressed genes. MEs = module
eigengenes, PCa = prostate cancer, WGCNA = weighted gene co-expression network analysis.
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analysis showed that 2 up-regulated genes (CCNB1, TTK) and 2
down-regulated genes (ACTG2, CNN1) in PCa had the most
significant correlation coefficient (jcorj>0.25), whichmeant there
was a highly consistent variation tendency between the
expression levels of these genes and the grades of PCa (Fig. 3).
Meanwhile, Kaplan–Meier curves and the two-sided log-rank
4

test revealed that lower expression of CCNB1, TTK, and higher
expression of ACTG2, CNN1 were associated with better EFS
(Fig. 4). Besides, the univariate Cox proportional hazards
regression analysis revealed that these 4 genes were also
correlative with EFS of PCa (Table 1). Moreover, based on
IHC data, the protein levels of CCNB1 and TTK were slightly



Figure 2. Visualization of PPI networks with candidate hub genes in the brown
and turquoise modules, respectively (286 genes in the brown module and 284
genes in the turquoise module). PPI = protein-protein interaction.
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higher in tumor tissues than those in normal tissues, while that of
ACTG2 in tumor tissues was significantly lower than those in the
control group (Fig. S5, http://links.lww.com/MD/D995).

4. Discussion

PCa is one of the most common malignant tumors in men, which
seriously harms men’s health. Current diagnostic methods such
as PSA testing, digital rectal examination, and prostate biopsy are
defective and might be rising in a number of non-malignant
clinical situations. Thus, it is vital to search for novel non-invasive
tumor markers with high sensitivity and high specificity. Many
studies have shown that the development and application of
multi-omics-based approaches including genomics, proteomics,
andmetabolomics inmalignant tumors provide the possibility for
this idea, which is conducive to improving the accuracy of early
diagnosis and prognosis evaluation for PCa and reducing the
number of unnecessary invasive examinations.[15] For instance,
the PCA3 (also called DD3) gene was reported remarkably
increased for PCa tissue compared with the normal control, and
PCA3 score of 20 could be regarded as the cutoff of avoiding
unnecessary biopsies.[16] Besides, 1 research figured out that the
levels of Periostin, Cathepsin D, Lysosome-associated membrane
glycoprotein 2 and Adipocyte plasma membrane-associated
protein were detected highly specific in PCa serum with respect to
the normal group, which were proved by a fast protocol based on
highly sensitive mass spectrometric analysis by Selected Reaction
Monitoring and TiO2 enrichment.[17] What is more, another
research summarized that 2 major metabolomics characteristics
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of PCa were an increased expression of genes in the tricarboxylic
acid cycle and the accumulation of metabolic intermediates,
which might guide us in exploring novel therapeutic targets for
PCa.[18]

It is worth noting that genomics, as a relatively mature omics
technology, has shown unique advantages in the exploration of
biomarkers for malignant tumors. In the study, we performed an
integrated bioinformatics analysis based on WGCNA towards
PCa patients gene expression profiling, finally highlighting some
key hub genes which could act as candidate biomarkers
associated with the tumor progression and prognosis of PCa.
We also made use of the RNA-seq data and clinical traits of PCa
from the TCGA database, as well as IHC data from the Human
Protein Atlas database for validation.
Both GO and KEGG pathway analysis in the combination of

identified modules highly enriched in cell adhesion. Interestingly,
numerous studies figured out that changes of adhesion-related
proteins were related to high Gleason score and metastasis, such
as E-cadherin[19] and CD44 standard (CD44s).[20]

Additionally, another research revealed that glucose-regulated
protein 78 was up-regulated in PCa and served as a modulator of
cell adhesion markers, which contributes to metastatic spread.[21]

GO terms are also enriched in the Wnt signaling pathway that is
of great interest to the PCa community. Wnt family contains
several secreted glycoproteins, which could combine with some
Frizzled transmembrane receptors to activating one of 2 principal
Wnt pathways (i.e., “non-canonical” or “canonical”).[22] Several
studies demonstrated that WNT5a might serve as a tumor-
inhibiting factor because its expression could induce apoptosis
in PCa cell lines[23] and predict for increased biochemical
recurrence-free survival.[24,25] Similarly, the expression level of
WNT11 seems to be upregulated by androgen deprivation
treatment,[26] which contribute to neuroendocrine differentiation
in PCa.[27]

Furthermore, we screened out 4 hub genes (CCNB1, TTK,
CNN1, and ACTG2) with high connectivity from the identified
modules through PPI networks. The expression patterns of these
genes were correlated with the tumor grade (WGCNA), and the
gene expression status was associated with prognosis. Our
findings suggested that the mentioned genes might play a crucial
role in the occurrence and development of PCa.
CCNB1, also named cyclin B1, regulates the G2 to M phase

transition in mitosis. Its expression and clinical value have been
examined in a variety of cancers. For example, overexpression of
CCNB1 played an essential role in cell proliferation and tumor
growth of colorectal cancer, which suggested that CCNB1 may
be an effective biomarker in colorectal cancer.[28] What is more,
another bioinformatics analysis revealed that CCNB1 could serve
as a potential therapeutic target in hepatocellular carcinoma.[29]

As for PCa, according to one previous research, androgen
receptor could increase the expression level of CCNB1 via Akt
phosphorylation, which contributes to the progression of PCa
regulated by Jagged1.[30] Besides, the high ratio of cyclin A and B
to the proliferation marker Ki67 was proved as the most potent
predictor of time to recurrence of PCa.[31] Higher levels of
CCNB1 sensitized PCa cells to apoptosis initiated by chemother-
apy, supporting that overexpression of CCNB1 in PCa cells may
be an effective prognostic biomarker for chemotherapy.[32]

In the present study, our results suggested that a high CCNB1
expression level could act as a good predictor of worse EFS.
TTK, also called Monopolar spindle one kinase (MPS1), is

another checkpoint in mitosis and correlative with cell
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Figure 3. The expression levels of (A) CCNB1, (B) TTK, (C) CNN1, and (D) ACTG2 in different tumor grades of PCa. PCa, prostate cancer.
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proliferation and cell invasion. Currently, overexpression of TTK
was confirmed to occur in various cancers that harbor copy
number gains (CNG) of chromosome 9p involving PD-L1.[33]

Furthermore, TTK was overexpressed within the incredible lions
share of esophageal squamous cell carcinoma tissues but barely
expressed in ordinary tissues,[34] while another study demon-
strated that high expression status of TTK corresponded
positively with tumor grade and negatively with prognosis in
glioblastoma.[35] Nowadays, there are few types of researches
regarding the role of TTK in PCa. Our study discovered that
overexpression of TTKwas associated with higher Gleason grade
and worse prognosis of PCa, which was the first study revealing
the relationship between TTK expression level and clinical
outcome of PCa, as far as we know.
Functionally, the binding of CNN1 contributed to the

stabilization of the 3D structure of actin filaments, which
effectively resulted in the decrease of filament turnover and
suppression of cytoskeleton remodeling.[36] Unlike CCNB1 and
TTK, CNN1may play a tumor-suppressive role in many kinds of
malignancy tumorsr.[37,38] Loss of CNN1 also led to tumor
progression and anoikis resistance in high-grade serous carcino-
ma, which originated from the fallopian tube epithelium.[39]

Although the functional importance of CNN1 on many other
6

cancers has been proved, few studies have performed the specific
analysis of CNN1 on its tumor-suppressive function in PCa.
Based on the present study, we detected that the expression of
CNN1 in PCa was down-regulated and related with high tumor
grade and terrible clinical outcome, supporting CNN1 may be a
candidate biomarker for progression and prognosis of PCa.
Recently, aberrant expression of ACTG2 (gamma smooth

muscle 2) has been described in several different types of
malignancy tumors. According to 1 previous study, a lower
expression level of ACTG2 was correlative with worse disease-
specific survival in leiomyosarcoma.[40] On the contrary, it was
also reported that ACTG2 was up-regulated in hepatocellular
carcinoma, involved as a promoter gene in cell migration and
distant metastasis.[41] Higher expression status of ACTG2 was
also found in colon tissue compared with colon carcinoma.[42] Its
expressions and effects seem to vary in different kinds of cancers.
Although the molecular mechanism by which ACTG2 functions
in tumors is not very clear and needs further research, it is
reasonable to believe that ACTG2 could be a novel prognostic
biomarker and candidate therapeutic target for PCa due to the
results of our study.
Nevertheless, the limitations should be acknowledged for our

research. Firstly, it is required further studies in vivo and in vitro



Figure 4. Event-free survival curve of the four hub genes in PCa based on Kaplan–Meier analysis and log-rank test. Patients were divided into the high expression
level group and the low expression level group based on quartile cutoff method (cutoff-high:75% and cutoff-low:25%). (A) CCNB1. (B) TTK. (C) CNN1. (D) ACTG2.
PCa, prostate cancer.

Table 1

Univariate Cox analysis of the 4 hub genes using TCGA dataset.

Hub genes HR 95% CI P value

CCNB1 3.62 1.65–7.95 .001
TTK 2.38 1.39–4.09 .002
CNN1 0.62 0.39–0.99 .045
ACTG2 0.61 0.40–0.94 .027

CI = confidence interval, HR = hazard ratio.

Chen et al. Medicine (2020) 99:14 www.md-journal.com
for illuminating the accurate molecular mechanisms that affected
the tumorigenesis and the progression of PCa. Secondly, to
making our findings more convincing, a larger number of clinical
samples were needed, which we will concentrate on in our future
research.
Taken together, we identified 4 potential molecular biomarkers

(CCNB1, TTK, CNN1, and ACTG2) for prognosing outcome
and target therapy of PCa by applying a comprehensive
bioinformatics analysis based on WGCNA, but more detailed
functional exploration and validation of the molecular mecha-
nisms associated with these genes are indispensable. Our findings
might furnish somemeaningful insights into individual therapy of
PCa patients.
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